
www.ascens-ist.eu

ASCENS
Autonomic Service-Component Ensembles

D8.2: Second Report on WP8
The ASCENS Service Component Repository (first version)

Grant agreement number: 257414
Funding Scheme: FET Proactive
Project Type: Integrated Project
Latest version of Annex I: Version 2.2 (30.7.2011)

Lead contractor for deliverable: LMU
Author(s): Matthias Hölzl, Lenz Belzner, Thomas Gabor, Annabelle
Klarl (LMU)

Reporting Period: 2
Period covered: October 1, 2011 to September 30, 2012
Submission date: November 12, 2012
Revision: Final
Classification: PU

Project coordinator: Martin Wirsing (LMU)
Tel: +49 89 2180 9154
Fax: +49 89 2180 9175
E-mail: wirsing@lmu.de

Partners: LMU, UNIPI, UDF, Fraunhofer, UJF-Verimag, UNIMORE,
ULB, EPFL, VW, Zimory, UL, IMT, Mobsya, CUNI

D8.2: Second Report on WP8 (Final) November 12, 2012

Executive Summary

Work package 8 contains three tasks. Task T8.1, “Challenges of Developing SCEs in the Real World”
was completed after month 6 of the project. Tasks T8.2, “A Service-Component repository for self-
aware autonomic ensembles” and T8.3, “Best Practices for SCEs” were started in months 13 and 19,
respectively, and are ongoing.

This deliverable reports on Task T8.2. We present the requirements for the service-component
repository (SCR), the design choices we made for its implementation and the current state of the web
application for the SCR. In addition we give an overview of the service components that are included
in the SCR and discuss those service components that are not detailed in other deliverables.

ASCENS 2

D8.2: Second Report on WP8 (Final) November 12, 2012

Contents

1 Introduction 5
1.1 Deviations from the Description of Work . 5
1.2 Relationship to Other Work Packages . 5
1.3 Structure of the Deliverable . 5

2 The Service-Component Repository 6
2.1 Requirements for the SCR . 6
2.2 Design Choices . 7
2.3 Implementation . 9

3 Service Components 11
3.1 SCs Reported in Other Deliverables . 11
3.2 ARGoS-Lua and Lua-Tools . 12

3.2.1 Lua-Tools . 12
3.2.2 The ARGoS-Lua Library . 14

3.3 Iliad—Implementation of Logical Inference for Adaptive Devices 14
3.4 MESS—Maude Ensemble Strategies Simulator . 16

4 Ongoing Work and Plan for Year 3 16
4.1 Task T8.2 . 17
4.2 Task T8.3 . 17

5 Summary 18

ASCENS 3

D8.2: Second Report on WP8 (Final) November 12, 2012

ASCENS 4

D8.2: Second Report on WP8 (Final) November 12, 2012

1 Introduction

Work Package 8 contains three tasks: T8.1, “Challenges of Developing SCEs in the Real World”
identified the main challenges involved in developing ensembles and presented them in a structured
format. This task was active during the first six month of ASCENS; it was completed in month 12 of
the project with the delivery of deliverable D8.1 [Höl11]. The other two tasks started in month 13 and
19 of the project, respectively, and are still ongoing.

The goal of Task T8.2, “A Service-Component repository for self-aware autonomic ensembles”
is described in D8.1 as “[. . .] produce a ready-to-use repository of key service components to be
used in all kinds of ensembles. We will make this catalogue available online to ensure widespread
dissemination.” T8.3, “Best Practices for SCEs” has the objective “to codify best practices discovered
during the project in a form that is easily accessible for SCE practitioners. This work will result
in a catalogue of SCE patterns for the overall results of the ASCENS project.” In accordance with
the Description of Work this deliverable reports on task T8.2, in particular on the specification and
development of the infrastructure for the service-component repository (SCR) and on the components
in the SCR. Deliverable D8.3, to be completed at the end of the third reporting period, will report on
task T8.3.

1.1 Deviations from the Description of Work

The Description of Work [ASC11] mentions the possible inclusion of an ASSL reasoner in the compo-
nents of the repository. Contrary to our expectations at the time, the ASSL reasoner will not be made
available by its copyright holders under a license that permits its inclusion into the SCR. However,
ASSL is not used in the project and has largely been superseded by KnowLang, therefore this change
has no impact on the research efforts of the project or the usefulness of the SCR. The KnowLang tools
are being developed as part of the ASCENS project and will be included in the SCR.

1.2 Relationship to Other Work Packages

As an integrative work package, the goal of WP8 is to integrate the results of WPs 1–7 into a coherent
approach to engineering ensembles: “. . . the foundational work done of ASCENS, applied to the case
studies in work package 7 must be put into a larger perspective from an engineering point of view,
thereby identifying best practices for service component ensembles. Thus, this work package is inte-
grative in nature by combining results from the foundational work packages and the real-world case
studies investigated in ASCENS.” [ASC11]. Therefore, the work of WP8 is strongly influenced by the
results of WPs 1–7.

For the SCR this can be seen in Sect. 3: the SCR already contains components developed as part of
all other technical work packages. The ensemble-engineering approach currently under development
in WP8 is heavily influenced by the technical results from WPs 1–5 and the availability of the SDE
and its integrated tools in WP6. The scenarios for the development approach are taken from WP7 and
the best practices are being extracted from work performed on the case studies.

1.3 Structure of the Deliverable

The following section reports on the requirements for the ASCENS service-component repository,
the design choices made for the development of the resulting web application, and the current state
of the SCR application. Sect. 3 gives an overview of the service-components included in the SCR,
contains pointers to those components in the SCR detailed in other deliverables, and describes those
components which are not the focus of another current deliverable.

ASCENS 5

D8.2: Second Report on WP8 (Final) November 12, 2012

2 The Service-Component Repository

According to the Description of Work, T8.2, “A Service-Component repository for self-aware auto-
nomic ensembles” is intended to “produce a ready-to-use repository of key service components to
be used in all kinds of ensembles. We will make this catalogue available online to ensure widespread
dissemination.” In this section we describe first the requirements for the SCR, then its implementation.

2.1 Requirements for the SCR

The direct requirements that the DoW specifies for the repository itself are few and can be summarized
as follows: The SCR should

• provide a catalogue of key service components

• support users of the SCs in the repository, not their developers

• be made available online to ensure widespread dissemination

The contents of this repository should consist of key SCs that are useful in multiple domains. The
original intent of the SCR was to have a catalogue for human consumption that contains a relatively
modest number of medium-sized to large components. Note that it was (and is) not a goal of the
SCR to provide the complete infrastructure for developing the included components. There exist
many online services (e.g., Github, Google Code or Sourceforge) that provide functionalities such
as revision control, issue trackers, or hosting of project web sites, and many component developers
are accustomed to one of these services or have already set up their own internal system. Trying
to duplicate the functionality of these systems would require a large expenditure of resources and
be unlikely to provide any measurable benefit. The SCR is focused on discovering components, a
functionality which is not provided by other services.

During the work on tasks T8.1 and T8.3 it became clear that for ensembles the distinction between
design time, deployment and run-time is much less clear than for traditional systems, and that many of
the tasks that are traditionally performed by human designers during the development process might
also be performed autonomously by SCs while they are deployed and operating in their real execution
environment. In particular, a goal-based SC might discover at run-time that it cannot reach the desired
(achieve) goal, for example because a service on which it relies in its current strategy is no longer
available. An adaptation strategy might query some service to find out whether a feasible correction
to the current strategy is available that does not rely on the missing service, e.g., by using a different
sevice that can provide the same or similar results. The functionality that has to be provided by such a
service is similar to that of the SCR, but the available services have to be in a more formalized manner
to allow autonomic discovery of service components by other components. To support these kinds
of goal-based behaviors, we have augmented the initial, relatively modest, requirements for the SCR
with the following more ambitious ones to support autonomous discovery of (relatively fine-grained)
components:

• Extend the human-readable description of components with a formal specification of their prop-
erties

• Provide a service-oriented interface to permit automated discovery of components

There are many proposals for formally describing components and services. For example, in the
area of web services, the existing languages range from the (relatively) simple, mostly name-based
Web Service Description Language (WSDL) [W3Cc] to expressive specification languages based on

ASCENS 6

D8.2: Second Report on WP8 (Final) November 12, 2012

first- or higher-order logic such as the Semantic Web Services Language and Ontology SWSL/SWSO
[W3Ca, W3Cb] and their underlying process model PSL [BG05]. In the ASCENS project, the Know-
Lang specification model [VHM+12] defines probabilistic policies controlling a partially-observable
Markov decision process (POMDP). None of these specification styles is appropriate for all domains,
and the best practices developed in Task T8.3 should include guidelines about making the right choices
between expressivity and efficiency. Threrfore we obtain an additional requirement:

• Provide an expressive language for the formal specification of components so that the desired
specification styles can all be expressed in a single language

Being able to use different specification styles in the same instance of the SCR not only allows various
domains with different requirements for their specifications to co-exist, it will also enable us to exper-
iment with various strategies to specify, model and design service components for the development of
the guidelines and patterns for Task T8.3.

2.2 Design Choices

The initial version of the SCR consisted of a set of wiki pages in a structured format. For each service
component in the catalogue the following data was provided:

• Name: The name of the component

• Domain: The domain to which the component belongs, e.g., general for general-purpose com-
ponents, cloud for components belonging to the cloud case study, or robotics for components
mainly useful for robotics applications

• Tags: A list of tags that describe the component, for example location service for components
that provide location-based services

• Status: The current development status of the component, e.g.: pre-alpha, alpha, beta, or
stable

• Source: URL(s) that provide more information, downloads of binary and source packages, etc.

• Partner: The ASCENS partner(s) that produced the component

• Contact: The person(s) to contact for questions on the component, including contact informa-
tion

• Platform and Infrastructure: The infrastructure the component uses or the platform that the
component resides on. May include programming languages (C++, Java), operating system
(Linux, OSX, Windows), frameworks, libraries, and tools, including versions if applicable

• Description: A description of the purpose and possible uses of the component

While this solution satisfies the first set of requirements, it is clear that such a system cannot acco-
modate the additional goals presented in the previous section. We have therefore designed a second
version of the SCR based on the following design:

• Augment the previously described data model with one or more formal specifications for each
component to allow discovery based on goals and the effects that a component has on the envi-
ronment

• Persist the data for service components in a data base

ASCENS 7

D8.2: Second Report on WP8 (Final) November 12, 2012

• Specify a domain-description language to express effects of service-components on their envi-
ronment and a query language that can be used to search for components that, e.g., can be used
to reach a specified goal given a set of preconditions

• Provide reasoning services that can execute queries in the query language against the data stored
in the database

• Provide a service-based back end that exposes all functions of the SCR, so that the SCR can
potentially be accessed from a web-based front end, the ASCENS SDE, or components of an
ensemble

• Implement a web-based front end to satisfy the requirement for online access

The most challenging design problem in this list are the specification of the languages and reason-
ing engine. Since ASCENS defines a family of expressive knowledge-representation and modelling
languages [DHL+12], using one of them for the SCR is a natural choice. SOTA and GEM are math-
ematical models without underlying implementations, therefore they are not suitable as languages for
the SCR. SCEL is mostly focused on executable behaviors and not on goal-based reasoning, there-
fore it is not the most expedient choice as language for the SCR. Both KnowLang and POEM are
appropriate as domain-description and query language. We decided to base the SCR on POEM and
use Iliad (see Sect. 3.3) as the reasoning service for the SCR. Iliad , the POEM interpreter developed
as part of Task T8.3, supports reasoning about full first-order and restricted higher-order theories,
as well as more efficient but also more limited constraint-based reasoning. The Iliad implementa-
tion uses the Snark theorem prover [Sti] as its core (first-order) reasoning mechanism. Snark itself
is well suited for integration into the SCR for a number of reasons already demonstrated in other
projects [Wal01, DHM+01]:

• It is optimized for reasoning over large theories and permits far-reaching control over its infer-
ence process in order to achieve acceptable performance

• Snark has a powerful sort theory that can further restrict the proof size based on ontological
(taxonomic) information specified about the domain

• Using procedural attachments it is easy to integrate database queries for components or special-
ized search methods into the reasoning process

The Iliad implementation provides additional features that are useful for the SCR:

• Iliad facilitates the specification of domain knowledge, e.g., by generating domain-closure or
unique names axioms

• It is possible to specify Iliad strategies to restrict the search space for queries; this can lead to
potentially large reductions of the search space when compared to unrestricted search

• Iliad uses Snark’s built-in facilities for constructive proof search to generate answers from
queries; if Snark cannot find a constructive proof, Iliad extracts constraints from the failed
proof attempts and uses constraint-solving techniques to arrive at solutions

Thus, by using POEM as the specification language for service components in the SCR and Iliad as
the reasoning engine, we obtain an expressive specification language for components into which many
of the simpler languages can easily be translated, and we can provide efficient reasoning over service-
component specification. While this design is not as efficient as a solution based on a special-purpose
reasoner for a dedicated service-description language, it allows us to easily compare various styles

ASCENS 8

D8.2: Second Report on WP8 (Final) November 12, 2012

Figure 1: A screenshot of the service-component repository

of representing behaviors of components. Furthermore, we can perform experiments to compare the
practical impact of various choices, e.g., complete versus incomplete reasoning or the impact that
component specifications with different expressivity have on the development process.

The first prototype of this design was completed at the end of the second reporting period and is
described in the next section.

2.3 Implementation

The SCR is implemented as a three-tiered, service-based application. The data tier is provided by an
Apache CouchDB [Pro] database that stores a document for each service component in the repository.
The decision to use a schema-less, document-centric database was made to simplify maintaining a
catalogue containing different styles of SC descriptions and to easily allow the addition of several
formal specifications to a component.

The logic tier exposes a Representational State Transfer (REST)-based service interface [FT00]
that allows create, read, update and delete (CRUD) operations on individual service components,
retrieval of all components, as well as logical queries. Queries can contain a domain parameter
that both specifies a logical theory in which the query is evaluated and restricts the set of com-
ponents to those from the selected domain (and general-purpose components available in every do-
main). Internally the logic tier synchronizes updates to component descriptions with corresponding
changes to the logic theory of the Iliad system; furthermore it extracts the necessary information to
pass back to clients from the substitutions returned as result of Iliad proofs. To avoid another mar-
shalling/unmarshalling step, the logic tier is, like the Iliad system, implemented in Common Lisp; the
REST interface uses the Hunchentoot web server [Wei] for request processing.

The presentation tier consists of a web-based interface that allows users to access the SCR interac-
tively. A screenshot of the main page can be seen in Fig. 1. The interface contains two tabs that allow
the user to browse lists of all components for which formal specifications have been provided (“Show

ASCENS 9

D8.2: Second Report on WP8 (Final) November 12, 2012

Figure 2: Adding a new service component

Poem SCs”) and of all components for which no formal specification is available (“Show General
SCs”); a third tab allows the user to issue queries for components. Below each list of SCs is a pane
that shows detailed information about a selected component. As can be seen from the screenshots,
the user interface is geared toward a SOTA-style form of specification where explicit preconditions,
maintain-goals (utilities in SOTA) and achieve goals are defined for each component. This choice
also permits us to easily add POEM strategies to the SCR since they are based on the same kind of
specification. Conversely, each component specified in this manner can be used as a strategy in POEM

models.

The presentation tier allows users of the SCR to perform CRUD operations on individual com-
ponents; as an example, the interface for adding a new SC to the repository is shown in Fig. 2. The
interface to the query engine is currently very simple (see Fig. 3): It allows the user to enter a query
term and returns a list of all service components found by the query and displays them in a similar
manner to the other panes. This interface is very restricted: the service components are determined as
the values of all substitutions for a variable of sort service-component; therefore each query has
to contain exactly one such variable. Additional substitutions returned by the query are not explicitly
shown in the current interface, however their values are substituted into the query results in which they
appear. Furthermore, it is not possible to use the current interface to perform other types of queries
that are allowed by the back end, e.g., checks whether a certain composition of components satisfies
a desired property. We expect to enhance the interface to the query functionality as we gain more
experience with using the SCR in the development of new service components.

ASCENS 10

D8.2: Second Report on WP8 (Final) November 12, 2012

Figure 3: Querying for a service component

3 Service Components

The infrastructure of the SCR described in the previous section needs to be populated with service
components in order to be useful. The Description of Work states: “Among others, we expect such
components to include a constraint-based planner, an ASSL reasoner, a knowledge-processing-engine
component, and control-loop components.” We have already stated in Sectbe . 1.1 that it will not be
possible to include the existing ASSL reasoner due to licensing problems, but that its functionality
will be subsumed by the KnowLang toolkit which will be included in the SCR. The constraint-based
planner is already available as part of the Iliad implementation of the POEM language (see Sect. 3.3),
the knowledge-processing-engine component is being developed as part of the KnowLang implemen-
tation (see D3.2 [VHM+12]). A simulator for feedback loops and self-adaptive behavior is already
available (see D4.2 [ZAC+12]).

In this section we provide an overview of the medium-sized and large service components in-
cluded in the SCR. Most of them are detailed in other deliverables; to avoid redundancy we only
provide a pointer to their description. Note that there is also a certain overlap between the components
reported in this deliverable and the software development tools presented in deliverable D6.2 since,
e.g., simulators are included in both deliverables.

3.1 SCs Reported in Other Deliverables

• The jRESP runtime environment for SCEL-based programs is reported in Deliverable D1.5
[BGeHy+12].

• The DEECo component model and the corresponding jDEECo runtime are reported in Deliver-
able D1.5 [BGeHy+12].

ASCENS 11

D8.2: Second Report on WP8 (Final) November 12, 2012

• The KnowLang tools and reasoner provide knowledge represenation and reasoning services;
they are described in Deliverable D3.2 [VHM+12].

• The simulation tool for feedback loops and self-adaptive patterns developed in work package 4
is described in Sect. 4.2 of Deliverable D4.2 [ZAC+12].

• The jSAM Eclipse plugin integrates a set of tools for stochastic analysis of concurrent and dis-
tributed systems, specified using process algebras and is described in more detail in Deliverable
D6.2 [CHK+12].

• The BIP compiler is used to generate code from BIP programs. The generated code is compiled
and linked with an execution engine which is used to schedule the execution of the BIP model.
The BIP system can be used to compute either single execution traces or all possible execution
traces. A more detailed description is given in D6.2.

• The Gimple Model Checker (GMC) is an explicit-state code model checker for C/C++ pro-
grams. GMC is able to discover low-level programming errors such as buffer overflows, mem-
ory leaks, null-pointer dereferrence. It is described in D6.2.

• The Maude Daemon Wrapper embeds the Maude framework into the Eclipse environment and
thus into the SDE. A more detailed description is given in D6.2.

• SPL is a Java framework for implementing application adaptation based on observed or pre-
dicted application performance. It is described in D6.2.

• The ARGoS simulator provides a high-fidelity simulation environment for swarm robotics.
While it is most frequently used to test the implementation of robot controllers, it can also be
employed as component in an ensemble, e.g. to simulate various strategies before committing
to a course of events in an negotiate-commit-execute cycle. An overview of ARGoS is given in
Deliverable D6.2.

• The Science Cloud platform is formed by individual instances, or clients, running on individual
machines, each of which is an SC. The Science Cloud platform is described in Deliverable
D7.2 [ŠMP+12].

Table 1 summarizes the medium to large components in the SCR. The following sections con-
tain short descriptions of those service components that are not described in other Deliverables. All
components in the SCR were either developed or significantly improved as part of ASCENS.

3.2 ARGoS-Lua and Lua-Tools

Lua-Tools is a collection of tools for the development of adaptive systems in the Lua programming
language which is particularly suited as an embedded language or for use on small devices. ARGoS-
Lua is a library that permits the developments of robot controllers for ARGoS in Lua.

3.2.1 Lua-Tools

Lua [IdFF11] is a scripting language that is frequently used in embedded devices because it is small,
portable, and easy to interface to libraries written in C. The small size also means that by default
Lua misses many features or libraries that facilitate the development of large systems in other pro-
gramming languages. However the powerful meta-programming features of Lua permit the users to
provide these facilities as libraries. Lua-Tools is such a library that focuses on the development of

ASCENS 12

D8.2: Second Report on WP8 (Final) November 12, 2012

Name Description Deliverable
ARGoS Simulator for robot swarms D6.2
ARGoS-Lua Lua wrapper for the ARGoS simulator D8.2
BIP The BIP compiler suite and Engine D6.2
GMC The Gimple Model Checker D6.2
Iliad Analysis and execution of Poem specifications D8.2
jDEECo Runtime for the DEECo component model D1.5
jResp Runtime environment for SCEL D1.5
jSAM Stochastic analysis of systems specified as process

algebras
D6.2

KLT KnowLang Toolset: Representation and reasoning
for knowledge bases

D3.2

Lua-Tools Components for the implementation of self-adaptive
systems in Lua

D8.2

MDW Maude Daemon Wrapper: Integration of Maude into
the SDE

D6.2

MESS Tool for implementing and analyzing self-
assembling strategies

D8.2

SCP Nodes of the Science Cloud Platform D7.1
SPL A Java framework for implementing application

adaptation based on observed or predicted perfor-
mance

D6.2

— Simulation tool for feedback loops and self-adaptive
behavior

D4.2

Table 1: Service components currently registered in the SCR

ASCENS 13

D8.2: Second Report on WP8 (Final) November 12, 2012

adaptive, autonomous systems. Lua-Tools contains modules containing general utilities, an object
system for Lua, message-based communication as well as probabilistic search, soft-constraint solving
and evolutionary algorithms.

The general utilities provide facilities for serializing and de-serializing arbitrary object graphs,
tools for manipulating Lua tables, and support for non-deterministic program flow. The latter allow
the exploration of several alternative computations without persistent changes to the global or local
state of the application.

Lua does not provide native support for object oriented programming. Using the very versatile
data structures Lua provides (mainly tables and lambdas with lexical binding), OO can easily be built
into Lua, though. In fact, the standard introduction to Lua [Ier06] already illustrates two different
approaches to implementing objects in Lua. However, this flexibility has led to a large number of
non-interoperable object systems used in various Lua libraries. Therefore Lua-Tools provides an ab-
stract module to provide the functionality needed to write code in an object oriented manner, without
committing to a specific implementation of object orientation. This allows the use of various exist-
ing object systems using a unified interface. In addition the module oo itself offers three different
implementations of object systems that can be chosen on the fly.

The modules for message-based communication provide qry, get and put primitives for ex-
changing data between processes in the same or different address spaces (using the 0mq message
queue [Zer] to transport data between processes).

The final set of modules allows the user to solve arbitrary soft constraints specified in the for-
malism of [HMW09] using stochastic search. The module constraints allows the evaluation and
management of constraints, with the module domains providing several default search domains. The
module evolution builds on top of that and provides a simple yet flexible implementation of an
evolutionary search algorithm. Likewise, the module sa is able to perform simulated annealing to
find solutions in suitable search spaces.

Together these modules provide a versatile set of components for the development of lightweight,
adaptive systems.

3.2.2 The ARGoS-Lua Library

The ARGoS-Lua library allows users to program controllers for ARGoS [PTO+11] in Lua instead
of C++. This simplifies the development of controllers by shielding the programmer from many
complexities of C++, and it simplifies the prototyping of controllers since controllers in ARGoS-Lua
can be modified while the simulator is running, whereas controllers written in C++ require a restart of
ARGoS, as well as recompilation and relinking of the controller for each change. As an example, the
main part of a controller performing a random walk with obstacle avoidance is given in Fig. 4.

The controller shown in Fig. 4 implements a straightforward algorithm and does not use the Lua-
Tools library in its implementation. For more complex adaptive behaviors, we expect the combination
of Lua-Tools and ARGoS-Lua to greatly simplify the implementation.

3.3 Iliad—Implementation of Logical Inference for Adaptive Devices

Iliad is an implementation of the POEM language [HBKK12] that allows developers to analyze and
execute POEM specifications. Iliad consists of three core components:

• A reasoner that provides a mechanism for performing logical inference and computing substi-
tutions satisfying a logical formula.

ASCENS 14

D8.2: Second Report on WP8 (Final) November 12, 2012

function control_step ()
-- Read sensor values and compute movement
local proximity_sensor = state.sensors.proximity
local readings = proximity_sensor:get_readings()
local size = readings:size()
local acc = argos.Vector2(0, 0)
for i = 0, size - 1 do

local reading = readings[i];
acc = acc + argos.Vector2(reading.value, reading.angle)

end
acc = acc / size
local angle = acc:angle()

-- Control the movement
local wheel_actuator = state.actuators.wheels
local v = state.velocity
if math.abs(angle:get_value()) < 0.1 and acc:length() < 0.1 then

wheel_actuator:set_linear_velocity(v, v)
else

if angle:get_value() < 0 then
wheel_actuator:set_linear_velocity(0, v)

else
wheel_actuator:set_linear_velocity(v, 0)

end
end

-- Set the LEDs.
local leds = state.actuators.leds
leds:set_all_colors(argos.Color_BLACK)
angle:unsigned_normalize()
local led_index = angle / argos.Radians_TWO_PI * 12
leds:set_single_color(led_index, argos.Color_RED)

end

Figure 4: An ARGoS-Lua controller for random walk with obstacle avoidance

ASCENS 15

D8.2: Second Report on WP8 (Final) November 12, 2012

• A byte-code interpreter that implements executable strategies. The bytecode interpreter is
closely integrated with the reasoner, so that strategies can use the reasoner to infer facts about
the state of the world or to choose applicable components.

• A compiler that translates POEM specifications into logical theories for the reasoner and exe-
cutable strategies running on the byte-code interpreter. The compiler also ensures that consis-
tency is maintained between the logical theory and more conventional object-oriented behav-
ioral specifications possible in POEM.

In addition we plan to develop a set of (soft and hard) constraint solvers and optimizers as well as
machine-learning components that can be integrated into the reasoning engine. Initial implementations
of some of these components have already been started.

The Iliad system can be used throughout the development process:

• In the early stages of the development of a component or ensemble it can be used to precisely
specify SOTA or GEM models and to reason about abstract properties based on their logical
specification and a domain theory.

• The initial specification can then be refined by developing (partially) executable strategies and
by detailing the domain model.

• Once the specification has been detailed, the POEM specification can serve as a high-level pro-
gram that can be executed by Iliad ; during the execution the reasoner can be invoked by strate-
gies.

A more detailed description of the Iliad system will be given in Deliverable D8.3 in the next reporting
period.

3.4 MESS—Maude Ensemble Strategies Simulator

The Maude Ensemble Strategies Simulator (MESS) is a tool for implementing and analyzing self-
assembling strategies with Maude.

The observation underlying MESS is that adaptive self-assembling strategies are a crucial mech-
anism that allows groups of simple individual entities to act as a single complex entity exhibiting
emergent behaviours. Notable examples for this include bacteria or insect swarms, modular and self-
assembling robots and software components with dynamic coupling mechanisms.

MESS is a tool to implement and analyze these kind of self-assembling strategies that follows
the recently proposed conceptual framework for adaptation [BCG+12]. It exploits the declarative
and reflective features of the Maude language for the implementation and relies on the Maude tool
framework for the analysis of the specified system.

MESS can be used to prototype, simulate and analyze self-assembling strategies in the early devel-
opment phases. Thereby errors in self-assembly strategies (e.g., SCs with incorrect assumptions about
the state of the environment) can be discovered and corrected in the early stages of the development
process.

4 Ongoing Work and Plan for Year 3

The main activities of tasks T8.2 and T8.3 will continue throughout the third reporting period. In the
following sections we detail the work planned for the next 12 months.

ASCENS 16

D8.2: Second Report on WP8 (Final) November 12, 2012

4.1 Task T8.2

We will use the current version of the SCR in the development of solutions for the case studies and
continue its development based on the experiences gained during this process. Currently we envision
the following improvements for the third reporting period:

• Security for public web access: As a publicly visible server, the SCR has to be protected against
malicious queries. While the Iliad runtime provides options to limit the resource consumption of
queries, they are relatively easy to circumvent with carefully crafted queries. More importantly;
Iliad provides facilities to access arbitrary code on the underlying platform during queries. Be-
fore allowing public access to the SCR it will be necessary to provide robust mechanism to
protect the host computer from malicious queries; this will be our highest priority in the devel-
opment of the SCR, so that a publicly available version of the SCR can be provided within the
first three months of the third reporting period.

• Multiple domains and specifications: Currently each service component in the SCR is restricted
to a single domain and its underlying theory. Future extensions should allow SCs to belong to
different domains, and potentially have several specifications conforming to different domain
theories.

• Improved query interface: The current user interface to queries is rather restricted since it only
allows queries that return a single list of components; despite this it is necessary for users to have
a thorough understanding of POEM and the domain theories used to describe components. It is
likely that experience with the SCR will lead to a redesign of the user interface that addresses
these points.

• Reasoning about compositions: The SCR places no restrictions on the queries that can be per-
formed; therefore support for automatic derivation of service-component compositions that can
reach a goal that no individual component can reach on its own is possible. We will investigate
which kinds of compositions can be computed efficiently and how the interface should support
the development of service compositions.

• Integration with KnowLang: Once the KnowLang tools are sufficiently far developed, we will
investigate the possibility of translating (a subset of) KnowLang into POEM so that specifications
for service components in the SCR can be written in KnowLang.

4.2 Task T8.3

Several strands of development are ongoing in task T8.3:

• Awareness Engineering: We are currently investigating how the notion of “awareness” can
be integrated into the development process, and how the required levels of awareness depend
on the adaptation space in which the system is operating. We call this process “awareness
engineering;” preliminary results are presented in the technical report [Höl12]. Awareness
engineering will be integrated into the development approach based the DEECo component
model [BGeHy+12] for a unified approach to ensemble engineering.

• POEM: The POEM language has been developed to

– support awareness engineering,

– enable knowledge-intensive modeling approaches while also being suitable for domain in
which models based on sophisticated knowledge-representation methods are not feasible,

ASCENS 17

D8.2: Second Report on WP8 (Final) November 12, 2012

– allow a seamless transition from high-level SOTA, GEM and KnowLang models to exe-
cutable SCEL specifications.

As far as possible, POEM is designed to allow a modelling style that is close to conventional
object-oriented approaches. In the third reporting period we will refine this way of modelling,
improve the POEM language and the Iliad implementation and apply the approach to more
challenging scenarios, in particular to the disaster recovery scenario described in deliverable
D7.2 [ŠMP+12].

• Pattern Catalogue: We have started with the collection of patterns for developing self-aware,
self-adaptive SCs and SCEs. We will continue to add new patterns and improve the existing
patterns. In addition we will investigate ways to formalize patterns and integrate them with the
SCR.

An important consideration during the third reporting period will be the integration and possible
unification of the different strands of development in WP8.

5 Summary

This deliverable reports on the progress of Task T8.2 “A Service-Component repository for self-aware
autonomic ensembles”. During the cause of the project, the simple requirements initially given for
the SCR were considerably enlarged to support the software development process developed as part
of Task T8.3 “Best Practices for SCEs”. The most important new requirement is support for fine-
grained SCs with formally specified behavior. Therefore, the SCR is implemented as a web application
incorporating the Iliad reasoning engine and allowing formal component specification using the POEM

language. Several medium to large SCs have been catalogued in the SCR, research with fine-grained
SCs is ongoing.

In the next year, work in WP8 will focus on ensemble engineering in general, and in particular
on awareness engineering and its integration into other engineering approaches such as DEECo; the
continuing development of the POEM language and its implementation; a catalogue of patterns for
ensemble development, and the integration of the results in WP8 and other work packages.

References

[ASC11] ASCENS Project: Annex I—Description of Work, June 2011. Version 2.2.

[BCG+12] Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch Lafuente, and Andrea
Vandin. A conceptual framework for adaptation. In 15th International Conference on
Fundamentals of Software Engineering (FASE’12), LNCS. Springer, 2012.

[BG05] Conrad Bock and Michael Gruninger. Psl: A semantic domain for flow models. Soft-
ware and Systems Modeling, 4(2):209–231, 2005.

[BGeHy+12] Tomáš Bureš, Ilias Gerostathopoulos, Vojtěch Hork´ y, Jaroslav Keznikl, Jan Kofroň,
Michele Loreti, and František Plášil. Deliverable D1.5: Language Extensions for
Implementation- Level Conformance Checking, November 2012.

[CHK+12] Jacques Combaz, Vojtch Hork, Jan Kofro, Jaroslav Keznikl, Alberto Lluch Lafuente,
Michele Loreti, Philip Mayer, Carlo Pinciroli, Petr Tma, and Andrea Vandin. Deliver-
able D6.2: The SCE Workbench and Integrated Tools, Pre-Release 1, November 2012.

ASCENS 18

D8.2: Second Report on WP8 (Final) November 12, 2012

[DHL+12] Rocco De Nicola, Matthias Hoelzl, Michele Loreti, Alberto Lluch Lafuente, Ugo Mon-
tanari, Emil Vassev, and Franco Zambonelli. Joint Deliverable JD2.1: Languages and
Knowledge Models for Self-Awareness and Self-Expression—Self-Awareness, Self-
Expression, Adaptation, November 2012.

[DHM+01] Grit Denker, Jerry R. Hobbs, David L. Martin, Srini Narayanan, and Richard J.
Waldinger. Accessing information and services on the daml-enabled web. In SemWeb,
2001.

[FT00] Roy T. Fielding and Richard N. Taylor. Principled design of the modern web archi-
tecture. In Proceedings of the 22nd international conference on Software engineering,
ICSE ’00, pages 407–416, New York, NY, USA, 2000. ACM.

[HBKK12] Matthias Hölzl, Lenz Belzner, Annabelle Klarl, and Christian Kroiss. The POEM Lan-
guage. Technical Report 7, ASCENS, October 2012. http://www.poem-lang.
de/documentation/TR7.pdf.

[HMW09] Matthias Hölzl, Max Meier, and Martin Wirsing. Which soft constraints do you prefer?
ENTCS, 238(3):189–205, 2009.

[Höl11] Matthias Hölzl. Deliverable D8.1: First Report on WP8: Challenges of Developing
SCEs in the Real World, November 2011.

[Höl12] Matthias Hölzl. Awareness Engineering. Technical Report 8, ASCENS, October 2012.
http://www.pst.ifi.lmu.de/˜hoelzl/ascens/TR8.pdf.

[IdFF11] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes Filho. Pass-
ing a language through the eye of a needle. Commun. ACM, 54(7):38–43, 2011.

[Ier06] Roberto Ierusalimschy. Programming in Lua (2. ed.). Lua.org, 2006.

[Pro] The Apache Project. CouchDB Web Site. http://couchdb.apache.org, last
accessed October 2012.

[PTO+11] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne Brutschy, Manuele
Brambilla, Nithin Mathews, Eliseo Ferrante, Gianni Di Caro, Frederick Ducatelle, Tim-
othy Stirling, Álvaro Gutiérrez, Luca Maria Gambardella, and Marco Dorigo. ARGoS:
a modular, multi-engine simulator for heterogeneous swarm robotics. Technical Re-
port TR/IRIDIA/2011-009, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium,
2011.

[ŠMP+12] Nikola Šerbedžija, Mieke Massink, Carlo Pinciroli, Manuele Brambilla, Diego Latella,
Marco Dorigo, Mauro Birattari, Philip Mayer, José Angel Velasco, Nicklas Hoch,
Henry P. Bensler, Dhaminda Abeywickrama, Jaroslav Keznikl, Ilias Gerostathopoulos,
Tomas Bures, Rocco De Nicola, and Michele Loreti. Deliverable D7.2: Second Report
on WP7. Ensemble Model Syntheses with Robot, Cloud Computing and e-Mobility,
November 2012. ASCENS Deliverable.

[Sti] Mark E. Stickel. SNARK - SRI’s New Automated Reasoning Kit. http://www.
ai.sri.com/˜stickel/snark.html, last accessed October 2012.

[VHM+12] Emil Vassev, Mike Hinchey, Ugo Montanari, Nicola Bicocchi, and Franco Zambonelli.
Deliverable D3.2: Second Report on WP3. The KnowLang Framework for Knowledge
Modeling for SCE Systems, October 2012.

ASCENS 19

http://www.poem-lang.de/documentation/TR7.pdf
http://www.poem-lang.de/documentation/TR7.pdf
http://www.pst.ifi.lmu.de/~hoelzl/ascens/TR8.pdf
http://couchdb.apache.org
http://www.ai.sri.com/~stickel/snark.html
http://www.ai.sri.com/~stickel/snark.html

D8.2: Second Report on WP8 (Final) November 12, 2012

[W3Ca] W3C Consortium. Semantic Web Services Language (SWSL). http://www.w3.
org/Submission/SWSF-SWSL/, last accessed: October 2012.

[W3Cb] W3C Consortium. Semantic Web Services Ontology (SWSO). http://www.w3.
org/Submission/SWSF-SWSO/, last accessed: October 2012.

[W3Cc] W3C Consortium. Web Service Description Language (WSDL) 1.1. http://www.
w3.org/TR/2001/NOTE-wsdl-20010315, last visited: October 2012.

[Wal01] Richard J. Waldinger. Web agents cooperating deductively. In Proceedings of the
First International Workshop on Formal Approaches to Agent-Based Systems-Revised
Papers, FAABS ’00, pages 250–262, London, UK, UK, 2001. Springer-Verlag.

[Wei] Edi Weitz. Hunchentoot - The Common Lisp web server formerly known as TBNL.
http://weitz.de/hunchentoot/, last accessed October 2012.

[ZAC+12] Franco Zambonelli, Dhaminda B. Abeywickrama, Giacomo Cabri, Mariachiara Pu-
viani, Matthias Hölzl, Andrea Corradini, Alberto Lluch Lafuente, and Rocco De Nicola.
Deliverable D4.2: Second Report on WP4. Component- and Ensemble-level Self-
Expression Patterns: Report on Experimental and Simulation Activities, and require-
ments for Tools Implementation, October 2012.

[Zer] The 0MQ web site. http://www.zeromq.org, last accessed October 2012.

ASCENS 20

http://www.w3.org/Submission/SWSF-SWSL/
http://www.w3.org/Submission/SWSF-SWSL/
http://www.w3.org/Submission/SWSF-SWSO/
http://www.w3.org/Submission/SWSF-SWSO/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://weitz.de/hunchentoot/
http://www.zeromq.org

	Introduction
	Deviations from the Description of Work
	Relationship to Other Work Packages
	Structure of the Deliverable

	The Service-Component Repository
	Requirements for the SCR
	Design Choices
	Implementation

	Service Components
	SCs Reported in Other Deliverables
	ARGoS-Lua and Lua-Tools
	Lua-Tools
	The ARGoS-Lua Library

	Iliad—Implementation of Logical Inference for Adaptive Devices
	MESS—Maude Ensemble Strategies Simulator

	Ongoing Work and Plan for Year 3
	Task T8.2
	Task T8.3

	Summary

