www.ascens-ist.eu

ASCENS

Autonomic Service-Component Ensembles

JD1.1: Engineering Ensembles

A White Paper of the ASCENS Project

Grant agreement number: 257414
Funding Scheme: FET Proactive
Project Type: Integrated Project
Latest version of Annex |: 7.6.2010

Lead contractor for deliverable: LMU

Author(s): Matthias Holzl, Martin Wirsing, Annabelle Klarl, Nora
Koch, Stephan Reiter, Mirco Tribastone (LMU), Rocco De Nicola
(IMT), Diego Latella, Mieke Massink (ISTI), Ugo Montanari, Roberto
Bruni (UNIPI), Lubomir Bulej, Jan Kofron (CUNI), Joseph Sifakis,
Saddek Bensalem, Jacques Combaz (UJF-Verimag), Emil Vassev
(UL), Franco Zambonelli (UNIMORE)

Due date of deliverable: September 30, 2011

Actual submission date: October 19, 2011

RGVIS!Qn: _” Final SEVENTH FRAMEWORK
Classification: PU

Project coordinator: Martin Wirsing (LMU) * X %
Tel: +49 89 2180 9154 0
Fax: +49 89 2180 9175 * *
E-mail: wirsing@Imu.de bt

Partners: LMU, UNIPI, UDF, Fraunhofer, UJF-Verimag, UNIMORE,
ULB, EPFL, VW, Zimory, UL, IMT, Mobsya, CUNI

JD1.1 Engineering Ensembles (V1 Final) October 19, 2011

Executive Summary

Today’s developers often face the demanding task of developing software for ensembles: systems
with massive numbers of nodes, operating in open and non-deterministic environments with complex
interactions, and the need to dynamically adapt to new requirements, technologies or environmental
conditions without redeployment and without interruption of the system’s functionality. Conventional
development approaches and languages do not provide adequate support for the problems posed by
this challenge.

The goal of the ASCENS project is to develop a coherent, integrated set of methods and tools
to build software for ensembles. To this end we research foundational issues that arise during the
development of these kinds of systems, and we build mathematical models that address them. Based
on these theories we design a family of languages for engineering ensembles, formal methods that can
handle the size, complexity and adaptivity required by ensembles, and software-development methods
that provide guidance for developers.

ASCENS 2

JD1.1 Engineering Ensembles (V1 Final) October 19, 2011

Contents
1 _Intr 10N 5
[LI Ensembles 5
1.2 The ASCENS Approach| 5
1.3 ASCENS Languages for Engineering Ensembles| 7
(.4 The ASCENS Case Studiesl L. 7
(L.4.1 Ensembles of Self-Aware Robots.] 8
L4.2 Resource Ensembles as Science Clouds) 8
(1.4.3 Ensembles of Cooperative E-Vehicles.|. 8
|2 Foundations: Adaptation, Awareness, Knowledge, Emergence| 9
2.1 EM: The General Ensemble Model| 9
22 Adaptation|. e e e e 9
2.3 Awarenessl e e e e 10
24 Knowledge| 10
2.5 Emergence| e 11
|3 Structure: Service-Component Ensembles| 12
[3.1 Service Components| 12
3.2 Service-Component Ensembles| 14
4 Design: Languages and Models| 14
4.1 Declarative Modeling Languages: KnowLang, SOTA, POEM|. 14
4.2 SCEL: A Service Component Ensemble Language| 15
4.3 Dynamic BIP — Behavior, Interaction, Priority| 16
B4 Foundationa[Models 17
BS Performance Modelsl 18
B Valida®i [Verification: F [Methods 19
[5.1 From A Posteriori Verification to Constructivity| 19
[5.2 Properties of Implementations| 21
|6 Engineering Ensembles| 21
[6.1 BestPracticesand Patterns| 21
6.2 Tool Support] e 22
[7_Conclusions| 22

ASCENS 3

JD1.1 Engineering Ensembles (V1 Final) October 19, 2011

ASCENS 4

JD1.1 Engineering Ensembles (V1 Final) October 19, 2011

1 Introduction

In the beginning, things were not going well at all. The swarm of miniature robots had only been
deployed for an hour and already more than one third of the robots had become incapacitated by get-
ting stuck in locations from which they could not extricate themselves. The robots were of course
equipped with terrain sensors and control logic designed to prevent this, but a combination of unex-
pected terrain and lighting conditions caused the algorithm that had worked reliably during testing to
produce disappointing results. Realizing that they were in danger of failing in their task to locate rare-
earth metals in this remote area, the robots changed their behavior: Instead of foraging individually the
robots used their grippers to connect themselves into larger structures that were better suited to explore
the assigned region without becoming trapped, thereby trading off speed of exploration for increased
reliability. Using this strategy they even managed to free half of the immobilized robots while those
robots that could not be extracted reconfigured themselves as communication relays, allowing robot
groups in their vicinity to disperse further without being in danger of losing contact with each other.
After several hours of foraging the swarm discovered a large deposit of monazite sand and mapped its
location, making the mission a success.

Unfortunately, current technology is not sufficiently advanced to build a robot swarm that actually
exhibits the behavior described in this scenario. While it is already possible to design hardware that
has the required features, our current approaches to software engineering are not sufficient for building
systems that can autonomously adapt to a wide range of different, unexpected situations based on
awareness of the environment, the system and its goals, as the robot swarm in the scenario does. The
aim of the ASCENS project is to develop foundations, techniques and tools to engineer software for
this kind of system.

1.1 Ensembles

Numerous reasons why it is necessary to develop large software-intensive systems with the capabil-
ities to operate in unknown environments have been documented [HRWOS8|]. The ICT-FET project
InterLink [Int] has coined the term ensemble for a particular kind of system: Ensembles are software-
intensive systems with massive numbers of nodes or complex interactions between nodes, operating
in open and non-deterministic environments in which they have to interact with humans or other
software-intensive systems in elaborate ways. Ensembles have to dynamically adapt to new require-
ments, technologies or environmental conditions without redeployment and without interruption of
the system’s functionality, Thereby blurring the distinction between design-time and run-time.

Of course, systems that satisfy the definition of ensembles have already been built: National in-
frastructures such as the power grid, large online businesses such as Amazon or Google, or the systems
used by modern armies, all satisfy the definition of an ensemble. However, these systems solve rel-
atively well-understood problems and their size is mostly a function of the amount of data and the
number of transactions they have to process. These are interesting problems in themselves, but not the
main complication for building the kind of ensemble described in the initial scenario: None of these
systems can actually adapt to unforeseen environmental conditions in the same way as our hypothetical
robot system.

1.2 The ASCENS Approach

Instead of static software that operates without knowledge about its environment and hence relies on
manual configuration and optimization we have to build systems with self-aware, intelligent compo-
nents that mimic natural features like adaptation, self-organization, and autonomous as well as collec-
tive behavior. However, traditional software engineering, both agile and heavyweight, relies to a large

ASCENS 5

JD1.1 Engineering Ensembles (V1 Final) October 19, 2011

e Patterns/Reasoning/Policies/Constraints
* Abstract Behaviors (Assume/Guarantee/Preserve)
e Logical/Graphical Knowledge Representation

¢ Policies/Constraints
® Behaviors as Process Calculus Specifications
e Tuples

e Constraints
® Behaviors as C Programs
e C Data Structures

e Monitoring
e Performance Analysis

Figure 1: Relationship between the behavorial ASCENS languages

degree on code inspection and testing, approaches which are not adequate for reliably developing large
concurrent systems, let alone self-aware, adaptive systems. Formal methods have successfully been
employed in an ever increasing number of projects; however, they generally cannot deal with the dy-
namic and open-ended nature of the systems we are interested in, and they are difficult to scale to the
size of industrial-scale projects. Approaches from autonomic and multi-agent systems address aspects
such as self-configuration and self-optimization, but they lack necessary guarantees for reliability,
dependability and security and are therefore not appropriate for critical systems.

The goal of the ASCENS project is to build ensembles in a way that combines the maturity and
wide applicability of traditional software-engineering approaches with the assurance about functional
and non-functional properties provided by formal methods and the flexibility, low management over-
head, and optimal utilization of resources promised by autonomic, self-aware systems. To this end we
are researching and inventing new concepts for the design and development of autonomous, self-aware
systems with parallel and distributed components. We are developing sound, formal reasoning and
verification techniques to support the specification and development of these systems as well as their
analysis at run-time. The project goes beyond the current state of the art in solving difficult problems
of self-organization, self-awareness, autonomous and collective behavior, and resource optimization
in a complex system setting.

To enable the specification and analysis of ensembles at various levels of abstraction the AS-
CENS project has defined a denotational system model for ensembles called General Ensemble Model
(GEM). GEM is a mathematically precise model for ensembles that is useful for defining properties
such as adaptation, awareness and emergence. Other foundational models developed as part of AS-
CENS provide precise mathematical semantics for aspects such as the network architecture of an
ensemble.

ASCENS 6

JD1.1 Engineering Ensembles (V1 Final) October 19, 2011

1.3 ASCENS Languages for Engineering Ensembles

GEM itself is not directly usable as an engineering language, but it serves as a semantic foundation for
the various logics, models and languages defined in ASCENS to support the development of ensem-
bles. For the mostly declarative description of ensembles three closely related languages and models
are defined: KnowLang for modeling knowledge and inference in the ensemble and its individual
components, State Of The Affairs (SOTA) for modeling adaptation strategies and patterns, and the
Pseudo-Operational Ensemble Model language (POEM), a declarative language for expressing (not
necessarily executable) behavioral models and goals. Operational models of ensembles are expressed
in the Service-Component Ensemble Language (SCEL), a flexible process-calculus inspired language.
At a level even closer to the actual machine code, Dynamic BIP (Dy-BIP) can be used to express
the architecture of ensembles in an expressive graphical notation while the code and data structures
are specified in plain C code. The development process can progress from POEM models to SCEL
specifications which can either be automatically or manually translated into Dy-BIP programs. The
BIP code generator can produce a C program from the Dy-BIP specification. Powerful tools for for-
mal analysis will be available for all languages and integrated into a development environment; the
run-time behavior of programs can be monitored and analyzed using the ASCENS monitoring and
performance analysis tools. Fig. [T presents this process graphically; more detailed descriptions of the
languages can be found in Sect. 4]

1.4 The ASCENS Case Studies

While one of the main goals of ASCENS is the development of foundational theories of ensemble
engineering, we are also deeply concerned with the applicability of our results. Therefore, the fun-
damental research is closely integrated with application-oriented case studies that provide continuous
feedback. To ensure wide applicability of our results we have chosen three case studies from different
areas: Swarm robotics, cloud computing and e-mobility.

Figure 2: Robot swarm on a simulated rescue mission

ASCENS 7

JD1.1 Engineering Ensembles (V1 Final) October 19, 2011

1.4.1 Ensembles of Self-Aware Robots.

The swarm-robotics case study considers ensembles of cooperating, self-aware robots. Robot swarms
generally consist of relatively cheap robots that lack many of the capabilities of larger, more sophis-
ticated models, but that can collaborate to collectively achieve tasks that no individual robot in the
swarm could accomplish. Robot swarms are particularly well suited for operations in difficult envi-
ronments where the risk of failure for individual robots is high. For example, robot swarms might be
used to rescue victims of natural disasters or industrial accidents. In these situations, the attrition rate
of individual robots may be high, but a swarm of robot can continue to function even when individual
robots have failed.

In ASCENS we will mainly investigate scenarios where the goal of the robot swarm is to localize
and transport objects; this task is similar to the one presented in the initial scenario and also to the
rescue task. The objects will be defined in such a way that their transport requires physical cooper-
ation of several robots. This task will have to be performed in a number of increasingly challenging
environments containing obstacles such as holes, hills, barriers, bridges, slopes, etc.

1.4.2 Resource Ensembles as Science Clouds.

The Science Cloud case study is about making cloud computing more dynamic and open while at-
tempting to maintain its properties of being a reliable and flexible approach for using third-party
resources and services, something that is done by both companies and private users using commercial
and in-house clouds.

Our goal is to create a platform-as-a-service (PaaS) solution for data sharing and execution of dis-
tributed applications, which is based on autonomous, cooperating computers that provide their storage
and computational resources on a best-effort and at-will basis. In particular, computers contributing
to this platform are not required to stay available for any pre-determined amount of time and may
join or leave the system at any given moment. We will explore this property in the form of ad-hoc
cooperations between researchers from different organizations. Mechanisms to deal with transiently
available computers are a requirement for a usable platform and will therefore be in the focus of the
case study, resulting in a highly fault-tolerant solution that will also yield better services compared to
those delivered from traditional environments, such as data centers which typically have to deal with
failing servers.

1.4.3 Ensembles of Cooperative E-Vehicles.

The e-mobility case study aims at illustrating the theories and methodologies developed in ASCENS in
the domain of e-mobility planning. Driver, vehicle and infrastructure are considered as interacting au-
tonomous Service Components, which are temporally re/organized in Service Component Ensembles
to reach a goal. In order to provide a user with a seamless daily travel plan, a sequence of destinations
with possibly different travel modes and resource requirements have to be scheduled. The main inten-
tion is to provide benefits for the individual vehicle and its driver as well as for the whole ensemble of
vehicles.

Particular attention is paid to the performance criterion of providing a high-level Quality of Service
(QoS) that incorporates the following features: Reliability (e.g. transport/delivery reliability, adher-
ence to schedules, guarantee to reach the goal, recharging-in-time assurance), adaptation to changes
(e.g. traffic flow, daily personal schedule of the driver) and predictability (confidence in reaching a
desired location at a requested time).

ASCENS 8

JD1.1 Engineering Ensembles (V1 Final) October 19, 2011

2 Foundations: Adaptation, Awareness, Knowledge, Emergence

While the meaning of concepts such as adaptation, awareness, knowledge and emergence might seem
to be intuitively clear, a large variety of incompatible and contradictory definitions of these terms
exist in the literature. However, none of the existing definitions of these terms is simultaneously
comprehensive, abstract and precise enough to serve as a formal basis for the calculi and validation
techniques of ASCENS.

2.1 GEM: The General Ensemble Model

In order to provide a shared understanding and a precise mathematical semantics of the fundamental
notions in the project, we are defining the General Ensemble Model (GEM), a formal system model
for ensembles [HW11]. GEM is denotational in the sense that it represents ensembles as relations that
describe the complete behavior of the ensemble over its lifetime. To model the hierarchical nature
of ensembles, relations in GEM can be composed from simpler relations by means of combination
operators. Furthermore, GEM allows the seamless integration of knowledge as well as the internal
states of components to provide a semantic foundation for KnowLang, SOTA and POEM.

In order to define requirements and goals for ensembles, GEM provides a general mechanism
for connecting different logics to the relational description of an ensemble, so that different formal
methods can be applied to GEM models.

In addition to serving as a denotational semantics for the ASCENS languages, GEM allows us
to precisely define adaptation, awareness, knowledge and emergence, and to investigate their funda-
mental properties independent of any operational mechanism. The next sections will provide a short
introduction to these notions.

2.2 Adaptation

The behavior of the robot swarm in the initial example clearly exhibits adaptation: in spite of being
placed in an unknown environment that exhibited features not anticipated during the development of
the ensemble, the swarm was capable of satisfying its goal of exploring the area and finding deposits
of rare-earth metals. The swarm’s success was achieved by changing the structure of the swarm (e.g.,
instead of individually foraging, the robots decided to form larger clusters acting in a coordinated
way). To achieve this the individual robots had to change their individual behaviors and goals in
a coordinated manner: groups of several robots have to agree to build a cluster. Robots that have
become stuck have to recognize that they can no longer achieve their original goal and find new goals
that serve the overall purpose of the swarm.

These different views are a typical endeavor in software engineering, i.e., that of distinguishing
between the “what” a system should do and the “how” a system should be architected. By adopting
the same point of view in the analysis of adaptivity for ensembles, we can define two notions of
adaptation:

o Black-box adaptation: The focus is on the observable adaptivity of a system, which shows itself
capable of achieving application goals in a flexible yet robust way.

e White-box adaptation: The focus is on behavioral and structural changes, at the level of indi-
vidual components, that enable the system to exhibit adaptability.

These two perspectives can be very useful to firstly assess the degree of adaptivity to situations
that a system should exhibit, and to consequently understand which specific mechanisms (e.g., as
chosen among a catalog of adaptation patterns [CPZ11]]) one should adopt to achieve such adaptivity.

ASCENS 9

JD1.1 Engineering Ensembles (V1 Final) October 19, 2011

In particular, we emphasize that black-box adaptation introduces the notion of an adaptation space—
essentially a set of pairs of environments and goals—and introduces the concept “ensemble F can
adapt to all elements of adaptation space .A”, i.e., for each pair consisting of an environment 7 and
a goal v in A, the ensemble F can achieve goal v when operating in environment 7. This allows us
to compare the range of situations to which various ensembles can (or has to) adapt, and can help
architecting ensembles accordingly.

An important generalization is achieved by extending the binary predicate “goal satisfaction” to
the more relaxed notion of “utility” or “fitness for a purpose”: While goal satisfaction allows us to
classify ensembles only into those satisfying a goal and those not satisfying this goal (in a given
situation), it is also important to express “how well” an ensemble can satisfy certain goals. We call
an ensemble together with a function that computes its utility or fitness value a heterostatic ensemble.
Another important generalization is from the purely relational view of ensembles to a probabilistic
view that describes how likely the different behaviors of the ensemble are.

Clearly, it is important to extend the above definitions of black-box and white-box adaptation so
as to account for heterostatic and probabilistic ensembles, i.e., coupling the concept of goals with a
concept expressing quality requirements for reaching such goals in a probabilistic setting. Another
important aspect is the definition of mechanisms to dynamically “adapt adaptation quality”.

2.3 Awareness

To recognize that they are in danger of failing their mission, the robots have to possess awareness
of their environment: To realize that they have become stuck, they must determine that there is a
large difference between the expected result of their action and the actual result; e.g., spinning the
wheels should lead to movement in a certain direction, but did not influence their position at all. To
evaluate whether they are acting in a manner that is helpful for reaching the ensemble’s requirements,
the individual robots need to be aware of the goal of the ensemble and whether their actions contribute
toward reaching that goal.

To introduce a more precise definition of awareness we have to extend the the basic ensemble
model beyond the purely behavioral view of the ensemble and add an internal state to the relation that
describes the ensemble. Note that this does not require any changes to GEM, it suffices to introduce
the internal state into the relation describing the ensemble (or one of its components). We can then
say that the ensemble (or component) E is aware of another part of the system or the environment R,
if the distance between the internal state of £ and the representation of R in the relation is sufficiently
small.

Therefore, in order to quantify awareness, it is necessary to introduce a distance measure between
the values of the internal state £ and the values of R.

Given this notion of awareness, self-awareness of a component can easily be described as well:
it is simply the distance of the components’s internal state to the whole relation describing the com-
ponent. In this way we obtain a uniform model for environmental awareness, network awareness,
self-awareness and ensemble awareness.

The analysis of adaptation from the black-box viewpoint can help designers identify those specific
models of the environment 7 and the ensemble’s internal behavior I that are useful for the ensemble
(or an individual component) E' to better achieve its goals. In other words, this analysis can identify
the kind of awareness of 7 and I that F needs in order to adaptively achieve its goals [ZBCT11].

2.4 Knowledge

In the example, the robots received signals from their sensors from which they eventually concluded
that their actions would not achieve the desired goal. They could then diagnose the problems and

ASCENS 10

JD1.1 Engineering Ensembles (V1 Final) October 19, 2011

eventually find a different behavior that may lead to a successful outcome. In order to achieve these
results, the robots have to transform the raw data into knowledge: Structured information that provides
meaning, abstractions, and ways to reason about and act upon the provided data [ITEQ9].

A single component gains raw data about the external world by taking measurements with its sen-
sors. However, this data is not sufficient to enable control mechanisms other than simple condition-
action-rules. In order to create a solid basis for decision making, the raw data must be transformed
into knowledge, i.e. it must be structured into meaningful abstractions which interpret the current
measurements within the component’s full context. The relevant context typically does not only con-
sist of information about the current state of the component itself, but also includes the whole history
of observations taken so far, information about the other components in the ensemble and environ-
mental circumstances. The integration of knowledge from other components of the ensemble may
also compensate uncertainty of observations or allow coordination within the ensemble. Altogether,
these requirements call for appropriate mechanisms and formal notations to provide the component
with means to organize its observations into knowledge elements, integrate them into a complex know-
ledge base and finally perform efficient reasoning to derive suitable decisions.

Many techniques for knowledge representation have been proposed, such as rules, frames, seman-
tic networks and concept maps, ontologies, and logic expressions. In the ASCENS project, we apply
the approach of ontologies to the domain of ensembles. An ontology models the world in terms of
concepts representing meaningful units of information within a domain. Relations between these con-
cepts capture properties and relationships between concepts. By mapping raw data to these concepts,
a component can organize its knowledge. Using ontologies, a component is able to reason about its
knowledge and to infer conclusions from it. If the component is missing some important data, it might
be able to deduce certain facts from its knowledge by using inference mechanisms.

We model four distinct types of knowledge: SC knowledge considers all information about the
component itself while SCE knowledge takes the whole ensemble into account. Thereby, a component
can compare its own SC knowledge base with other components to verify or update its observations
and beliefs. With the aid of the SCE knowledge, the component can understand even more about the
progress and steps of the whole ensemble. Information about the operational environment is captured
in the context knowledge. This enables the component to relate its knowledge to the environmental
circumstances. At last, the component is able to distinguish between known and unknown situations
by evaluating situational knowledge patterns. The component builds up a history of situations, ac-
tions and effects. On the basis of these “lessons learned”, it characterizes different situations and the
required actions as patterns and uses them to perform better in known situations.

Regardless of which kind of knowledge we consider, the knowledge must be structured so that
it can be effectively and efficiently processed by an intelligent system and perceived or updated by
humans. So in the ASCENS project, we emphasize the use of ontologies to do the splits between
automatic processing and human readability.

2.5 Emergence

The term emergence has been used to describe various phenomena: in the software engineering litera-
ture it is often used to describe global phenomena, not arising from any single component [SomOQ7]; in
the literature about complex system it is often used with more specific denotations, for example Mark
A. Bedau defines weak emergence as [Bed97]: “Macrostate P of [a system] S with microdynamic D
is weakly emergent iff P can be derived from D and S’s external conditions but only by simulation.”
In this section it is mostly this latter denotation of emergence that we are concerned with.

Emergent phenomena often occur due to the pattern of non-linear and distributed local interactions
between the elements of a system over time. Surprisingly, agent-based crowd models, in which the

ASCENS 11

JD1.1 Engineering Ensembles (V1 Final) October 19, 2011

movement of each individual follows a limited set of simple rules, often reproduce quite closely the
emergent behavior of crowds that can be observed in reality.

Consider for instance the scenario of self-aware robots and suppose their working environment be
composed of several, interconnected sub-areas. One would like to see the robots evenly distributed
among the sub-areas, but it may happen that due to some mutual fit parameter each robot may proba-
bilistically decide to remain in a certain sub-area or to move away from it to another sub-area. Such a
simple rule could result, over time, in widely varying distribution dynamics of the robots in the envi-
ronment, ranging from even distribution, with robots smoothly moving from one sub-area to another,
carrying material around, to situations in which all robots gather in a single sub-area, getting stuck
there. The emergent behavior associated to such phase shifts has been studied, and formally analyzed,
in the case of human agents (see, e.g. [RG03,IMLLBH11]]) and, given the very simple local rules which
govern the behavior of the agents, it is likely to be found again in robot swarms.

Another interesting scenario is that of a swarm of robots using Ant Colony Optimization Algo-
rithms. These are optimization algorithms which are inspired by the behavior of colonies of ants
hunting for food (see, e.g. [DS04]), where intelligent/optimal behavior of a large population of agents
emerges from quite simple rules followed by each individual agent. The formal specification and scal-
able analysis of such systems, that in general consist of a large number of autonomous entities, is still
a challenging problem [Tof90, [SBBO1]], but promising results are being reached, for instance using
continuous, fluid-flow, approximation techniques for stochastic process algebras [ML11]] or stochas-
tic differential equations [Mey0OS8]]. Such analysis is essential to assure functional and non-functional
properties of such systems, especially when they are employed in safety critical applications.

3 Structure: Service-Component Ensembles

Compositionality is one of the most powerful tools for taming complexity: If we can structure a system
into well-understood building blocks that interact in specified ways, we can reduce the complexity
of innumerable interactions between low-level components to a manageable number of interactions
between building blocks. The ASCENS approach therefore focuses on service-component ensembles
(SCEs), hierarchical ensembles built from service components (SCs), simpler SCEs and knowledge
units (K) connected via a highly dynamic infrastructure, see Fig. [3] The robot swarm demonstrates a
simple hierarchical structure: each robot can be seen as an ensemble consisting of controllers, sensors
actuators, etc., and the swarm of robots is an ensemble consisting of individual robots.

3.1 Service Components

Service components are nodes that can cooperate, with different roles, in possibly open and non-
deterministic environments. These basic properties, already satisfied by, e.g., contemporary service-
oriented architectures, will be enriched by new properties of awareness as described in section [2.3]
They will allow awareness-rich behavior making SCs adaptable, connectable and composable. The
self-awareness of service components in an ensemble is achieved by: (i) equipping SCs with declara-
tive information about their own state and behavior; (ii) enabling SCs to collect and store information
about their working environment, possibly gaining limited information about the whole system; and
(ii1) using this information for redirecting and adapting SC behaviors via the proper engineering of
autonomic control loops either within or outside components.

ASCENS 12

JD1.1 Engineering Ensembles (V1 Final)

October 19, 2011

Knowledge

Service Component

Knowledge

Deployment

Knowledge

e Knowledge

. g
N 3 2
- 8
o)
- J
Figure 3: Service Component Ensemble
ASCENS

13

JD1.1 Engineering Ensembles (V1 Final) October 19, 2011

3.2 Service-Component Ensembles

A service-component ensemble is a set of service components (SCs) with dedicated knowledge units,
representing the shared local and global knowledge about levels of awareness, resources, connectiv-
ity and networking, interconnected in a dynamic network, featuring goal-oriented, safe and secure
execution, and efficient resource management.

To realize ensembles of service components whose properties go far beyond the state of the art in
current software engineering and technology, we are thoroughly investigating the following domains:

1. Linguistic support for programming SCEs, expressing awareness and exchanging knowledge;

2. Formalization and modeling the fundamental SCE network properties like autonomous behavior

and awareness-rich networking;

Knowledge representation and self-awareness of service components;

4. Methods and mechanisms for adaptation and dynamic self expression, possibly defined in terms
of feedback loops and architectural patterns for organizing the desired adaptation;

5. Techniques and methodologies for the design and development of reliable SCs and SCEs and
their verification using formal methods;

6. Software infrastructure to support programming, deployment and execution of SCE-based ap-
plications;

7. Performance prediction targeting scalable performance-analysis methods and performance mon-
itoring at run-time;

8. Checking the compliance of SC implementation code with its formal specification.

»

Each of the mentioned research topics is based on the system model for ensembles presented in the
previous section.

4 Design: Languages and Models

In principle the software of our hypothetical robots could be developed using traditional modeling
and programming languages. However, these languages lack support for conveniently expressing the
concepts presented in Sect. 2] To manage the complexity of ensemble development, developers need
languages that can express these important features of the software more directly.

In traditional software engineering, modeling languages like the UML provide different sub-
languages or diagram types for modeling various aspects of a program, e.g., its architecture, static
structure, or the behavior of objects. Ensembles present several novel problems for the software en-
gineer, e.g., the need to take into account more sophisticated knowledge, adaptation or the interplay
between goals of individual components and the ensemble. To address these issues, ASCENS is defin-
ing a family of languages; the formal basis for these languages is provided by the foundational models
described in Sect. and 4.4] Ensembles often interact with the physical world and therefore have
strict performance requirements; performance models are introduced in Sect.

4.1 Declarative Modeling Languages: KnowLang, SOTA, POEM

Declarative models of ensembles are expressed in three closely related ASCENS languages: Know-
Lang for knowledge, SOTA for adaptation, and POEM for goals and behaviors.

KnowLang is a knowledge representation language that allows the definition of ontologies and
knowledge bases, and it defines knowledge-base operators for maintaining and querying the know-
ledge base as well as inference primitives. KnowLang provides a multi-tier specification model that
allows the presentation of knowledge at multiple levels of depth of meaning.

ASCENS 14

JD1.1 Engineering Ensembles (V1 Final) October 19, 2011

SOTA is a formalism for modeling adaptation requirements and helping the designer chose the
most adequate adaptation patterns. SOTA is based on the same principal ideas as GEM, but whereas
GEM is a general model of ensembles, SOTA is focused on those aspects which are relevant to adap-
tation, which results in a simpler and more streamlined presentation.

POEM is a specification language for behavior and goals; it is based on the same foundations as
KnowLang, i.e., the event calculus and graphical probabilistic networks. POEM is closely integrated
with KnowLang and SOTA; furthermore POEM models can contain SCEL programs for executable
behaviors. Therefore POEM models can include both declarative and procedural behavioral models
and therefore allow specifications at various levels of detail. A particular focus of POEM is the in-
terplay between behaviors of individual components and the overall ensemble, the dynamic trade-off
between reasoning and precompiled behavior, and the integration of design time and run time.

4.2 SCEL: A Service Component Ensemble Language

As mentioned above, the behavior of robots, their interactions, sensitivity to the environment, adap-
tivity need, of course, to be programmed. This could theoretically be done in any of the existing
programming languages, even in an assembly language. However, given the intricacy of the issues
under consideration and the need to foresee the emergent behavior of many interacting agents and to
guarantee that specific functionalities are offered, programming the robot swarm in a traditional pro-
gramming language would be so complex as to be practically infeasible. It would be better to resort to
a language where notions such as component, interaction, interface, distribution, mobility, knowledge,
awareness or adaptation are first class elements. This absolves the developer from the need to elab-
orate these constructs each time they occur in the program. To facilitate integration with the formal
methods used in ASCENS, it is essential that the language is based on a solid semantic ground so that
formal reasoning can be performed.

For these reasons, we are designing SCEL, a new language that brings together various program-
ming abstractions that permit directly representing knowledge, behaviors and aggregations according
to specific policies and, naturally, to program interaction, adaptation and self- and context-awareness.

The abstractions related to knowledge describe how knowledge is manipulated and shared. At
the SCEL level, knowledge is represented through multi-sets of items containing application data and
control data. The former are used for the progress of components, while the latter provide information
about the environment in which components are running (e.g. monitored data from robot’s sensors) or
about the actual status of a single autonomic component (e.g. robot’s position or remaining energy).
To model distribution, each component has a private repository that may or may not (depending of the
conditions) be accessed by others.

The abstractions related to behaviors describe how components progress and are modeled as pro-
cesses in the style of process calculi. Interaction is modeled by allowing different components to
access the knowledge repository of other components. Adaptation is modeled by retrieving from the
knowledge repository both information about the changing context and suggestion about the code to
execute.

The abstractions related to aggregations describe how different entities are brought together to
form components, systems and, possibly, ensembles and are useful to model distribution and mo-
bility. Compositionality and interoperability are supported by interfaces, that specify attributes and
functionalities provided and/or required by components.

The abstractions related to policies deal with the way properties of computations are represented
and enforced. Interaction and Service Level Agreement (SLA) provide two standard examples of
policy abstractions. Other examples are security properties maintaining the right linkage between
data values and their associated usage policies (data-leakage policies) or limiting the flow of sensitive

ASCENS 15

JD1.1 Engineering Ensembles (V1 Final) October 19, 2011

information from untrusted sources (access control and reputation policies).

All these abstractions are based on solid semantics grounds that lay the basis for developing logics,
tools and methodologies for establishing qualitative and quantitative properties about the behavior of
both the individual components and the overall ensemble.

4.3 Dynamic BIP — Behavior, Interaction, Priority

Behaviors of SCEs often arise from the individual actions of multiple SCs. This can result in a wide
variety of useful properties, but also in unplanned processes which are detrimental to the assigned
goals of the ensemble. In any case the possible interactions are determined by the structure of the
ensemble and the possible interactions between components. Therefore architectures are essential
for mastering the complexity of ensembles and to facilitate their analysis and evolution. They allow
separation of detailed behavior of components and their overall coordination. Coordination is usually
expressed by constraints that define possible interactions between components. For instance, robots
in swarm can only interact if they are in the range permitted by their communication devices. Clearly,
static architectures are inefficient for systems that exhibit adaptive behavior, e.g. the set of interactions
that can eventually occur in a swarm is intractable for a large number of robots.

Dy-BIP is a component framework based on rigorous operational semantics for modeling both
static and dynamic architectures at a level closer to the actual hardware than SCEL. Dy-BIP can be
considered as an extension of the BIP language for the construction of composite hierarchically struc-
tured components from atomic components. These are characterized by their behavior specified as
automata labeled by ports, and extended with data and functions described in C. In BIP architectures
are used composition operators on components defining their interactions. An interaction is described
as a set of ports from different components. It can be executed if there exists a set of enabled tran-
sitions labeled by its ports. The completion of an interaction is followed by the completion of the
involved transitions: execution of the corresponding actions followed by a move to the target state. An
operational semantics for BIP has been defined in [BBBSO08]].

In contrast to BIP, the set of interactions characterizing architectures in Dy-BIP changes dynami-
cally with states. A port p has an associated architecture constraint C, which describes possible sets of
interactions involving p. Feasible interactions from a state are computed as solutions of the constraint
obtained as the conjunction of the constraints of all the enabled transitions. We provide a formalization
of the operational semantics for Dy-BIP.

A BIP model (i.e. using a static architecture) with a global architecture constraint C', can be
represented as a Dy-BIP model such that the constraint C), associated with a port p is the set of the
interactions of C involving p. Dy-BIP allows modeling dynamic architectures as the composition
of instances of component types. We first assumed that there is no dynamic creation/deletion of
component instances.

The language for the description of architecture constraints in Dy-BIP is expressive and amenable
to analysis and execution. It defines formulas of a first order logic allowing quantification over in-
stances of component types. Formulas characterize sets of interactions. They involve port names used
as logical variables. Given a formula, a feasible interaction is any set of ports assigned true by a
valuation which satisfies the formula.

The semantic model and associated modeling methodology for writing architecture constraints
is as follows. For a port p, the associated constraint is decomposed into three types of dependency
characterizing interaction between ports [BSOS8]|: “causal constraint”, “acceptance constraint”, “filter
constraint”. A causal constraint defines the ports required for interaction. An acceptance constraint
defines optional ports for participation. Filter constraints are invariants used to exclude undesirable
configurations of a component’s environment.

ASCENS 16

JD1.1 Engineering Ensembles (V1 Final) October 19, 2011

Dy-BIP semantics is implemented in terms of an Execution Engine handling symbolic architecture
constraints. As for BIP, the Engine orchestrates components by executing a three-step protocol. The
protocol differs in that components send not only port names of enabled transitions but also their
associated architecture constraints. The proposed implementation of the Engine is based on resolution
of architecture constraints on the fly. It uses efficient constraint resolution techniques based on BDDs.

4.4 Foundational Models

In order to be useful for formal analysis and verification the languages described above have to be
given a precise semantics. The foundational models developed as part of ASCENS provide the math-
ematical foundations for this task. GEM, the system model for ensembles, has already been described
in Sect. 2.1] Other foundational models focus on more specific questions, such as the structure of the
network or strategies to achieve cooperative behaviors.

As an example, we look at the communication layer between the robots in the initial scenario.
Existing ad hoc and opportunistic computer networks already provide most of the features we need
to model this layer at the lowest level of abstraction: taking advantage of other robots as network
nodes, reconfiguring the networks according to the topology and the existing resources such as power
and bandwidth, etc. At a higher level of abstraction we need more intricate behaviors, as they are,
for example provided by active networks [DAR| which have been extensively studied in the US in
the past 15 years: certain features of the communication system, e.g. the routing tables, are made
accessible to, and modifiable by, the application programmer. For instance, in the above scenario,
suitable communication protocols could have been uploaded to increase the bandwidth among close
robots while forming the groups.

Foundational models of ASCENS will describe these abstractions at the formal level and apply
the resulting models to the ASCENS languages.

To this end we are contributing an advanced network-aware model relying on a sophisticated mid-
dleware of connectors. During execution, the connectors can allocate and deallocate shared resources.
As is well known in the theory of distributed systems, the key feature for consensus is the ability of
agreeing on a shared value, namely to synchronize. Thus the model relies on a variety of synchro-
nization primitives, from message reception in an asynchronous setting, to Petri net/Linda distributed
decisions, to REO synchronization primitives. Synchronization means a commit on a contract signed
by two or more agents, or, more generally, the solution of a local, distributed problem. After the com-
mit, certain properties should be ensured. In the initial swarm robotics example, the commit might
correspond to the formation of the groups, possibly after several trials represented as transaction back-
trackings. After forming the group, the contract will guarantee that certain movements can happen
without breaking the group.

Shared abstractions are the subject of a second class of foundational models. Good, well un-
derstood examples are concurrent constraints and execution-time behavioral types. In general, we
typically have a trade-off between procedural and declarative knowledge: the abstractions could be
values, constraints (i.e. sets of possible values) or execution rules. Several different abstractions for
the same concepts may exist and the one most suitable for a purpose may be chosen dynamically at run
time, for example knowledge how to achieve certain tasks may be present in declarative form but also
as precompiled programs: operating on the declarative knowledge may be inefficient and consume a
lot of storage and energy, but it provides a wide range of possibilities for behavioral adaptation which
can be activated in situations when the precompiled programs fail.

Usually abstractions are local, namely are shared among a small number of processes. However
they can be equipped with closure operators, namely with propagation rules able to transfer at the
global level, and back, the local knowledge. In the example, certain global conclusions, e.g. about

ASCENS 17

JD1.1 Engineering Ensembles (V1 Final) October 19, 2011

how harmful a certain area is to the robots, could be reached by applying suitable deduction rules to
the local information provided by single robots (robot groups).

A third—related—group of foundational models deals with planning and control issues, namely
choosing a possible behavior in a non- or indeterministic situation. Apart from the reachability (resp.
non-reachability) of desired (resp. undesired) goals, selection criteria might involve priorities (e.g. for
restricting complex behaviors), optimization mechanisms and assumptions about competitive behavior
(e.g. Nash equilibria). In the example of the robot swarm, the exploration of the terrain could be guided
by a Markov decision process that determines the most favorable solution path for exploring the area.

4.5 Performance Models

With respect to performance, the ensembles envisioned in the ASCENS project leave ample room
for optimization at various levels. Whenever there is a decision to be made, either at design time,
or at runtime, performance is often an important factor. With robot swarms, the algorithms used
by the controller may change depending on the environment and internal resources. For example,
an ensemble of robots may choose to establish different communication topologies, in order to save
power, maximize throughput, or minimize latency. Or they can pool computational power in order
to execute a distributed algorithm (e.g. to find a path through a complex terrain of which each robot
only sees a part), which might require assigning various tasks to individual robots depending on their
available resources, and then combine the results.

To assist in design and development of self-aware systems, we strive to enable modeling of per-
formance critical behavior, both at design time and run-time. At design time, quantitative models will
be used for early identification of potential performance problems and to provide an estimate of the
resources required for operating within given quality-of-service thresholds. The role of a model at
design time is invaluable, because analyses may be conducted even when the actual system is not yet
ready to run. Quantitative models will be also employed at run-time, to support autonomy and aware-
ness in ensembles and individual components. Here, the role of the model will be to guide potential
adaptations, e.g., establishing a new communication topology, or switching to approximate, but less
power demanding algorithms.

Typical techniques for performance modeling and prediction in computer systems include stochas-
tic Petri nets, stochastic process algebras, ordinary or layered queuing networks, and other techniques.
These techniques share the problem of state explosion, whereby the size of the state space of the
model grows very rapidly with the number of components. In the scenarios envisaged by the AS-
CENS project, with ensembles consisting of large numbers of components, computational feasibility
of a model needs to be taken into account, especially if a model is expected to guide decisions at run-
time. A promising approach is to utilize approximate analytical techniques that scale efficiently with
population sizes, especially those concerned with continuous-state approximations of (discrete-state)
stochastic models. In systems composed of large number of interacting agents, each agent is only
characterized by a relatively simple behavior expressed by transitions between states of a small local
state space. Crucially, the complexity of this representation is independent of the number of agents,
and depends only on the size of the local state space.

Although in principle the existing methods for scalable quantitative analysis appear to be suitable
for the purposes of ASCENS, the specific nature of SCs and SCEs presents challenges which prevent
simple and direct application of these techniques. The contribution will therefore be in addressing the
shortcomings of the existing methods with respect to hierarchical systems and by developing methods
for scalable quantitative performance analysis suitable for large-scale systems.

Besides issues with the scalability of performance analysis methods with respect to performance
model state space, an important aspect associated with software intensive systems is scalability with

ASCENS 18

JD1.1 Engineering Ensembles (V1 Final) October 19, 2011

respect to creation of models used for performance analysis and prediction. These were usually cre-
ated manually by experts not participating on the actual development, which becomes infeasible with
increasing size and complexity of a software system, and calls for as much automation in creating
performance models as possible. With the spread of model driven software development, it has be-
come possible to reuse information from the system design phase to derive performance models, e.g.
using an architectural model of a system enriched with performance-relevant information. With this
in mind, we aim to keep correspondence between related models and allow creating models without
duplicating information.

5 Validation and Verification: Formal Methods

The complexity and size of ensembles implies that it is difficult to assure that required properties hold
and that the system does not exhibit undesirable or dangerous behaviors. Formal methods can help
with the validation of system characteristics, but applying them to large, adaptive systems remains a
challenging proposition. Research of formal methods in ASCENS has the main goal of addressing
some of the obstacles faced in the validation and verification of ensembles.

5.1 From A Posteriori Verification to Constructivity

A big difference between Computer Engineering and more mature disciplines based on Physics, e.g.,
Electrical Engineering, is the importance of verification for achieving correctness. These disciplines
have developed theories guaranteeing the correctness and predictability of artifacts by construction.
For instance, the application of Kirchhoff’s laws allows engineers to build circuits that meet given
properties.

Our vision is to investigate links between compositional verification for specific properties and
results allowing constructivity. Currently, there exists in Computer Science an important body of
constructivity results about architectures and distributed algorithms on which we will build to achieve
the goals of ASCENS.

1. We investigate theories and methods for building faithful models of complex SCEs as the com-
position of heterogeneous SCs, e.g., mixed software/hardware systems. This is a central prob-
lem for ensuring correct interoperation, and meaningful refinement and integration of hetero-
geneous viewpoints. Heterogeneity has three fundamental sources which appear when com-
posing SCs with different (a) execution models, e.g., synchronous and asynchronous execution,
(b) interaction mechanisms such as locks, monitors, function calls, and message passing, and
(c) granularity of execution, e.g., hardware and software [HSQ7].

We need to move from composition frameworks based on the use of a single low-level parallel
composition operator, e.g., automata-based composition, to a unified composition paradigm
encompassing architectural features such as protocols, schedulers, and buses.

2. In contrast to existing approaches, we investigate two independent directions of compositional-
ity techniques for high-level composition operators and specific classes of properties:

e One direction is studying techniques for specific classes of properties. For instance, find-
ing compositional verification rules guaranteeing deadlock-freedom or mutual exclusion
instead of investigating rules for safety properties in general.

o The other direction is studying techniques for particular architectures. Architectures char-
acterize the way interactions among SCs are organized. Compositional verification rules

ASCENS 19

JD1.1 Engineering Ensembles (V1 Final) October 19, 2011

should be applied to high-level coordination mechanisms used at the architecture level of
SCEs, without translating them into a low-level automata-based composition.

We expect that the results thus obtained will allow us to identify “verifiability” conditions (i.e.,
conditions under which verification of a particular property and/or class of SCEs becomes scal-
able). This is similar to finding conditions for making SCEs testable, adaptable, etc. In this
manner, compositionality rules can be turned into correct-by-construction techniques.

Recent results implemented in the D-Finder tool [BBSNOS, BBNS09] provide an illustration of
these ideas. D-Finder uses heuristics for proving compositionally global deadlock-freedom of SCs,
from the deadlock-freedom of its sub-components. Benchmarks published in [BBNS09]] show that
such a specialization for deadlock-freedom, combined with compositionality techniques, leads to sig-
nificantly better performance than is possible with general-purpose monolithic verification tools.

A posteriori verification is not the only way to guarantee correctness. System designers develop
complex SCEs by carefully applying architectural principles that are operationally relevant and techni-
cally successful. Verification should advantageously take into account architectures and their features.
There is a large space to be explored, between full constructivity and a posteriori verification. This vi-
sion can contribute to bridging the gap between Formal Methods and the body of constructivity results
in Computer Science.

Today’s autonomous systems provide more coverage for hardware failures than software failures.
If they cannot represent and reason about software failures, they are doomed to blind spots and will
have limited autonomy. Our goal in ASCENS is to enhance software functionality within the scope of
recovery and to develop ensembles that repair their own software.

Many engineering disciplines use monitoring as a major design principle to increase the quality,
robustness, and confidence in the correctness of their products. In aircraft engineering, for example,
sophisticated automatic controllers are typically monitored to ensure that their predicted state stays
within a “stability envelope”, from where the system can be safely controlled in a timely manner
using slower but better understood and safer techniques. We believe that monitoring can also provide a
strong foundation for increasing the quality, robustness, and confidence in the correctness of complex
software systems. Monitoring consists of collecting observations from a system’s execution and of
analyzing these observations to reach some conclusion, for instance, to measure performance or to
check conformance to a given specification. We are working on combining monitoring techniques
with runtime verification in order to bridge testing and formal verification. Specific areas will include:

1. Run-time Monitoring: We study runtime monitoring in the general context of real-time systems
and mainly in autonomous systems, i.e., systems whose timing characteristics (e.g., delays be-
tween inputs and output) are crucial to the observer. Dealing with such systems requires, on
one hand, high-level specification languages which are able to express timing constraints, and
on the other hand, techniques to synthesize monitors from such specifications. Members of AS-
CENS, from Verimag, have been among the first to study monitor synthesis and formal run-time
monitoring in the context of real-time systems, for timed automata [BBKTOS]].

2. Predictive Analysis: Being able to detect a specification violation at runtime is very useful in
order to have the ability to predict a violation even though it did not occur in the particular
observed execution trace. Such a prediction would tell that the violation was close to happen
and it could occur under a different execution speed or synchronization of threads, an invaluable
piece of information in debugging/testing of concurrent systems.

ASCENS 20

JD1.1 Engineering Ensembles (V1 Final) October 19, 2011

5.2 Properties of Implementations

While models are extremely important to both understand the system under consideration and to ob-
serve and prove its properties, it is the implementation that is at the end executed and whose properties
really matter. At this point, it is necessary both (1) to establish and be able to verify correspondence
between the models and the implementation and (2) to avoid implementation-specific issues not cov-
ered by the models, usually low-level properties such as absence of null-pointer dereferences. While
a skeleton of implementation can be partially generated thus providing the correspondence by the
correct-by-construction principle, after an evolutionary change of either the models or the implemen-
tation their correspondence need to be re-established; otherwise, the properties of the models might
be not present in the implementation.

The first aforementioned point will be realized by comparing the model of a system in the SCEL
language with its implementation in the C language. This will be possible by extending the GMC
model checker by a module being able to process models, to create corresponding state spaces, and,
finally, to traverse the state spaces of both the models and the implementation. During state space
traversal, GMC will check the properties specified inside the models (e.g., operations and communi-
cation sequences) as well as absence of low-level errors (null-pointer dereferences). In the case of an
inconsistency or another problem, the developer of the system will be informed in the form of an error
trace or another suitable way about the issue.

6 Engineering Ensembles

The three ASCENS case studies present a unique opportunity: we can analyze the successes and fail-
ures encountered in the case studies and extract a catalog of challenges, best practices and patterns for
engineering ensembles—a catalog derived from experience in three very different application areas.
This will present the main contribution of ASCENS to the discipline of ensemble engineering. In
addition, a number of tools is being developed by the ASCENS partners; in order to make them more
useful for software developers we will integrate them into a development environment.

6.1 Best Practices and Patterns

Designers of a robot swarm like the one mentioned in the introduction are faced with many difficult
trade-offs and design decisions: Should they build a swarm consisting of many simple robots or should
they rather opt for fewer, more powerful ones? Should the swarm be homogeneous or should it contain
robots with specialized capabilities? What kind of knowledge do the robots need? How much know-
ledge do robots share, how do they assess the quality of the knowledge they acquire from sensors and
other robots, and how should robots deal with contradictory information? Should robots have simple,
predictable behaviors or more complex ones that have possibly greater potential for adaptation but
also for unexpected failures? Should formal methods be used in the development process, and if so,
which properties should be validated?

This is just a small selection of the high-level design decisions that have to be taken; during the
course of the development innumerable other competing solutions for particular problems, at vari-
ous levels of detail, have to be evaluated. This will always remain a challenging task that requires
experience and domain knowledge on the part of the designer. But best practices can at least help de-
signers to ask the right question, to consider all problems that might arise, and to evaluate the various
trade-offs involved in different solutions as objectively as possible.

In the development of traditional software, and in particular in the area of distributed systems,
patterns [Fow96l (GHIV935|| have proven to be a valuable contribution. In general terms, an analysis

ASCENS 21

JD1.1 Engineering Ensembles (V1 Final) October 19, 2011

or design pattern is a reusable solution to a development problem that specifies the compromises
required by the solution as well as its influence on other, related development problems. Pattern
libraries provide a uniform vocabulary that simplifies the discussion of design choices, and they are
repositories of proven solutions to common design problems.

In ASCENS we want to expand the pattern-based approach to include patterns for key features and
mechanisms of SCs and SCEs (adaptation, awareness, knowledge, and emergence) at different levels
of abstraction. An example is [ZBCT11]] which includes patterns that help designers to move from
“black-box” descriptions (what adaptation, awareness, knowledge and emergence should achieve) to
“white-box” solutions (how adaptation, awareness, knowledge and emergence can be realized). In the
long term our goal is to provide a semi-formal language for our patterns that allows better integration
of the pattern catalog into the ASCENS software development environment. A formal representation
of patterns might even enable SCEs to reason about, e.g., structural patterns at run time, and hence use
the pattern catalog to autonomously adapt the internal structure of the ensemble.

6.2 Tool Support

Developing SCEs requires dealing with multiple languages, platforms, and tools, which will be pro-
vided by the partners or developed within the scope of this project. Regarding the tools, some will be
freely available and others might be commercial tools. However, all tools for addressing SCE concerns
from both academia and industry can be integrated and used in the Service Development Environment
(SDE).

The SDE is a tooling platform which was developed within the scope of the SENSORIA project
[MR10, |Ser]]. It will be used and extended in the ASCENS project to support the engineering of ser-
vice component ensembles. The core of the SDE allows for a straightforward integration of tools as
well as the creation and use of tool chains built as orchestration of tools. Creating a new service as
an orchestration of existing services is possible using either a textual, JavaScript-based approach or
a graphical workflow approach. The SDE itself is based on a Service-Oriented Architecture, imple-
mented as an Eclipse platform [Ecl11] and its underlying, service-oriented OSGi [[OSGOS]|] framework
is used.

The key intention is that ASCENS developers integrate all kind of tools for the development of
SCE:s and for their analysis at design-time or run-time. For example, a tool chain could be defined in
the SDE consisting of a modeling tool for the specification of the swarm of robots described in the
introduction, a model-checker for validating the specification, and a software for the simulation of the
swarm behavior. As the result provided by the modeling tool might not be appropriate as input for the
robot swarm simulator, the SDE encourages the definition and use of automated model transformations
which translate e.g. between high-level models and formal specifications.

7 Conclusions

The ASCENS takes a “full-stack™ approach to the problem of engineering ensembles: we address
solutions ranging from high-level modeling and knowledge representation to executable models and
run-time monitoring. All languages developed as part of ASCENS are based on solid foundational
models and supported by powerful formal methods and tools.

By its very nature, building ensembles will remain a challenging task. Our hope and expectation
is that the foundations, tools, languages and engineering methods developed in the ASCENS project
will enable developers to build ensembles that are more adaptive, reliable and usable than many of
today’s systems.

ASCENS 22

JD1.1 Engineering Ensembles (V1 Final) October 19, 2011

References

[BBBSO08] Ananda Basu, Philippe Bidinger, Marius Bozga, and Joseph Sifakis. Distributed semantics
and implementation for systems with interaction and priority. In FORTE, pages 116-133,
2008.

[BBKTO5] Saddek Bensalem, Marius Bozga, Moez Krichen, and Stavros Tripakis. Testing confor-
mance of real-time applications by automatic generation of observers. Electr. Notes Theor.
Comput. Sci., 113:23-43, 2005.

[BBNSO09] Saddek Bensalem, Marius Bozga, Thanh-Hung Nguyen, and Joseph Sifakis. D-finder: A
tool for compositional deadlock detection and verification. In Ahmed Bouajjani and Oded
Maler, editors, CAV, volume 5643 of Lecture Notes in Computer Science, pages 614—619.
Springer, 2009.

[BBSNOS8] Saddek Bensalem, Marius Bozga, Joseph Sifakis, and Thanh-Hung Nguyen. Composi-
tional verification for component-based systems and application. In Sung Deok Cha, Jin-
Young Choi, Moonzoo Kim, Insup Lee, and Mahesh Viswanathan, editors, ATVA, volume
5311 of Lecture Notes in Computer Science, pages 64—79. Springer, 2008.

[Bed97] Mark A. Bedau. Weak emergence. In James Tomberlin, editor, Philosophical Perspectives:
Mind, Causation, and World, volume 11, pages 375-399. Blackwell Publishers, 1997.

[BSO8] Simon Bliudze and Joseph Sifakis. Causal Semantics for the Algebra of Connectors.
Springer-Verlag, Berlin, Heidelberg, 2008.

[CPZ11] Giacomo Cabri, Mariachiara Puviani, and Franco Zambonelli. Towards a Taxonomy of
Adaptive Agent-based Collaboration Patterns for Autonomic Service Ensembles. In Pro-
ceedings of the 2011 International Workshop on Adaptive Collaboration at the Interna-
tional Conference on Collaboration Technologies and Systems (AC/CTS 2011), Philadel-
phia Pennsylvania, USA, May 2011, 5 2011.

[DAR] DARPA (Defense Advanced Research Projects Agency). Active networks web site. http:
//nms.lcs.mit.edu/darpa—activenet /| last accessed 2011-11-19.

[DS04] M. Dorigo and T. Stiitzle. Ant Colony Optimization. The MIT Press, 2004.

[Ecl11] Eclipse Foundation. The Eclipse Open Source Community and Java IDE.
http://www.eclipse.org/, 2011.

[Fow96] Martin Fowler. Amnalysis Patterns: Reusable Object Models. Addison-Wesley Longman,
Amsterdam, 1996.

[GHIV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison-Wesley, Boston, MA, 1995.

[HRWOS] Matthias Holzl, Axel Rauschmayer, and Martin Wirsing. Engineering of software-intensive
systems. In Martin Wirsing, Jean-Pierre Banatre, Matthias Holzl, and Axel Rauschmayer,
editors, Software-Intensive Systems and New Computing Paradigms, volume 5380 of LNCS,
pages 1-44. Springer, 2008.

[HSO7] Thomas A. Henzinger and Joseph Sifakis. The discipline of embedded systems design.
IEEE Computer, 40(10):32-40, 2007.

ASCENS 23

http://nms.lcs.mit.edu/darpa-activenet/
http://nms.lcs.mit.edu/darpa-activenet/

JD1.1 Engineering Ensembles (V1 Final) October 19, 2011

[HW11]

[Int]

[ITE09]

[Mey08]

[ML11]

Matthias Ho6lzl and Martin Wirsing. Towards a system model for ensembles. In Gul Agha,
Olivier Danvy, and José Meseguer, editors, Festschrift in honor of Carolyn Talcott, volume
7000 of LNCS. Springer, 2011.

InterLink Project. ~Website. http://interlink.ics.forth.gr/central.
aspx) last accessed: 2011-05-10.

ITEA 2 Office Association. ITEA roadmap for software-intensive systems and services.
http://www.itea2.org/, February 2009. 3rd edition.

Bernd Meyer. A tale of two wells: Noise-induced adaptiveness in self-organized systems.
In Proceedings of the 2008 Second IEEE International Conference on Self-Adaptive and
Self-Organizing Systems, pages 435-444, Washington, DC, USA, 2008. IEEE Computer
Society.

M. Massink and D. Latella. Fluid Analysis of Foraging Ants. Extended Abstract. In On line
Proceedings of the 10th Workshop on Process Algebra and Stochastically Timed Activities
(PASTA 2011), Ragusa, Italy, Sept. 19-20, 201 1. Springer-Verlag, 2011. (To appear).

[MLBHI11] M. Massink, D. Latella, A. Bracciali, and J. Hillston. Modelling Non-linear Crowd Dy-

[MR10]

[OSGO8]

[RGO3]

[SBBO1]

[Ser]

[SomO07]

[Tof90]

namics in Bio-PEPA. In Fundamental Approaches to Software Engineering (FASE 2011),
pages 96—110. Springer-Verlag, 2011.

Philip Mayer and Ivan Rath. D7.4.d: Report on the Sensoria Development Environment
(SDE), third version. Deliverable for the eu project sensoria, reporting period october
2008 - february 2010, LMU, 2010. http://www.pst.ifi.lmu.de/projekte/
Sensoria/del_54/D7.4.d.pdf.

OSGi Alliance. OSGi Specification Release 4. http://www.osgi.org/Specifications/, March
2008.

J.E. Rowe and R. Gomez. El botellén: Modeling the movement of crowds in a city. Complex
Systems, 14:363-370, 2003.

D. J. T. Sumpter, G. B. Blanchard, and D. S. Broomhead. Ants and agents: a process
algebra approach to modelling ant colony behaviour. Bulletin of Mathematical Biology,
63:951-980, 2001. doi: 10.1006/bulm.2001.0252.

Service Development Environment (SDE). Website. http://svn.pst.ifi.lmu.
de/trac/sde last accessed: 2011-08-11.

Ian Sommerville. Software Engineering. Addison-Wesley, eighth edition edition, 2007.

C. Tofts. The autosynchronisation of leptothorax acervorem (fabricius) described in
WSCCS. Technical Report ECS-LFCS-90-128, LFCS, University of Edinburgh, 1990.

[ZBCt11] Franco Zambonelli, Nicola Bicocchi, Giacomo Cabri, Letizia Leonardi, and Mariachiara

Puviani. On Self-Adaptation, Self-Expression and Self-Awareness for Autonomic Service
Component Ensembles. In Proceedings of the 1st SASO Workshop on Self-Awareness, Ann
Arbor, USA, October 2011, 5 2011.

ASCENS

24

http://interlink.ics.forth.gr/central.aspx
http://interlink.ics.forth.gr/central.aspx
http://www.itea2.org/
http://www.pst.ifi.lmu.de/projekte/Sensoria/del_54/D7.4.d.pdf
http://www.pst.ifi.lmu.de/projekte/Sensoria/del_54/D7.4.d.pdf
http://svn.pst.ifi.lmu.de/trac/sde
http://svn.pst.ifi.lmu.de/trac/sde

	Introduction
	Ensembles
	The ASCENS Approach
	ASCENS Languages for Engineering Ensembles
	The ASCENS Case Studies
	Ensembles of Self-Aware Robots.
	Resource Ensembles as Science Clouds.
	Ensembles of Cooperative E-Vehicles.

	Foundations: Adaptation, Awareness, Knowledge, Emergence
	GEM: The General Ensemble Model
	Adaptation
	Awareness
	Knowledge
	Emergence

	Structure: Service-Component Ensembles
	Service Components
	Service-Component Ensembles

	Design: Languages and Models
	Declarative Modeling Languages: KnowLang, SOTA, POEM
	SCEL: A Service Component Ensemble Language
	Dynamic BIP – Behavior, Interaction, Priority
	Foundational Models
	Performance Models

	Validation and Verification: Formal Methods
	From A Posteriori Verification to Constructivity
	Properties of Implementations

	Engineering Ensembles
	Best Practices and Patterns
	Tool Support

	Conclusions

