
www.ascens-ist.eu

ASCENS
Autonomic Service-Component Ensembles

D1.1: First Report on WP1
Language Primitives for Coordination, Resource
Negotiation, and Task Description

Grant agreement number: 257414
Funding Scheme: FET Proactive
Project Type: Integrated Project
Latest version of Annex I: 7.6.2010

Lead contractor for deliverable: IMT
Author(s): Rocco De Nicola (IMT), Gianluigi Ferrari (UNIPI), Michele
Loreti (UDF), Rosario Pugliese (UDF)

Due date of deliverable: September 30, 2011
Actual submission date: November 15, 2011
Revision: Final
Classification: PU

Project coordinator: Martin Wirsing (LMU)
Tel: +49 89 2180 9154
Fax: +49 89 2180 9175
E-mail: wirsing@lmu.de

Partners: LMU, UNIPI, UDF, Fraunhofer, UJF-Verimag, UNIMORE,
ULB, EPFL, VW, Zimory, UL, IMT, Mobsya, CUNI

D1.1: First Report on WP1 (Final) November 15, 2011

Executive Summary

SCEL (Service Component Ensemble Language) is a new language, specifically designed to program
autonomic components and their interaction while supporting formal reasoning on their behaviors.
SCEL brings together various programming abstractions that permit directly representing aggrega-
tions, behaviors and knowledge according to specific policies. Moreover, it permits naturally pro-
gramming interaction, self- and context-awareness, and adaptation. SCEL relies on solid semantics
grounds that lay the basis for developing logics, tools and methodologies for formal reasoning on
systems behavior in order to establish qualitative and quantitative properties of both the individual
components and the overall systems.

In this deliverable, SCEL design principles are presented and after introducing the main constructs
of the language it is discussed how component interfaces and attributes are modeled and it is explained
how they can be exploited to model ensembles. The operational semantics of SCEL is then presented
together with sophisticated semantic mechanisms to control components interaction and to offer the
possibility of ensemble-wide broadcast interaction. It is also demonstrated that adaptation can be
naturally modeled in SCEL and an example is given of how a dialect can be defined by appropriately
instantiating some of the open features of the proposed syntax.

ASCENS 2

D1.1: First Report on WP1 (Final) November 15, 2011

Contents

1 Introduction 5

2 SCEL: design principles 5

3 SCEL: syntax 6

4 Interfaces 9

5 Ensembles 10

6 SCEL: operational semantics 11
6.1 Operational semantics of processes . 12
6.2 Operational semantics of systems . 13

7 Interaction Predicates 18

8 How to ‘cook’ your own SCEL dialect 21

9 Adaptation in SCEL 21

10 Extending SCEL with ensemble-wide broadcast communication 24
10.1 Operational semantics of processes . 24
10.2 Operational semantics of systems . 24

11 Work Plan for Year Two 28

ASCENS 3

D1.1: First Report on WP1 (Final) November 15, 2011

ASCENS 4

D1.1: First Report on WP1 (Final) November 15, 2011

1 Introduction

The behaviors of autonomic components, their interactions, their sensitivity to the environment and
their adaptivity could be programmed in any of the existing programming languages, even in Assem-
bly.

However, given the intricacy of the issues under consideration and the need to foresee the emer-
gent behavior of many interacting agents and to guarantee that specific functionalities are offered, it
would be better to resort to a programming language such that notions like: Component, Interaction,
Interface, Distribution, Mobility, Knowledge, Awareness, Adaptation are first class elements. One
would then avoid resorting to elaborate constructions to model them.

Moreover, in many cases, a very few assumptions about the operating environment can be made.
The environment is frequently open, in the sense that other components may join and, in some cases,
might even be hostile. This might might lead to unintended behaviors of the autonomic components
and to the loss of valuable information. It is thus essential to be able to program interaction and access
policies directly in order to have a finer control on all components.

Finally, it is essential that functional and non-functional properties of the modeled systems be
guaranteed; it is thus important that the used language be based on a solid semantic ground. Only
this could permit the development of methodologies and software tools supporting formal reasoning
and thus establishing qualitative (e.g., functional correctness) and quantitative (e.g., optimal use of
resources) properties of individual components and ensembles.

To address the above mentioned issues, we are designing SCEL, a new language that brings to-
gether various linguistic abstractions permitting a direct representation of Aggregations, Behaviors
and Knowledge and provides specific Policies for naturally programming interaction, self-awareness,
context-awareness, and adaptation.

The abstractions relative to Knowledge describe how knowledge is represented and handled. The
abstractions relative to Behaviors describe how components progress. The abstractions relative to
Aggregations describe how different entities are brought together to form components, systems and,
possibly, ensembles. The abstractions relative to Policies deal with the way properties of computa-
tions are represented and enforced. Moreover, sophisticated mechanisms are introduced to control
components interaction and to offer the possibility of ensemble-wide broadcast interaction.

By building on the tradition of process algebras and coordination languages, all proposed abstrac-
tions are equipped with a structural operational semantics that helps in clarifying their meaning and
lays the basis for building the appropriate structures on which to perform program analysis.

In this deliverable, we introduce SCEL and discuss possible alternative design choices. The rest
of this document is organized as follows. In Section 2 we introduce SCEL design principles and in
Section 3 we present its syntax. In Section 4 we illustrate component interfaces, while in Section 5
we explain how ensembles are rendered in SCEL. In Section 6 we define the operational semantics of
SCEL and in Section 7 we show how it is affected by interaction predicates. In Section 8 we provide
an example of how a dialect can be easily defined by appropriately specifying the parameters of the
language, while in Section 9 we demonstrate how adaptation can be expressed in SCEL. In Section 10
we present a smooth extension of the language with a more powerful interaction mechanism. The
document ends with Section 11 that contains a few concluding remarks and sketches the Work Plan
for next years.

2 SCEL: design principles

SCEL brings together various programming abstractions that provide us with the linguistic constructs
to define software architectures of autonomic systems. Indeed, we could say that any language for au-

ASCENS 5

D1.1: First Report on WP1 (Final) November 15, 2011

tonomic service-component ensembles would greatly benefit from having abstractions for representing
Knowledge, Behaviors and Aggregations, according to specific Policies.

• The abstractions relative to Knowledge describe how knowledge is managed. We do distin-
guish between knowledge representation and knowledge handling mechanisms. We assume that
knowledge is represented through items stored in repositories. Some of these items contain
application data, namely data used for the progress of the computation carried out by the com-
ponents, while other ones contain control data, namely data providing information about the
environment in which the different components are running (e.g. monitored data from sensors)
or about the actual status of an autonomic component (e.g. about the current position or about
the remaining battery’s charge level). We also assume that the handling mechanism of each
knowledge repository provides then three abstract operations that can be used by autonomic
components for

– adding new knowledge to the repository,

– retrieving information from the repository,

– withdrawing information from the repository.

• The abstractions relative to Behaviors describe how the computation progresses and are modeled
as processes in the style of process calculi. Interaction is modeled by allowing components
to access to knowledge repositories. Adaptation is modeled by retrieving both information
about the changing context and suggestions about the code to be executed as a reaction to these
changes from the knowledge repository.

• The abstractions relative to Aggregations describe how different entities are brought together
to form components, systems and, possibly, ensembles and permit modeling allocation and dis-
tribution of resources. Thus, each component might have a private knowledge repository that,
depending on the chosen policies, might be accessible by others. In this way, the notion of
administrative domains (sets of resources and computations of a given entity under the control
of a specific authority) can be modeled. Compositionality and interoperability are supported by
interfaces, that specify attributes and functionalities provided and/or required by components.

• The abstractions relative to Policies deal with the way properties of computations are repre-
sented and enforced. Interaction and Service Level Agreement (SLA) provide two standard
examples of policy abstractions. Other examples are security properties maintaining the appro-
priate links between data values and their usage policies (data-leakage policies) or limiting the
flow of sensitive information to untrusted sources (access control and reputation policies).

Figure 1 summarizes the main ingredients of SCEL. The knowledge manager K is further struc-
tured in two components, see Figure 2.

3 SCEL: syntax

The syntax of SCEL is illustrated in Table 1. There, different syntactic categories are defined that
constitute the main ingredients of our language. The basic category of the syntax is that relative
to PROCESSES that are used to build up COMPONENTS that in turn are used to define SYSTEMS.
PROCESSES model the flow of the ACTIONS that can be performed. Each ACTION has among its
parameters a TARGET, that indicates the other component that is involved in that action, and either
an ITEM or a TEMPLATE, that helps in determining the part of KNOWLEDGE to be added, retrieved

ASCENS 6

D1.1: First Report on WP1 (Final) November 15, 2011

KNOWLEDGE MANAGER
Contains application and control data K

Handles knowledge according to specific mechanisms

BEHAVIOURS
Exchange data and manipulate knowledge via knowledge manager P

& Spawn new processes & Create new components

COMPONENTS
Interface & Knowledge manager & Behaviors C

SYSTEMS
Aggregate components, possibly resulting in Ensembles S

P
O
L
I
C
I
E
S

Π

Figure 1: SCEL abstractions

KNOWLEDGE REPRESENTATION
Tuples, Records, Clauses, Constraints, . . .

KNOWLEDGE HANDLER
Pattern-matching, Reactive TS, Queries,

Logic programming, Concurrent constraints, . . .

Figure 2: The Knowledge Manager

or removed. POLICIES are used to control and adapt the actions of the different components in order
to guarantee the achievement of specific goals or the satisfaction of specific properties. It is worth
remarking that, might be surprisingly, no syntactic category for ensembles is present. Indeed, to better
support their dynamicity, ensembles are determined via the attributes of the different COMPONENTS.

Let us now consider one by one the different syntactic categories and describe them in detail.
Processes are the SCEL active computational units. Each process is built up from the inert process

nil via

• action prefixing: a.P ,

• nondeterministic choice: P1 + P2,

• controlled composition: P1[P2],

• process variable: X ,

• parameterized process invocation: A(p̄),

• parameterized process definition: A(f̄) , P .

The construct P1[P2] can be seen as an abstract way of modeling the various forms of parallel com-
position of P1 and P2 commonly used in process calculi. Process variables are used to support higher-
order communication, namely the capability to exchange (the code of) a process by first adding an

ASCENS 7

D1.1: First Report on WP1 (Final) November 15, 2011

SYSTEMS:
S ::= C

∣∣ S1 ‖ S2

∣∣ (νn)S

COMPONENTS:
C ::= I[K,Π, P]

KNOWLEDGE:
K ::= . . .

POLICIES:
Π ::= . . .

PROCESSES:
P ::= nil

∣∣ a.P
∣∣ P1 + P2

∣∣ P1[P2]
∣∣ X

∣∣ A(p̄) (A(f̄) , P)

ACTIONS:
a ::= get(T)@c

∣∣ qry(T)@c
∣∣ put(t)@c

∣∣ exec(P)
∣∣ new(I,K,Π, P)

TARGETS:
c ::= n

∣∣ x
∣∣ self

ITEMS:
t ::= . . .

TEMPLATES:
T ::= . . .

Table 1: SCEL syntax

item containing the process to a knowledge repository and then retrieving/withdrawing this item while
binding the process to a process variable.

Processes can perform five different kinds of actions. Actions get(T)@c, qry(T)@c and
put(t)@c are used to manage shared knowledge repositories by withdrawing/retrieving/adding in-
formation items from/to the knowledge repository c. These operations exploit templates T as patterns
to select knowledge items t in the repositories. They rely heavily on the used knowledge repository
and are implemented by invoking the handling operations it provides. Action exec(P) triggers a
controlled execution of process P . Action new(I,K,Π, P) creates a new component I[K,Π, P].

Action get is a blocking action, in the sense that the process executing it has to wait for the wanted
element if it is not (yet) available in the knowledge repository. Action qry, exactly like get, suspends
the processes executing it if the knowledge repository does not (yet) contain, cannot ‘produce’ or
cannot infer the wanted element. The two blocking actions differ also for the fact that get removes the
found item from the knowledge repository while qry leaves the target repository unchanged. Actions
put, exec and new are instead non-blocking and are immediately executed and are used to insert new
items in the knowledge repository, to spawn new processes, and to create new names and/or limit their
scope.

Component or system names are denoted by n, n′, . . . , variables for names are denoted by x, x′,
. . . , while c stands for a name or a variable for names. The distinguished variable self can be used by
processes to refer to the address of their hosting component.

Every component C includes

1. an interface I containing information about the component itself. The interface is represented

ASCENS 8

D1.1: First Report on WP1 (Final) November 15, 2011

KNOWLEDGE:
K ::= 〈t〉

∣∣ K1 ‖ K2

ITEMS:
t ::= e

∣∣ c
∣∣ P

∣∣ t1, t2

TEMPLATES:
T ::= e

∣∣ c
∣∣ P

∣∣ !x
∣∣ !X

∣∣ T1, T2

Table 2: Tuple-based SCEL

by a set of names of attributes and provided functionalities. It is required that at least the
attributes id, ensemble and membership are present in any component interface;

2. a knowledge manager K providing local, and possibly part of the global, knowledge (i.e. control
data) in addition to the application data, together with a specific handling mechanism;

3. a set of policies Π regulating the interaction between the different internal parts of the compo-
nent and the interaction of the component with the others;

4. a process term P together with a set of process definitions that can be dynamically activated.
Some of the processes composing P perform the local computation, while others may coordi-
nate processes interaction with the knowledge repository and/or deal with the issues related to
adaptation and reconfiguration.

Systems aggregate components by means of the composition operator ‖ . It is also possible to
restrict the scope of a name, say n, by using the name restriction operator (νn) . Thus, in a system
of the form S1 ‖ (νn)S2, the effect of the operator is to make name n invisible from within S1.
Essentially, this operator plays a role similar to that of begin . . . end block in sequential programming
and limits visibility of specific names. Additionally, it allows components to communicate restricted
names thus enlarging their scope to encompass also the receiving components (like name restriction
in π-calculus [MPW92a, MPW92b]).

It has to be said that the syntax of SCEL leaves some ingredients unspecified. They can be chosen
according to the specific application domain or to the taste of the language designer. For instance, if
we borrow the KLAIM [DFP98] idea of using tuples for knowledge representation and tuple spaces as
knowledge repositories, we can complete the syntax of Knowledge, Items and Templates as shown in
Table 2. Other syntactical ingredients are, however, still underspecified. These represent additional
language features that need to be introduced to express policies of various kinds (e.g. to regulate
knowledge handling, resource usage, process execution, process interaction, actions priority, security,
trust, reputation), and to define the expressions producing values (and the corresponding evaluation
mechanisms). In the sequel we will use notation from Table 2 to make concrete examples of knowledge
representation and selection.

4 Interfaces

The interface of a component contains attributes and functionalities provided by the component.
Attributes are used to provide names for specific features and are represented as pairs of the form

(name,value). If we borrow the notation of Table 2 and if attribute x of component n is currently as-
sociated to value v, then the knowledge repository at n contains an item of the form 〈“attr”, “x”, v〉.

ASCENS 9

D1.1: First Report on WP1 (Final) November 15, 2011

Attribute values can thus be dynamically changed through the specific knowledge handling mecha-
nism. The interface of a component C must contain at least the following three attributes:

• id: the name of the component C;

• ensemble: a formula or a predicate on interfaces used to determine the actual components of
the ensemble created and coordinated by C;

• membership: a formula or a predicate on the interfaces used to determine the ensembles to
which C is willing to be member of.

Additional attributes might, e.g., indicate the battery’s charge level, the component’s GPS position,
the operating environment’s control data. Attribute selection will be modeled by means of structured
names, thus, if I is the interface of component C, I.id indicates its name.

A functionality is a behavior (defined through a process definition) that is made available by
a component for external invocation. As an example let us consider a component named stack,
implementing a stack data structure that provides two functionalities, one named push and the
other named pop. These names would then be included in the interface of stack while two items
〈“pfun”, “push”, “in”〉 and 〈“pfun”, “pop”, “out”〉, indicating that functionality push has an in-
put parameter while functionality pop has an output parameter, are inserted in the knowledge reposi-
tory associated to component stack. Items of this form represent the signature of a functionality (they
could also include information on the type of each parameter) and can be retrieved by potential clients.
Once a client knows how to invoke a specific functionality, we expect that it adds a suitably tagged
item containing the actual parameters to the repository of the component providing the functionality.
The body of the functionality is such that its first action withdraws this item to appropriately initialize
its formal parameters, then starts computing. Results are transmitted by following to a similar proto-
col. In our example, assuming that pattern matching is used as a retrieval mechanism, the protocol for
the actual invocation of push to add value v to stack, would be:

• the invoker has to perform action: put(“invoke”, “push”, v)@stack ;

• the definition of functionality push at stack, if P is the actual implementation of this function-
ality, has to be of the form: push(x) , get(“invoke”, “push”, !x)@self.P .

5 Ensembles

SCEL has no specific syntactic construct for defining ensembles. Instead, ensembles are dynamically
formed by exploiting the fact that an interface specifies not only what the component provides but also,
via, e.g., attributes membership and ensemble, what it requires to the other partners. This design choice
of having ‘synthesized’ ensembles dynamically determined supports high dynamicity and flexibility
in forming, joining and disjoining ensembles, permits to avoid structuring ensembles through rigid
syntactic constructs, and provides additional control on the communication capabilities of components
(and of the processes therein).

In the sequel, we shall use notation I |= J .ensemble to indicate that J is willing to accept
component I in the ensemble it coordinates and J |= I.membership to indicate that I is willing
to be one of the components of the ensemble coordinated by J . We shall assume that it always
implicitly holds that I |= I.ensemble ∧ I |= I.membership, i.e. that a component is always part
of the ensemble it coordinates.

For example, the names of the components that can be members of an ensemble can be explicitly
mentioned, as in the predicate

P (I)
def
= I.id ∈ {n,m, p}

ASCENS 10

D1.1: First Report on WP1 (Final) November 15, 2011

Now, if the interface J of a component C has attribute (ensemble, P (I)), then a component C ′ with
interface I ′ is part of the ensemble coordinated by C if P (I ′) holds, namely if the name of C ′ is n, m
or p.

Predicate P can be instantiated so to characterize the members of an ensemble by requiring that
they are active and have a battery charge level not less than 30%, as in the predicate

P (I)
def
= I.active = yes ∧ I.battery level ≥ 30%

We are assuming here that in the interface of each component willing to be part of the ensemble there
are the attributes active and battery level indicating if the component is active and storing its battery
charge level.

An ensemble can be also determined by such a predicate as

P (I)
def
= rangemax ≥

√
(self.x− I.x)2 + (self.y − I.y)2

stating that the ensemble is composed by those components within a given range from the component
coordinating the ensemble (that is the one setting up the attribute ensemble). Here we are assuming
that in the interface of each component there are the attributes x and y storing the numerical val-
ues of the coordinates of a Cartesian system specifying the position in a plane of the corresponding
component.

Components, in turn, could be willing to be part of any ensemble, which is expressed by letting
attribute membership be associated to predicate true, or, on the contrary, they could not want to
be part of any ensemble, which is expressed by letting membership be associated to false. More
generally, components can put restrictions on the ensembles which they are willing to be member of
by appropriately setting the attribute membership. For example, using the following predicate

P (I)
def
= I.trust level > medium

a component can express its willingness to be only part of those ensembles coordinated by components
whose (certified) trust level is greater than medium.

6 SCEL: operational semantics

The operational semantics is given in the SOS style [Plo04] by relying on the notion of Labeled
Transition System (LTS), that is a triple 〈S,L, - 〉 made of a set of states S , a set of transition

labels L, and a labeled transition relation - ⊆ S × L × S accounting for the actions that can
be performed from each state and the new state reached after each such transition. The semantics is
defined in two steps: first, the semantics of processes specifies process commitments ignoring process
allocation, available data, regulating policies, etc.; then, by taking process commitments and system
configuration into account, the semantics of systems provides a full description of systems behavior.

To define the semantics, we will make use of the sets bv(E) and fv(E) of bound and free variables
and the sets n(E), bn(E) and fn(E) of names, bound names and free names, respectively, occurring
in a syntactic term E. These sets, as usual, can be defined inductively on the syntax of actions,
processes, components, and systems by taking into account that the only binding constructs are actions
get and qry as concerns variables and action new and the restriction operator as concerns names. More
precisely, actions get(T)@c and qry(T)@c bind the variables occurring in the template T , while
action new(I,K,Π, P) binds the name associated to attribute I.id; the scope of these binders is the
process P1 syntactically following the action in a prefix form a.P1. The restriction operator (νn)

ASCENS 11

D1.1: First Report on WP1 (Final) November 15, 2011

a.P
a- P (a 6= exec(Q)) exec(Q).P

exec(Q)- P [Q] P
◦- P

P
α- P ′

P + Q
α- P ′

Q
α- Q′

P + Q
α- Q′

A(f̄) , P P{p̄/f̄} α- P ′

A(p̄)
α- P ′

P
α- P ′ Q

β- Q′

P [Q]
α[β]- P ′[Q′]

bv(α) ∩ bv(β) = ∅ P =α P
′ P ′

β- P ′′

P
β- P ′′

Table 3: Operational semantics of processes

binds the name n in the scope . A term without free variables is deemed closed (notice that it may
contain free names).

The semantics is only defined for closed systems. Indeed, we consider the binding of a variable as
its declaration (and initialization), therefore free occurrences of variables at the outset in a system must
be prevented since they are similar to uses of variables before their declaration in programs (which are
considered as programming errors).

6.1 Operational semantics of processes

The semantics of processes specifies process commitments, i.e. the actions that processes can initially
perform. That is, given a process P , its semantics points out all the actions that P can initially
perform and the continuation process P ′ obtained after each such action. To simplify the rules, we
do not restrict them (and the semantics) to the subset of closed processes, although when defining
the semantics of systems we only consider the transitions from closed processes (as we will see in
Section 6.2). Moreover, we only consider processes that are such that their bound names are pairwise
distinct and different from their free names.

The LTS defining the semantics of processes is given as follows:

• the set of states coincides with the set of processes as defined in Table 1;

• the set of transition labels is generated by the following production rule

α, β ::= a
∣∣ ◦ ∣∣ α[β]

meaning that a label is either an action as defined in Table 1, or the symbol ◦, denoting inaction,
or the composition α[β] of two labels α and β;

• the labeled transition relation - is the least relation induced by the inference rules in
Table 3. To simplify notation, we will use P and Q, possibly indexed, to range over processes
and write P

α- Q instead of 〈P, α,Q〉 ∈ - .

The rules defining the labeled transition relation are straightforward. In particular, exec spawns
a new concurrent process whose execution can be controlled by the continuation of the process per-
forming the action. The rule defining the semantics of P [Q] states that a transition labeled α[β]
is performed when Q makes the action β while P makes the action α. However, P and Q are not
forced to synchronize. Indeed, thanks to the third rule, that allows any process to perform a ◦-labeled
transition, α and/or β may always be ◦. The semantics of P [Q] at the level of processes is indeed

ASCENS 12

D1.1: First Report on WP1 (Final) November 15, 2011

absolutely permissive and generates all possible compositions of the commitments of P and Q. This
semantics will be then specialized at the level of systems by means of interaction predicates in order to
also take polices into account (see Section 6.2). Condition bv(α)∩bv(β) = ∅means that the variables
freed by the action α[β] in the two processes P andQmust be different: this because they correspond
to bound variables that were intended to be different (although they might have had the same identity)
and, once they get free, could be subject to possibly different substitutions (substitutions are generated
and applied by rule (pr-sys) in Table 4). Notably, also this condition is not strict: it can be always
made true by application of the last rule saying that α-equivalent processes, i.e. processes only differ-
ing in the identity of bound variables (this equivalence relation is denoted by =α), perform the same
transitions.

6.2 Operational semantics of systems

The operational semantics of systems is defined in two steps. First, we define an LTS to derive the
transitions of systems without restricted names. Notice that, although name restrictions do not appear
in the system before a transition, they can appear in the system obtained after a transition, as in rule
(newc). Then, by exploiting this LTS, we provide the semantics of generic systems by means of a
(unlabeled) transition system (TS), that is a pair 〈S,�−→〉 made of a set of states S and a (unlabeled)
transition relation �−→⊆ S × S accounting for the computation steps that can be performed from
each state and the new state reached after each such transition. This approach permits us to avoid
the intricacies, also from a notational point of view, arising when dealing with name mobility in
computations (e.g. when opening and closing the scopes of name restrictions1). It also permits a
smooth extension of the syntax and of the operational semantics of the language to consider more
powerful interaction mechanisms (see Section 10). To simplify notation, we will use I and J to range
over interfaces. Moreover, we assume that the names of the attributes of a component are just pointers
to the actual values contained in the knowledge repository associated to the component. This amounts
to saying that in terms of the form I[K,Π, P], I only includes the names of the attributes, as their
corresponding values can be easily retrieved from K. However, when I is used in isolation it also
includes the attributes’ values.

The LTS defining the semantics of systems without restricted names is 〈S,L, - 〉 where

• S is the set of states containing all and only the systems defined in Table 1.

• L is the set of transition labels generated by the following production rule2

λ ::= τ
∣∣ I : new(J ,K,Π, P)

∣∣ I � J∣∣ I : t / c
∣∣ I : t J c

∣∣ I : t . c∣∣ I : t /̄J
∣∣ I : t J̄J

∣∣ I : t .̄J

where τ denotes an internal computation step, I : new(J ,K,Π, P) denotes the willingness of
component I to create the new component J [K,Π, P], I � J denotes the willingness of two

1If we would like to modify the above defined LTS to capture the semantics of systems with restricted names, its definition
would become quite tricky because of the handling of name mobility. Indeed, if we open and close the scope of restricted
names when they are subject to communication by using standard techniques (as in π-calculus [MPW92a, MPW92b]), we
should tackle the problem of determining when we can safely close the scope of a (restricted) name exported by a component
through a communication: this may not be trivial as the component may want the name to be received by all the ensembles
which it is part of and we must guarantee that all of them can actually receive the same restricted name. The two step
approach we are presenting in this section is a way to get around this problem.

2We would like to remark that although c stands for a variable, a name or self, in the production rules for labels definition
it can be only a name, n, or self.

ASCENS 13

D1.1: First Report on WP1 (Final) November 15, 2011

components with interfaces I and J to interact, I : t / c (I : t J c) denotes the intention
of component I to withdraw (retrieve) item t from the repository at c, I : t . c denotes the
intention of component I to add item t to the repository at c, I : t /̄J (I : t J̄J) denotes
that component I is allowed to withdraw (retrieve) item t from the repository of component J ,
I : t .̄J denotes that component I is allowed to add item t to the repository of component J .

• - is the labeled transition relation induced by the inference rules in Table 4. We will write
S

λ- S′ instead of 〈S, λ, S′〉 ∈ - .

The labeled transition relation relies on the following two predicates:

• interaction predicate Π, I : α � λ, σ: under policy Π and interface I, process label α yields
system label λ and substitution σ.

• authorization predicate Π, I ` λ: under policy Π and interface I, system label λ is allowed.

The interaction predicate establishes a relation between process labels and system labels and thus
determines the system label λ to exhibit and the substitution σ to apply when a process performs a
transition labeled α. It is called interaction predicate because its main rôle is determining the effect of
the concurrent execution of different actions by different processes that, e.g., exhibit labels of the form
α1[α2]. Many different interaction predicates can thus be defined3 to capture well-known process
computation and interaction patterns such as interleaving, asynchronous communication, synchronous
communication, full synchrony, broadcasting, etc. We refer the reader to Section 7 for some notable
examples.

The authorization predicate is used to determine the actions that can be performed according to
specific policies. Likewise the interaction predicate, many different reasonable authorization predi-
cates can be defined depending on Π.

The labeled transition relation also relies on the following three operations that each knowledge
repository’s handling mechanism must provide:

• K 	 t = K′: the withdrawal of item t from the repository K returns K′;

• K ` t: the retrieval of item t from the repository K is possible;

• K ⊕ t = K′: the addition of item t to the repository K returns K′.

Rule (pr-sys) transforms process labels into system labels by exploiting the interaction predicate
Π, I : α � λ, σ. In particular, it generates the following four system labels: τ , I : new(J ,K,Π, P),
I : t/c, I : t J c and I : t.c. As a consequence of this transformation, a substitution σ (i.e. a function
from variables to values) is generated and applied to the continuation of the process that has exhibited
label α. This is necessary when α contains a get or a qry, because, due to the way the semantics of
processes is defined, the continuation P ′ may contain free variables even if P is closed. It is worth
noting that the domain of σ is the set of variables that are bound in α, thus, since fv(P ′) ⊆ bv(α), the
process P ′{σ} is closed. The application of the rule also replaces self with the corresponding name.

No specific system label is used for indicating execution of action exec. Indeed, this action is
always local to the component executing it, and no other component is involved in that action. Hence,
when applying rule (pr-sys), all the information (Π) needed to decide if the action can be allowed or

3Despite the several interaction predicates that can be defined, we expect anyway that a well-defined interaction predicate
satisfies some obvious criteria. For example, a process label of the form get(T)@c should be related to system labels of the
form I : t / c, where t is any item matching the template T , while a process label of the form put(t)@c should be related
to system labels of the form I : t′ . c, where t′ is any item resulting from the evaluation of t.

ASCENS 14

D1.1: First Report on WP1 (Final) November 15, 2011

P
α- P ′ Π, I : α � λ, σ

I[K,Π, P]
λ- I[K,Π, P ′{σ}]

(pr-sys)

I[K,Π, P]
I:new(J ,K,Π,P)- C n = J .id n 6∈ n(I[K,Π,nil])

I[K,Π, P]
τ- (νn)(C ‖ J [K,Π, P])

(newc)

K 	 t = K′ Π, I ` I : t /̄ I n = I.id I[K,Π, P]
I:t/n- I[K,Π, P ′]

I[K,Π, P]
τ- I[K′,Π, P ′]

(lget)

K 	 t = K′ Π,J ` I : t /̄J

J [K,Π, P]
I:t /̄J- J [K′,Π, P]

(accget)

S1
I:t/n- S′1 S2

I:t /̄J- S′2 J .id = n ens(I,J)⇒ λ = τ, λ = I � J

S1 ‖ S2
λ- S′1 ‖ S′2

(syncget)

K ` t Π, I ` I : t J̄ I n = I.id I[K,Π, P]
I:tJn- I[K,Π, P ′]

I[K,Π, P]
τ- I[K,Π, P ′]

(lqry)

K ` t Π,J ` I : t J̄J

J [K,Π, P]
I:t J̄J- J [K,Π, P]

(accqry)

S1
I:tJn- S′1 S2

I:t J̄J- S′2 J .id = n ens(I,J)⇒ λ = τ, λ = I � J

S1 ‖ S2
λ- S′1 ‖ S′2

(syncqry)

K ⊕ t = K′ Π, I ` I : t .̄ I n = I.id I[K,Π, P]
I:t.n- I[K,Π, P ′]

I[K,Π, P]
τ- I[K′,Π, P ′]

(lput)

K ⊕ t = K′ Π,J ` I : t .̄J

J [K,Π, P]
I:t .̄J- J [K′,Π, P]

(accput)

S1
I:t.n- S′1 S2

I:t .̄J- S′2 J .id = n ens(I,J)⇒ λ = τ, λ = I � J

S1 ‖ S2
λ- S′1 ‖ S′2

(syncput)

S
I�J- S′ I ∈ I ′ ∧ J ∈ I ′ Π, I ′ ` I � J

I ′[K,Π, P] ‖ S τ- I ′[K,Π, P] ‖ S′
(enscomm)

S1
λ- S′1

S1 ‖ S2
λ- S′1 ‖ S2

(async)

Table 4: Semantics of systems: labeled transition relation (symmetric of rules (syncget), (syncqry),
(syncput), (enscomm) and (async) omitted)

ASCENS 15

D1.1: First Report on WP1 (Final) November 15, 2011

not is present. When exec is allowed, the interaction predicate in the premise of the rule is of the form
Π, I : exec(Q) � τ, [], where [] denotes the empty substitution, and the transition corresponds to an
internal computation step.

Like the exec, action new is decided by using the information within a single component. How-
ever, since it affects the whole system as it creates a new component, its execution is indicated by a
specific system label I : new(J ,K,Π, P) (generated by rule (pr-sys)) carrying enough information
for the creation of the new component to take place. When the new component is actually created
(newc), it is checked that its name n is not already used in the creating component possibly except
for the process part (this condition can be always made true by exploiting α-equivalence among pro-
cesses) and, if so, a restriction is put in the system obtained after the computation step to delimit the
scope of visibility of n.

The successful execution of the remaining three actions requires, at system level, appropriate
synchronizations. For this reason, for each action we have a pair of complementary labels. Action
get withdraws an item either from the local repository, rule (lget), or from a specific repository, rule
(syncget). In both cases, this transition corresponds to an internal computation step. However, in
case of remote withdrawal, it is also needed to make sure that the interacting components belong to
the same ensemble. We have two cases to consider, depending on predicate ens(I,J) defined as
(I |= J .ensemble ∧ J |= I.membership) ∨ (J |= I.ensemble ∧ I |= J .membership):

• Predicate ens(I,J) holds true, i.e. the component with interface I is part of the ensemble
defined by the component with interface J , or vice versa. Then, the (conditional) premise
ens(I,J)⇒ λ = τ, λ = I�J of rule (syncget) sets λ to τ and the inference of the computation
step terminates.

• Predicate ens(I,J) holds false and the two components with interface I and J are both part
of the ensemble coordinated by another component, say I ′[K,Π, P]. Indeed, we write I ∈
I ′ ∧J ∈ I ′ as a shorthand for condition (I |= I ′.ensemble ∧ I ′ |= I.membership)∧ (J |=
I ′.ensemble ∧ I ′ |= J .membership). We now take advantage of the ‘else’ case of the
premise ens(I,J) ⇒ λ = τ, λ = I � J of rule (syncget) that sets λ to I � J . Consequently,
rule (enscomm) exploits the authorization predicate Π, I ′ ` I �J to check whether the policy Π
in force at I ′ authorizes interaction between I and J and, if so, infers the computation step.

The label I : t /̄J , generated by rule (accget), denotes the willingness of a component J to provide t
to a component I. When J .id = n, its complementary label is I : t/n generated by rule (pr-sys) when
a component I wants to withdraw t from the repository at n. When the target of the action denotes a
remote repository, rule (syncget), the action is only allowed if J .id = n, namely if n is the name of
the component with interface J . The semantics of action qry is modeled by rules (lqry), (accqry) and
(syncqry). This action behaves similarly to get, the only difference being that it invokes the retrieval
operation of the repository’s handling mechanism, rather than the withdrawal operation. Thus, if the
action succeeds, the repository after the computation step remains unchanged. Action put adds item t
to a repository. Its behavior is modeled by rules (namely (lput), (accput) and (syncput)) similar to those
of actions get and qry, the major difference being now that the addition operation of the repository’s
handling mechanism is invoked. In any case, for remote synchronization to take place, it could require
authorization through the application of rule (enscomm).

Finally, rule (async) allows a whole system to asynchronously evolve when only some of its com-
ponents evolve.

Now, the TS defining the semantics of generic systems is defined as

• the set of states includes all the systems defined as in Table 1;

ASCENS 16

D1.1: First Report on WP1 (Final) November 15, 2011

S
τ- S′

(res-tau)
(νn̄)S �−→ (νn̄)S′

(νn̄, n′′)(S1 ‖ S2{n′′/n′}) �−→ S′ n′′ fresh
(res-top-r)

(νn̄)(S1 ‖ (νn′)S2) �−→ S′

(νn̄, n′′)(S1{n′′/n′} ‖ S2) �−→ S′ n′′ fresh
(res-top-l)

(νn̄)((νn′)S1 ‖ S2) �−→ S′

Table 5: Semantics of systems: transition relation

• the transition relation �−→ is the least relation induced by the inference rules in Table 5. As a
matter of notation, we will write S �−→ S′ instead of 〈S, S′〉 ∈�−→. Moreover, n̄ denotes a
(possibly empty) sequence of names and n̄, n′ is the sequence obtained by composing n̄ and n′.
(νn̄)S abbreviates (νn1)((νn2)(· · · (νnm)S · · ·)), if n̄ = n1, n2, · · · , nm, and S, otherwise.
S{n′/n} denotes the system obtained by replacing any free occurrence in S of n with n′. When
considering a system S, a name is deemed fresh if it is different from any name occurring in S.

The rules defining the transition relation are straightforward. Basically, the first rule accounts for
the computation steps of a system where all (possible) name restrictions are at top level, while the
last two rules permit to manipulate the syntax of a system, by moving all name restrictions at top
level, in order to put it into a form to which the first rule can be possibly applied. This manipulation
may require the renaming of a restricted name with a freshly chosen one, thus ensuring that the name
moved at top level is different both from the restricted names already moved at top level (to avoid name
clashes) and from the names occurring free in the other (sub-)systems in parallel (to avoid improper
name captures).

On inter-ensemble communication. We can also further modify the semantics to permit more com-
plex interaction patterns among two or more components, possibly, belonging to different ensembles,
in the style of those expressed trough interaction predicates. This can be done simply by

• extending system labels as follows

λ ::= . . .
∣∣ λ1 � λ2

where label λ1�λ2 denotes the concurrent execution of those transitions corresponding to labels
λ1 and λ2;

ASCENS 17

D1.1: First Report on WP1 (Final) November 15, 2011

• adding the following rules to the set of operational rules for systems

S1
λ1- S′1 S2

λ2- S′2

S1 ‖ S2
λ1�λ2- S′1 ‖ S′2

(ens1)

S
λ′- S′ Π, I ` λ′ � λ

I[K,Π, P] ‖ S λ- I[K,Π, P] ‖ S′
(ens2)

I[K,Π, P]
λ1- C S

λ2- S′ Π, I ` λ1 � λ2 � λ

I[K,Π, P] ‖ S λ- C ‖ S′
(ens3)

Basically, the idea is to generalize the mechanism already present in the operational semantics
of systems, by replacing the authorization predicate Π, I ` λ with predicate Π, I ` λ′ � λ. The
latter, while checking whether a transition can be allowed according to the policy Π in force at I, also
translates label λ′ into λ. This mechanism enables more complex interaction patterns, e.g., it could
consider some details as in rule (enscomm) regulating intra-ensemble communications.

7 Interaction Predicates

The operational semantics introduced in Section 6 (and later revised in Section 10) relies on the inter-
action predicate4

Π, I : α � λ, σ

This predicate establishes a relation between a given triple, consisting of a policy Π, an interface I
and a process label α, and a pair, consisting of a system label λ and a substitution σ. Intuitively, λ
identifies the effect of α at the level of components, while σ associates values to the variables occurring
in α and is used to capture the changes induced by communication. An interaction predicate then
permits defining sophisticated policies for regulating the interaction among processes of a component,
while possibly taking other policies (e.g. for access control) into account. However, for the sake of
simplicity, we will be only concerned with policies Π controlling process interaction.

Below, we present three possible instances, that we call interleaving, monitoring and limited mon-
itoring, of the above predicate. In all cases, the interaction predicate is defined by a set of inference
rules. The three instances of the interaction predicate are somehow reminiscent of the three variants
of parallel composition in process algebras where composed processes never interact, are forced to
interact on all actions, and interact only on a specific set of actions.

The following notations will be used:

• E [[t]]I (resp. E [[T]]I) denotes the evaluation of item t (resp. template T) with respect to inter-
face I: attributes occurring in t (resp. T) are replaced by the corresponding value in I;

• N [[c]]I denotes the evaluation of target c according to interface I;

• P[[P]]I denotes the evaluation of P according to interface I: functionalities in P are replaced
by the corresponding code in I.

4Interaction predicates are reminiscent of synchronization algebras introduced by Glynn Winskel in a seminal paper on
Event Structures [Win86] as a device to specify how events from parallel processes do synchronize, thus associating with
any synchronization algebra a particular parallel composition.

ASCENS 18

D1.1: First Report on WP1 (Final) November 15, 2011

Π⊕, I : exec(P) � τ, []
E [[T]]I = T ′ N [[c]]I = n match(T ′, t) = σ

Π⊕, I : get(T)@c � I : t / n, σ

E [[T]]I = T ′ N [[c]]I = n match(T ′, t) = σ

Π⊕, I : qry(T)@c � I : t J n, σ

E [[t]]I = t′ N [[c]]I = n

Π⊕, I : put(t)@c � I : t′ . n, []

Π⊕, I : new(J ,K,Π, P) � I : new(J ,K,Π,P[[P]]I), []

Π⊕, I : α � λ, σ
Π⊕, I : α[◦] � λ, σ

Π⊕, I : α � λ, σ
Π⊕, I : ◦[α] � λ, σ

Table 6: Interleaving interaction predicate Π⊕, I : α � λ, σ

Interleaving. The interaction predicate interleaving, denoted by Π⊕, is obtained by interpreting
controlled composition as the interleaved parallel composition of the two involved processes. The
inference rules defining predicate Π⊕, I : α � λ, σ are reported in Table 6. We have a rule for
each different kind of process action, plus two additional rules (the last ones) ensuring that in case of
controlled composition of multiple processes only one process can perform an action (the other stays
still). The (five) rules for process actions basically state that, at the level of the operational semantics of
systems, process action exec corresponds to a computation step τ , while the other actions correspond
to properly labeled transitions.

Monitoring. The monitoring interaction predicate, denoted by Π⊗[Π1,Π2], can be used to ensure
that in a controlled composition P [Q], P can actually control the actions performed by Q. This
makes controlled composition a non-commutative operator, differently from the interleaving interac-
tion predicate Π⊕ described before.

The inference rules defining the monitoring interaction predicate Π⊗[Π1,Π2], I : α � λ, σ are
reported in Table 7. The rules managing basic labels (i.e. not of the form α[β]) are omitted since are
exactly the first five rules of Table 6. Assume that, in a controlled composition P [Q], process interac-
tions in P and Q are regulated by policies Π1 and Π2, respectively. Then, Π⊗[Π1,Π2] prescribes that
Q can evolve with a transition labeled β, which is mapped by Π2 to a put of item t at component n
(label I : t.n), only when P can evolve with a transition labeled α, which is mapped by Π1 to either a
get or a retrieve of item t at component n (labels I : t / n or I : t J n). In the former case the overall
outcome is a τ while in the latter case the put label is propagated to the rest of the system. In all other
cases, Π⊗[Π1,Π2] works similarly to the interleaving predicate, i.e. all other labels of the form α[β]
are mapped to a system label λ only if either α = ◦ and β is mapped to λ with λ 6= I : t . n, or β = ◦
and α is mapped to λ with λ 6= I : t / n ∧ λ 6= I : t J n.

Predicate Π⊗[Π1,Π2] is actually a predicate ‘schema’ as it is parametric with respect to predicates
Π1 and Π2 defining the interaction policies of processes P and Q. The monitoring predicate could be
combined with the interleaving predicate to obtain more refined interaction patterns for processes.

Limited monitoring. The limited monitoring interaction predicate, denoted by ΠN [Π1,Π2], where
N is a set of components names, constrains the behavior of processes of the form P [Q] in such way
that:

• P and Q interact according to Π⊗[Π1,Π2] for any system label whose target is in N ;

• P and Q can freely execute actions whose target is not in N .

ASCENS 19

D1.1: First Report on WP1 (Final) November 15, 2011

Π1, I : α � I : t / n, σ1 Π2, I : β � I : t . n, σ2

Π⊗[Π1,Π2], I : α[β] � τ, σ1 · σ2

Π1, I : α � I : t J n, σ1 Π2, I : β � I : t . n, σ2

Π⊗[Π1,Π2], I : α[β] � I : t . n, σ1 · σ2

Π2, I : α � λ, σ
Π⊗[Π1,Π2], I : ◦[α] � λ, σ λ 6= I : t . n

Π1, I : α � λ, σ
Π⊗[Π1,Π2], I : α[◦] � λ, σ λ 6= I : t / n ∧ λ 6= I : t J n

Table 7: Monitoring interaction predicate Π⊗[Π1,Π2], I : α � λ, σ

Π1, I : α � I : t / n, σ1 Π2, I : β � I : t . n, σ2

ΠN [Π1,Π2], I : α[β] � τ, σ1 · σ2
n ∈ N

Π1, I : α � I : t J n, σ1 Π2, I : β � I : t . n, σ2

ΠN [Π1,Π2], I : α[β] � I : t . n, σ1 · σ2
n ∈ N

Π2, I : α � λ, σ
ΠN [Π1,Π2], I : ◦[α] � λ, σ λ 6∈ {I : t . n|n ∈ N}

Π1, I : α � λ, σ
ΠN [Π1,Π2], I : α[◦] � λ, σ λ 6∈ {I : t / n, I : t J n|n ∈ N}

Table 8: Limited monitoring interaction predicate ΠN [Π1,Π2], I : α � λ, σ

The inference rules defining the predicate ΠN [Π1,Π2], I : α � λ, σ, are reported in Table 8. The
rules extend those of Π⊗[Π1,Π2] by adding new side conditions. The first two rules guarantee that
synchronization only occur on labels involving names in N , while the last two rules model the case
processes Q and P , in a process of the form P [Q], can evolve independently. Again, the basic labels
are dealt with exactly as in the case of the interleaving interaction predicate, that is by the first five
rules of Table 6.

Remarks. The monitoring and the limited monitoring interaction predicates provide just a few ex-
amples of the expressive power of interaction predicates. It is not difficult to envisage more general
situations where, e.g., actions performed byQ in a controlled composition of the form P [Q] are inter-
cepted by suitable actions by P and appropriately transformed into labels at the level of systems. This
allows P to act as a sort of ‘execution monitoring’ for Q and is somehow reminiscent of the approach
for enforcing security policies that relies on the so called security automata [Sch00].

All the interaction predicates we have considered, and the interaction policies they define, are
static: they do never change for taking into account the progress of a system. More sophisticated
interaction policies could be defined by allowing to change the predicate after any application, for
example by defining judgments of the form Π, I : α � Π′, λ, σ where Π′ is the predicate to be
applied next time. We could also allow action exec to install new interaction policies: it could ad-

ASCENS 20

D1.1: First Report on WP1 (Final) November 15, 2011

ditionally have an argument specifying the interaction predicate in charge of regulating interactions
within the controlled process and another argument specifying the interaction predicate regulating the
overall controlled composition. Likewise, action new could have an additional argument specifying
the policies regulating the interaction with the new component.

8 How to ‘cook’ your own SCEL dialect

In this section, we show how dialects of SCEL can be easily defined by appropriately specifying the
parameters of the language. As a concrete example, we demonstrate how KLAIM [DFP98] can be
obtained.

In order to define a dialect with specific features, one has to fix the parameters SCEL depends on,
that is

1. the languages for policies Π, together with an interaction predicate Π, I : α � λ, σ and an
authorization predicate Π, I ` λ ;

2. the language for representing knowledge items and repositories, together with the three op-
erations, i.e. withdrawal, query and addition, that we assumed each knowledge repository’s
handling mechanism must provide;

3. the languages for specifying the expressions e producing values and the corresponding evalua-
tion mechanisms.

Now, to get KLAIM as a dialect of SCEL, we can take respectively

1. the languages for policies has to include functions from (name) variables to names for express-
ing KLAIM allocation environments, namely sort of architectural policies regulating visibility
of components within a system, and while, as interaction predicate, we can take the interleaving
one (introduced in Section 7) and, as authorization predicate, we can take the one that does not
block any action;

2. tuples, multisets, templates and pattern-matching as mechanisms for representing, storing and
selecting information (see also Table 2);

3. any language for specifying value expressions (also KLAIM leaves this unspecified).

If we were interested in capturing alternative version of KLAIM that use types to enforce access control
(see, e.g. [GP09]), we can take functions from names to capabilities to express the constraints enforced
by types.

As regards component interfaces, in any of them we can set attributes ensemble andmembership
to true and use no other attribute; in other words, the only meaningful attribute is id which is set to
the name of the corresponding component. At this point, get/qry/put/new correspond to KLAIM’s
in/read/out/newloc, while KLAIM’s remote eval can be rendered in SCEL by means of an appro-
priate protocol exploiting higher-order communication and the exec (see, e.g. [DGP06]).

9 Adaptation in SCEL

As we have seen in the previous sections, SCEL is parametric with respect to the knowledge manager.
Indeed, knowledge is abstractly represented through items stored in repositories which are then han-
dled by suitable mechanisms. We only require that the handling mechanism of knowledge repositories

ASCENS 21

D1.1: First Report on WP1 (Final) November 15, 2011

provides the processes with three operations for managing knowledge, namely for adding knowledge
items and for retrieving/withdrawing knowledge items.

That knowledge items can contain both application data, namely data used by the processes for
the progress of the computation, and control data, namely data providing information about the en-
vironment in which the components are running (e.g. monitored data from sensors) and the current
status of a component (e.g. its position or its battery charge level). Both kinds of data are part of the
knowledge of components. At this level of abstraction, we are not concerned with the way data are
actually represented, we only assume that they can be appropriately tagged to distinguish control data
from application data.

This distinction is crucial. Indeed, it provides the basis of a tangible notion of adapta-
tion [BCG+11], which is defined as the run-time modification of control data. A component is then
said to be adaptive if it has a precisely identified collection of control data that are modified at run-
time, at least in some of its computations. A component is self-adaptive if it is able to modify its own
control data at run-time. These definitions fit a more general vision of adaptation [HRW08] defined as
“the capability of a system to change its behavior according to new requirements or environment con-
ditions” and proposed as the key for autonomic computing (i.e. computer and software systems that
can manage themselves in accordance with high-level guidance from humans by relying on strategies
inspired by biological systems).

In general, a component in SCEL is adaptive (and, hence, autonomic) because its control data
can be dynamically modified by means the actions put/get/qry. Moreover, a component is self-
adaptive as the hosted process can trigger modifications of its control data by interacting with the
local knowledge handler. So-called feedback-loops that adapt behavior of autonomic components to
changing contexts, can thus be easily implemented.

The one outlined above is perhaps the simplest form of adaptation, but we can envisage more
sophisticated forms by taking the nature of the control data into account. Suppose, for example,
that the process part of a component is split into an autonomic manager controlling execution of
a managed element. The autonomic manager monitors the state of the component, as well as the
execution context, and identifies relevant changes that may affect the achievement of its goals or the
fulfillment of its requirements. It also plans adaptations in order to meet the new functional or non-
functional requirements, executes them, and monitors that its goals are achieved, possibly without
any interruption5. In practice, the autonomic manager implements the rules for adaptation. Now, by
exploiting SCEL higher-order features, namely the capability to store/retrieve (the code of) processes
in/from the knowledge repositories and to dynamically trigger execution of new processes (by means
of action exec), it is e.g. possible to dynamically replace (part of) the managed element process or
even the autonomic manager process. In this case, we are also changing the rules, i.e. processes, with
which the control data are manipulated, since these rules are represented as control data themselves.

A managed element can be seen as an empty “executor” which retrieves from the knowledge
repository the process P to execute and bounds it to a variable X , performs an exec to send P for
execution and waits until it terminates (this coordination can be worked out by exchanging appropriate
synchronization items). Also actual parameters for processes can be stored as knowledge items and
retrieved by the executor (or by the process itself) when needed (see below)

ME , qry(“required functionality id”, !P)@self.
get(“required functionality id”, !args)@self.
exec(P (args)).
get(“wait P termination′′)@self.ME

5The whole body of activities mentioned above has been named MAPE-K loop (Monitoring, Analyzing, Planning, and
Executing, through the use of Knowledge) by IBM [IBM05].

ASCENS 22

D1.1: First Report on WP1 (Final) November 15, 2011

Items containing processes or parameters can be thought of as control data. Autonomic managers
can add/remove/replace these data from the knowledge repositories thus implementing the adaptation
logic and therefore changing the managed element behavior. For example, different versions of the
process providing a requested service may exist. While managed elements could only read these data,
the autonomic manager could dynamically change the association between the service request and the
service process by simply performing:

get(“required functionality id”, !P1)@self;
put(“required functionality id”, P2)@self;

Of course, the autonomic manager can also add a new service or even remove an existing one. Notably,
the autonomic manager is a process just like the managed element, thus it is very well suited to be
itself subject to adaptation. In this way we can build up hierarchical adaptations and cover a wide
range of adaptation mechanisms.

One issue with SCEL is that it does not have any specific mechanism for stopping or killing
processes. However, exploiting knowledge and higher-order features, the application designer can
specify when to terminate processes by following suitable patterns. For example, in the code fragment
below, the managed element can ask the autonomic manager for the authorization to proceed and,
possibly, signal its termination.

qry(pid, “ko”)@self.put(pid, “dead”)@self.nil
+
qry(pid, “ok”)@self.P

where P is the continuation of the proceed identified by pid. This would allow an autonomic manager
to send a termination request to the process with identifier pid and wait for its termination, assuming
that both tags pid, “ok” and pid, “ko” are present.

get(pid, “ok”)@self; //remove the life item
get(pid, “dead”)@self; //wait for termination

As we have seen, it is the autonomic manager to choose which adaptation to use. The decision
about when to perform adaptation is jointly taken by the autonomic manager and the application de-
signer. It is useful to relate our approach with, context-oriented programming (COP) [SGP11] that
exploits ad hoc explicit language-level abstractions to express context-dependent behavioral varia-
tions and, notably, their run-time activation. In this approach, the application designer has to insert
adaptation hooks in the application code and is thus able to control when adaptation can take place.
Leaving the designer to specify where and when to adapt has its advantages, because adaptations
would be explicit in the code and thus more visible, and the application designer could better plan
some adaptations. However, not being transparent to the application designer has significant disad-
vantages, because only adaptation planned at design phase could be exploited. When the autonomic
computing approach is used, the autonomic manager, which continuously monitors control data or
event occurrences, reacts to changes of contexts or of goals.

In addition to the language-level adaptation used in COP, an architectural approach consists in
dynamically reshaping the structure of the system, e.g. by exchanging a specific component with one
that provides similar functionalities, but behaves better in a new context. SCEL supports this coarse-
grained approach since component’s membership of ensembles is dynamic. Indeed, the membership
attribute of a component’s interface can be parametric w.r.t. to some information controlled by an
autonomic manager.

In case of distributed applications one can plan to have (i) control data residing at autonomic
element and the autonomic managers performing the adaptation for all controlled elements, or (ii)
all autonomic elements reading from a single knowledge repository that contains both control data

ASCENS 23

D1.1: First Report on WP1 (Final) November 15, 2011

TARGETS: c ::= n
∣∣ x

∣∣ self
∣∣ super

Table 9: The syntax of SCEL with ensemble-based communication

and global autonomic processes. The distributed approach may give raise to consistency problems
between autonomic elements during the adaptation procedure, because the autonomic managers of
different elements may not be synchronized. The centralized approach may lead to efficiency loss
and relies too much on the communication between autonomic elements, that can have considerable
latencies or be unreliable. However, both approaches may be useful. For example, at ensemble level,
adaptation can be partly centralized, controlled by an autonomic manager, and partly distributed in
each component. At system level, the distributed approach better supports the dynamic structures and
loosely-coupled components.

10 Extending SCEL with ensemble-wide broadcast communication

We now consider an extension of the language where a process can indicate as a target of actions put
and qry the ensembles of which its hosting component is part of. This extension enables a component
to insert an item within the repository of all the ensembles that contain it (action put). It also allows to
nondeterministically retrieve an item from any of such repositories (action qry). Since a component
might not know the name of all the ensembles which it is a member of (membership is dynamic and
determined by attributes), it uses the reserved keyword super to refer to them.

The extension of SCEL syntax, that leads to what we call SCELe, is obtained by enriching the
TARGETS syntactic category with the keyword super as illustrated in Table 9. However, we only allow
the new target to be used for actions put and qry, not for action get6.

The operational semantics of the new language follows the same pattern of the one for original
SCEL and like before it is defined in two steps by defining first process commitments and then the
semantics of systems. This latter description is again done in two steps by first introducing a labeled
transition relation and then an unlabeled one that is built from the former by fully taking into account
name restrictions. As before, the semantics is only defined for closed systems.

10.1 Operational semantics of processes

The semantics of the richer processes specifies the actions that processes can initially perform. That
is, given a process P , its semantics points out all the actions that P can initially perform and the con-
tinuation process P ′ obtained after each such action. The actions that SCELe processes can perform
are those reported in Table 1 extended with

put(t)@super and qry(T)@super

and transition labels α and β are changed accordingly. After these changes for actions and transition
labels, the semantics of the new processes remains exactly as in Table 3.

10.2 Operational semantics of systems

The LTS defining the semantics of systems without restricted names is defined as
6This is a design decision that we might reconsider. However, while we consider natural information broadcasting

(put(t)@super), we have difficulties in conceiving a simultaneous withdrawal of information from distributed repositories
(get(T)@super).

ASCENS 24

D1.1: First Report on WP1 (Final) November 15, 2011

• The set of states as defined in Table 1 possibly using also super as target of put and qry.

• The same set of transition labels of SCEL semantics plus:

I : t . super and I : t J super and I : t .̄ ?

where the first two have the interpretation as in Section 6 while I : t .̄ ? indicates that component
I is allowed to add item t to the repository of each coordinator of ensembles which it is part of.

• The labeled transition relation - is the least relation induced by the inference rules in
Tables 10 and 11.

The actual semantic rules for systems have been split in two tables for the sake of presentation
by dividing the rules for put from the others. This is because action put has the greatest impact
on the semantics and requires adding a number of new rules to properly deal with broadcasting of
information.

Like before, the labeled transition relation relies on the predicates Π, I : α � λ, σ and Π, I ` λ
and on the three operations on knowledge repositories K 	 t = K′, K ` t and K ⊕ t = K′.

Now, let us comment on the new rules (within gray boxes) in the two tables. Rule (superqry)
describes the possibility of the acting process to enlarge any of its local searches for matching items
to the ensemble containing it. This is the natural complement of the broadcasting put that inserts
its argument into the repository of all the ensembles enclosing it7. Rule (synchqry-g) exploits the
possibility offered by (superqry) and permits synchronization between a component, with interface I,
looking for information and a component, with interface J , offering the item only if the former is a
member of the ensemble defined by the latter.

Let us now consider the new rules of Table 11. Action put, whenever its target is super, can add
item t to the repository of all the components defining an ensemble of which the component perform-
ing the action is part (syncputens). A component J can perform a transition labeled I : t .̄ ? when it
accepts the item t from a component I which is part of the ensemble defined by J (accputenssucc). A
transition with the same label can also be performed (rule (accputensfail)) by those components J that
either do not allow the action (i.e. Π,J 6` I : t .̄ ?) or do not include I in the ensemble they define: in
this case, however, the component is not affected by the transition. The complementary label now is
I : t . super, generated by rule (pr-sys) when a component I wants to add t to the repository of all the
ensembles which it is part of. Hence, the transition resulting from the synchronization triggered by an
action put is either a computation step I : t . super, when many components are possibly allowed to
receive the item t produced by component I, or a computation step τ .

Finally, rule (async) allows a whole system to asynchronously evolve when only some of its com-
ponents do evolve, provided that the transition label is not of the form I : t .̄ ? or I : t . super. Rule
(sync), instead, forces all the components of a system to make a transition with the same label I : t .̄ ?:
notably, any component can always perform such a transition since this label is generated by rules

7A possible alternative: In the rules in Table 10, a local qry is automatically transformed into a qry at super apart from
the fact that the required item is found or not in the local repository. This means that the search for the item is nondeter-
ministically done in the local repository and in the repositories of all the ensembles of which the component performing the
action is part of. If we want to guarantee that the search is done first in the local repository and then, only if no matching item
is locally found, the search is repeated in the repositories of the including ensembles, then we can replace rule (superqry)
with the following one:

¬(K ` t) Π, I ` I : t J̄ I n = I.id I[K,Π, P]
I:tJn- I[K,Π, P ′]

I[K,Π, P]
I:tJsuper- I[K,Π, P ′]

where ¬(K ` t) is the negation of K ` t and means that t cannot be retrieved from K.

ASCENS 25

D1.1: First Report on WP1 (Final) November 15, 2011

P
α- P ′ Π, I : α � λ, σ

I[K,Π, P]
λ- I[K,Π, P ′{σ}]

(pr-sys)

I[K,Π, P]
I:new(J ,K,Π,P)- C n = J .id n 6∈ n(I[K,Π,nil])

I[K,Π, P]
τ- (νn)(C ‖ J [K,Π, P])

(newc)

K 	 t = K′ Π, I ` I : t /̄ I n = I.id I[K,Π, P]
I:t/n- I[K,Π, P ′]

I[K,Π, P]
τ- I[K′,Π, P ′]

(lget)

K 	 t = K′ Π,J ` I : t /̄J

J [K,Π, P]
I:t /̄J- J [K′,Π, P]

(accget)

S1
I:t/n- S′1 S2

I:t /̄J- S′2 J .id = n ens(I,J)⇒ λ = τ, λ = I � J

S1 ‖ S2
λ- S′1 ‖ S′2

(syncget)

K ` t Π, I ` I : t J̄ I n = I.id I[K,Π, P]
I:tJn- I[K,Π, P ′]

I[K,Π, P]
τ- I[K,Π, P ′]

(lqry)

S
I:tJn- S′ n = I.id
S
I:tJsuper- S′

(superqry)

K ` t Π,J ` I : t J̄J

J [K,Π, P]
I:t J̄J- J [K,Π, P]

(accqry)

S1
I:tJn- S′1 S2

I:t J̄J- S′2 J .id = n ens(I,J)⇒ λ = τ, λ = I � J

S1 ‖ S2
λ- S′1 ‖ S′2

(syncqry)

S1
I:tJsuper- S′1 S2

I:t J̄J- S′2 I |= J .ensemble J |= I.membership

S1 ‖ S2
τ- S′1 ‖ S′2

(syncqry-g)

Table 10: Semantics of systems: labeled transition relation, part I (symmetric of rules (syncget), (sync-
qry) and (syncqry-g) omitted)

(accputenssucc) and (accputensfail) that have complementary premises. This guarantees that whenever
a component with interface I wants to add an item t to the repositories of all the ensembles which it
is part of, all (and only) such ensembles effectively add it to their repository.

Now, the transition system defining the semantics of generic systems is essentially the same as the
one for the simpler calculus. Only we have to consider that computation steps may additionally be of

ASCENS 26

D1.1: First Report on WP1 (Final) November 15, 2011

K ⊕ t = K′ Π, I ` I : t .̄ I n = I.id I[K,Π, P]
I:t.n- I[K,Π, P ′]

I[K,Π, P]
τ- I[K′,Π, P ′]

(lput)

K ⊕ t = K′ Π,J ` I : t .̄J

J [K,Π, P]
I:t .̄J- J [K′,Π, P]

(accput)

S1
I:t.n- S′1 S2

I:t .̄J- S′2 J .id = n ens(I,J)⇒ λ = τ, λ = I � J

S1 ‖ S2
λ- S′1 ‖ S′2

(syncput)

K ⊕ t = K′ Π,J ` I : t .̄ ? I |= J .ensemble J |= I.membership

J [K,Π, P]
I:t .̄ ?- J [K′,Π, P]

(accputenssucc)

Π,J 6` I : t .̄ ? ∨ I 6|= J .ensemble ∨ J 6|= I.membership

J [K,Π, P]
I:t .̄ ?- J [K,Π, P]

(accputensfail)

S1
I:t.super- S′1 S2

I:t .̄ ?- S′2

S1 ‖ S2
I:t.super- S′1 ‖ S′2

(syncputens)

S
I�J- S′ I ∈ I ′ ∧ J ∈ I ′ Π, I ′ ` I � J

I ′[K,Π, P] ‖ S τ- I ′[K,Π, P] ‖ S′
(enscomm)

S1
λ- S′1 λ 6= I : t .̄ ? λ 6= I : t . super

S1 ‖ S2
λ- S′1 ‖ S2

(async)

S1
I:t .̄ ?- S′1 S2

I:t .̄ ?- S′2

S1 ‖ S2
I:t .̄ ?- S′1 ‖ S′2

(sync)

Table 11: Semantics of systems: labeled transition relation, part II (symmetric of rules (syncput),
(syncputens), (enscomm), (async) and (sync) omitted)

the form S
I:t.super- S′ and thus we need to transform them into transitions of the form S �−→ S′.

ASCENS 27

D1.1: First Report on WP1 (Final) November 15, 2011

S
τ- S′

(res-tau)
(νn̄)S �−→ (νn̄)S′

S
I:t.super- S′

(res-super)
(νn̄)S �−→ (νn̄)S′

(νn̄, n′′)(S1 ‖ S2{n′′/n′}) �−→ S′ n′′ fresh
(res-top-r)

(νn̄)(S1 ‖ (νn′)S2) �−→ S′

(νn̄, n′′)(S1{n′′/n′} ‖ S2) �−→ S′ n′′ fresh
(res-top-l)

(νn̄)((νn′)S1 ‖ S2) �−→ S′

Table 12: Semantics of systems: transition relation

11 Work Plan for Year Two

The work description of the technical Annex relative to WP1, mainly concerned with the development
of SCEL, mentions four main lines of research that concern the modeling of:

1. The behaviors of components and their ports and their interactions;

2. The topology of the network needed for interaction, taking into account resources, locations and
visibility/reachability issues;

3. The environment where components operate and resource-negotiation takes place, taking into
account open ended-ness and the need of adaptation;

4. The global knowledge of the systems together with the description of the tasks to be accom-
plished by the different ensembles, the properties to be guaranteed and the constraints to be
respected.

During the first year, we have concentrated on the first two research items. In the second year
we will, on the one hand, assess and improve the work relative to them and, on the other hand, start
tackling the other two research items.

In particular, we will continue with the work on different interaction policies and we will consider
the outcome of WP5 and study the possibility of taking an approach similar to the one followed in BIP
for modeling synchronization and communication.

To experiment with different models of knowledge and with different mechanisms for knowledge
handling, we will consider different kinds of knowledge repositories based, e.g., on concurrent con-
straints or on unification. While, to model components and ensembles goals, we will study the impact
of the knowledge representation languages and of the handling mechanisms developed in WP3.

To improve components sensitivity and adaptivity to the environment, we will experiment with
the adaptation patterns designed in WP4. While, to deal with resources negotiations and uncertain
behaviors and to guide components strategies, we will consider stochastic variants of the language
and will explore the possibility of using probabilistic model checking to help support components in
taking decisions.

All this blending will be supported and validated by the throughout use of the foundational models
developed in WP2, that will be used prescriptively to assess our design choices. Moreover, our linguis-
tic choices will be validated by using as testbeds the three case studies considered in WP7, dealing with

ASCENS 28

D1.1: First Report on WP1 (Final) November 15, 2011

different application domains: Robotics (collective transport), Cloud-computing (transiently available
computers) and e-Mobility (cooperative e-vehicles).

Of course, this process might require tuning the language features and its enrichment with con-
structs to support architectural descriptions. Once the language will be considered sufficiently stable,
we shall start with its implementation, possibly by exploiting the distributed software framework IMC
developed in previous EU projects. The actual implementation, possibly together with programming
supporting tools, will be developed in collaboration with WP6. In parallel with the implementation of
the language, we will proceed with the development of software tools, or with the tuning of existing
ones, in order to provide the necessary software support to formal reasoning on systems behavior,
and for establishing qualitative and quantitative properties of both the individual components and the
ensembles.

ASCENS 29

D1.1: First Report on WP1 (Final) November 15, 2011

References

[BCG+11] Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch Lafuente, and Andrea
Vandin. A conceptual framework for adaptation. Manuscript, 2011.

[DFP98] Rocco De Nicola, GianLuigi Ferrari, and Rosario Pugliese. Klaim: A Kernel Language
for Agents Interaction and Mobility. IEEE Trans. Software Eng., 24(5):315–330, 1998.

[DGP06] Rocco De Nicola, Daniele Gorla, and Rosario Pugliese. On the expressive power of
klaim-based calculi. Theor. Comput. Sci., 356(3):387–421, 2006.

[GP09] Daniele Gorla and Rosario Pugliese. Dynamic management of capabilities in a network
aware coordination language. J. Log. Algebr. Program., 78(8):665–689, 2009.

[HRW08] Matthias Hölzl, Axel Rauschmayer, and Martin Wirsing. Software engineering for en-
sembles. In Software-Intensive Systems and New Computing Paradigms, pages 45–63.
Springer, 2008.

[IBM05] IBM. An architectural blueprint for autonomic computing. Technical report, June 2005.
Third edition.

[MPW92a] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I. Inf.
Comput., 100(1):1–40, 1992.

[MPW92b] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, II.
Inf. Comput., 100(1):41–77, 1992.

[Plo04] Gordon D. Plotkin. A structural approach to operational semantics. J. Log. Algebr. Pro-
gram., 60-61:17–139, 2004.

[Sch00] Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur., 3(1):30–
50, 2000.

[SGP11] Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. Context-oriented programming:
A programming paradigm for autonomic systems. CoRR, abs/1105.0069, 2011.

[Win86] Glynn Winskel. Event structures. In Wilfried Brauer, Wolfgang Reisig, and Grzegorz
Rozenberg, editors, Advances in Petri Nets, volume 255 of Lecture Notes in Computer
Science, pages 325–392. Springer, 1986.

ASCENS 30

	Introduction
	SCEL: design principles
	SCEL: syntax
	Interfaces
	Ensembles
	SCEL: operational semantics
	Operational semantics of processes
	Operational semantics of systems

	Interaction Predicates
	How to `cook' your own SCEL dialect
	Adaptation in SCEL
	Extending SCEL with ensemble-wide broadcast communication
	Operational semantics of processes
	Operational semantics of systems

	Work Plan for Year Two

