
www.ascens-ist.eu

ASCENS
Autonomic Service-Component Ensembles

D2.1: First Report on WP2
Enhanced Connectors, Resource-Aware Operational Models

and the Negotiate-Commit-Execute Schema and its Foundations

Grant agreement number: 257414
Funding Scheme: FET Proactive
Project Type: Integrated Project
Latest version of Annex I: 7.6.2010

Lead contractor for deliverable: UNIPI
Author(s): S. Bensalem (UJF-Verimag), M. Boreale & M. Loreti (UDF),
R. Bruni & A. Corradini & F. Gadducci (ed.) & U. Montanari & M.
Sammartino (UNIPI), M. G. Buscemi & R. De Nicola & A. Lluch Lafuente
& A. Vandin (IMT), G. Cabri (UNIMORE), D. Latella & M. Massink (ISTI),
M. Hölzl (LMU)

Due date of deliverable: September 30, 2011
Actual submission date: November 15, 2011
Revision: Final
Classification: PU

Project coordinator: Martin Wirsing (LMU)
Tel: +49 89 2180 9154
Fax: +49 89 2180 9175
E-mail: wirsing@lmu.de

Partners: LMU, UNIPI, UDF, Fraunhofer, UJF-Verimag, UNIMORE,
ULB, EPFL, VW, Zimory, UL, IMT, Mobsya, CUNI

D2.1: First Report on WP2 (Final) November 15, 2011

Executive Summary

In this deliverable, we report on the WP2 activities conducted in months 1–12.
In Task 2.1 our results advanced the theoretical foundations of connectors and their distributed

implementation, and the use of process calculi for resource-aware networks and stochastic systems.
In Task 2.2 we tackled the issue of formal models of autonomic systems by proposing a calculus

for contract distillation by distributed synthesis designed along the Negotiate-Commit-Execute (NCE)
scheme of interaction, a general system model for ensembles (GEM) and a definition of “black-box”
adaptation based on this model, and a conceptual framework for “white-box” adaptation, conceived
around a prominent role of clearly and neatly identified control data: computational data that govern
the execution and are conveniently managed to enact adaptive behaviors.

In Task 2.3 we formalized and investigated emerging behaviors of autonomic systems by applying
game paradigms in service composition and developing coalgebraic techniques for dynamic systems.

The content of the deliverable is organized around the above structure of themes.

ASCENS 2

D2.1: First Report on WP2 (Final) November 15, 2011

Contents

1 Introduction 5

2 On Task 2.1: Resource-aware operational models 6
2.1 Task 2.1: strand on Foundations of resource-aware connectors 6

2.1.1 Connectors for P/T nets and BIP (Task 2.1) 8
2.1.2 The dynamic component-based framework Dy-BIP (Task 2.1) 10

2.2 Task 2.1: strand on Advanced models of networking middleware 12
2.2.1 A framework for resource-aware process calculi (Task 2.1) 13
2.2.2 State to function LTSs for stochastic process calculi (Task 2.1) 15

3 On Task 2.2: Adaptive SCs: building emergent behavior from local/global knowledge 16
3.1 Task 2.2: strand on Contract distillation by distributed synthesis 16

3.1.1 Constraints for service contracts (Task 2.2) 16
3.2 Task 2.2: strand on Conceptual models for autonomicity 19

3.2.1 GEM: A General Model for Ensembles and Black-Box Adaptation (Task 2.2) 19
3.2.2 White-Box Adaptivity: A conceptual framework (Task 2.2) 22

4 On Task 2.3: Modeling SCEs with collaborative and competitive behavior 24
4.1 Task 2.3: strand on Game paradigms for service composition 24

4.1.1 A game-theoretic model of Grid systems (Task 2.3) 25
4.1.2 Smart meter aware domestic energy trading agents (Task 2.3) 26

4.2 Task 2.3: strand on Coalgebraic techniques for dynamical systems 26
4.2.1 A coalgebraic view on Resource Aware operational models (Task 2.3) 27

ASCENS 3

D2.1: First Report on WP2 (Final) November 15, 2011

ASCENS 4

D2.1: First Report on WP2 (Final) November 15, 2011

1 Introduction

During months 1–12, we have been working on all of the three tasks connected to the work package
2. We summarize below our contributions to the package: a more detailed description for the contri-
butions to each tasks, as well as a larger reporting of each line of research, can be found in subsequent
sections. For each of the tasks the activities can be roughly divided along two main strands of research.

Task 2.1 (Resource-aware operational models) The overall aim of the task is concerned with “the
study of resource-aware infrastructures and networking middleware modeled in terms of advanced
components, glues and connectors which can support different levels of guarantees, reliability, dy-
namicity and integration to heterogeneous components.”

Along those lines, for the advances occurred in the first year we identified two main lines of
research. Some of the more mature work concerned the strand on Foundations of resource-aware
connectors. One of the aims of the task was to overcome the fragmentation in the body of knowledge
and the different notions and terminologies involving connectors. We thus proceeded to overview and
compare some of the most notable theories, defining mutual embeddings and planning enhancements.
We then tackled the specific case of our main component framework, based on BIP. As promised, a
theory for its distributed implementation has been developed: its main results are reported here.

The activities in the second strand has concerned Advanced models of networking middleware, the
emphasis being put on the development of novel frameworks based on process calculi. So, we pro-
posed a network-aware extension of classical π-calculus (NCPi), whose syntax allows expressing the
creation and the activation of connections, and whose semantics shows multisets of routing paths that
are covered concurrently. Also, we addressed the development of a uniform framework for stochastic
calculi, in order to provide a general, SOS-like language definitions for the class of transition system
with multiplicity, in relation with the rate condition principle of Continuous Time Markov Chains.

Task 2.2 (Adaptive SCs: building emergent behavior from local/global knowledge) The research
on this task should be concerned with the “develop[ment of] robust mathematical foundations for
interaction scenarios [...] address[ing] models that can favor a mixture of static and dynamic analysis
tools by adhering to the NCE schema”.

At the end of the first year, also the work on this task has two different facets. Concerning the
development of models for interaction scenario that adhere to the Negotiate-Commit-Execute (NCE)
schema, we focused on Contract distillation by distributed synthesis, by proposing a calculus where
the distillation of the contract in a client-server scenario can be obtained by composing the distributed
information provided directly by each participant. The addressing of such a distillation was explic-
itly mentioned in the Description of Work. On a more foundational issue, we planned to tackle the
identification of Conceptual models for autonomicity. More specifically, in order to characterize the
core nucleus identifying emergent behavior, we presented two frameworks for adaptivity. The first
one is concerned with “black-box” adaptation and based on the denotational GEM system model for
ensembles. Black-box adaptation describes how well a system can perform in various environments
without looking at the internal mechanisms used to achieve adaptation. The second framework is
focused on the mechanics of adaptation and conceived around a prominent role of control data: com-
putational data that are managed to enact adaptive behaviors. Most programming paradigms proposed
for adaptive computation are shown to fit within these two frameworks.

Task 2.3 (Modeling SCEs with collaborative and competitive behavior) The research on this last
task has the ambition of “develop[ing] a theory combining as much as possible the flexibility and
compositionality of computer science semantic models with the expressiveness of models developed

ASCENS 5

D2.1: First Report on WP2 (Final) November 15, 2011

by economic theorists”, possibly with an in-depth analysis of the “adapt[ion] and re-use in this context
many [of] co-algebraic tools well-known for ordinary transition systems”.

Also this task has two different prongs. On the one hand we report on the application of Game
paradigms for service composition. At first, a repeated non-cooperative job scheduling game has been
investigated, whose players are Grid sites and whose strategies are scheduling algorithms, showing
whether different strategies may reach a Nash equilibrium or not. Also, the application of adaptation in
service composition was investigated, as represented by a peer-to-peer energy management scenario.
The latter is modeled by exploiting an instance of the minority game (a family of games where the
choice of the minority wins): the system was implemented by Jade, and its outcome assessed.

On the other hand, we describe more foundational contributions focusing on Coalgebraic tech-
niques for dynamical systems. Referring to analysis tools mentioned in the Description of Work, it
pushed the coalgebraic view of weighted automata: a generalization of non-deterministic automata
where each transition has also a quantity expressing the cost of its execution, drawn from a semiring.

2 On Task 2.1: Resource-aware operational models

As we already mentioned, for the advances occurred in the first year in Task 2.1we focused on two
main lines of research. The first concerns the Foundations of resource-aware connectors, addressing
the fragmentation in the body of knowledge and the many different notions and terminologies involv-
ing connectors, as well as the development of a suitable paradigm for distributed connectors. The other
focused on Advanced models of networking middleware, the emphasis being put on the development
of novel frameworks based on process calculi.

2.1 Task 2.1: strand on Foundations of resource-aware connectors

Software architectures are essential for mastering the complexity of systems and easing their analysis.
They allow a separation between the detailed behavior of components and their overall coordination.
Coordination is often expressed by constraints that define possible interactions between components.

The term connector denote entities that can regulate the interaction of a collection of compo-
nents [PW92]. In fact, component-based design relies on the separation of concerns between coor-
dination and computation: the components are loosely coupled sequential computational entities that
come equipped with a suitable interface (e.g. comprising the number, kind and peculiarities of com-
munication ports) and the connectors can be regarded as (suitably decorated) links between the ports
of the components. Semantically, each connector can impose suitable constraints on the communica-
tions between the components it links together (e.g. handshaking, broadcasting, multicasting). Then,
the evolution of an ensemble can be seen as if played in rounds: at each round, the components try to
interact through their ports and the connectors allow/disallow some of the interactions selectively.

Foundations of connectors Recent years witnessed the development of different mathematical frame-
works that are used to specify, design, analyze, compare, prototype and implement suitable connectors.
A rigorous mathematical foundations is crucial for the analysis of coordinated distributed systems, and
recent years have witnessed an increasing interest about a rigorous modeling of (different classes of)
connectors. Due to the high dynamicity of autonomic component ensembles, more powerful classes
of connectors are needed than those available in the literature, to be empowered with mechanisms for
resource- and network-awareness (the behavior of a connector may depend on the links it is tied to,
e.g. for optimizing the routing of messages), as well as adaptation, reflection and reconfigurability.

One of the main limitations of the state-of-the-art theories of connectors is the lack of a refer-
ence paradigm for describing and analyzing the information flow to be imposed over components

ASCENS 6

D2.1: First Report on WP2 (Final) November 15, 2011

for proper coordination. Such a paradigm would allow designers, analysts and programmers to rely
on well-founded and standard concepts instead of using all kinds of heterogeneous mechanisms, like
semaphores, monitors, message passing primitives, event notification, remote call, etc. Moreover, the
reference paradigm would facilitate the comparison and evaluation of otherwise unrelated architectural
approaches as well as the development of code libraries for distributed connectors. To some extent,
the reference paradigm could thus play the role of a unifying semantic framework for connectors.

Concerning the fragmentation issue, during the first year we overviewed and compared some no-
table theories of connectors, defined some mutual embeddings and planned some possible enhance-
ments. Our results suggest that the tile model can provide a suitable semantic framework for con-
nectors, thanks to its generality and flexibility. In fact it helped relating several formal frameworks
of connectors that are otherwise very different in style and nature (CommUnity, Reo, Petri nets with
boundaries, wire calculus). First, the tile model can naturally account for several forms of dynamicity
in the otherwise static structure of connectors. Moreover, we believe that when the algebraic properties
offered by the tile model are missing, then it becomes cumbersome to account for concurrency aspects
in a standard, reliable manner. Finally, while compositionality often needs ad hoc proofs when other
approaches are considered, in the case of the tile model, it can be expressed in terms of the congruence
result for tile bisimilarity and it can be guaranteed by the format in which basic tiles are presented.

Foundations of dynamic architectures There exists a large number of formalisms supporting a
concept of architecture, including software component frameworks, systems description languages
and hardware description languages. Despite an abundant literature and a considerable volume of
research, there is no agreement on a common concept of architecture, while most definitions agree on
the core e.g. diagrammatic representations by using connectors. This is due to two main reasons.

The first is the lack of rigorous operational semantics defining architectures via composition op-
erators, i.e., the behavior of a composite component is inferred from the behavior of its constituents
by applying architectural constraints. For existing component frameworks, the definition of rigorous
operational semantics runs into many technical difficulties. They fail to clearly separate between be-
havior of components and architecture. Connectors are not just memoryless switching elements. They
can be considered as special types of components with memory e.g. fifo queues and specific behavior.
Another difficulty stems from verbose architecture definitions e.g. by using ADLs [MT97], that do not
rely on a minimal set of concepts. Such definitions are hardly amenable to formalization. Finally, some
frameworks [GMW97] use declarative languages to express global architecture constraints which are
useful for checking correctness but cannot provide a basis for defining operational semantics.

The second is the distinction between static and dynamic architectures. Usually, hardware and
system description languages rely on static architecture models. The relationships between compo-
nents are known at design time and are explicitly specified as a set of connectors defining possible
interactions. Dynamic architectures are needed for modeling reconfigurable systems or systems that
adapt their behavior to changing environments. They are defined as the composition of dynamically
changing architecture constraints offered by their constituent components. Filling the gap between
static and dynamic architecture models raises a set of interesting problems. In principle, dynamic ar-
chitecture models are more general: each configuration corresponds to a static architecture model. Is
it possible to define a dynamic architecture modeling language as an extension of a static architecture
modeling language? Furthermore, if we restrict to systems with a finite - although potentially large
- set of possible configurations, any dynamic architecture model can be translated into a static archi-
tecture model. Such a translation can yield very complex static architecture models. As a rule, using
dynamic architectures may lead to more concise models. However, static architecture models can be
executed more efficiently thanks to the global knowledge of connectors [ADG98].

ASCENS 7

D2.1: First Report on WP2 (Final) November 15, 2011

2.1.1 Connectors for P/T nets and BIP (Task 2.1)

During the first year of the project the research on the foundations of connectors looked for a suitable
general framework for their description, moving from Petri nets towards tiles.

Petri nets for BI(P) We investigated the expressive power of BIP w.r.t. different classes of con-
nectors in the literature. The main contribution shows that BI(P), the BIP component framework
without priorities, is as expressive as the Petri nets with boundaries, introduced by Pawel Sobocinski
in [Sob10]. As a byproduct of [Sob09], BI(P) is also equivalent to the so-called Petri calculus, a
dialect of the wire-calculus [Sob09], which thus provides a basic process algebra for BI(P) systems.

Technically speaking, the contribution in [Sob10] can be summarized as follows. Nets with bound-
aries are first introduced, taking inspiration from the open nets of [BCEH05]. Nets with boundaries
can be composed in series and in parallel and come equipped with a labeled transition system that
fixes their operational and bisimilarity semantics. Then, a suitable instance of the wire calculus
from [Sob09] is presented, called Petri calculus, that roughly models circuit diagrams with one-place
buffers and interfaces. The first result enlightens a tight semantics correspondence: it is shown that a
Petri calculus process can be defined for each net such that the translation preserves and reflects op-
erational semantics (and thus also bisimilarity). The second result provides the converse translation,
from Petri calculus to nets, which requires some technical ingenuity.

Another contribution has been the generalization of the work in [Sob10] carried out in [BMM11a],
where it is shown that if the tile model is used in place of the wire calculus then the translation from
Petri calculus to nets becomes simpler and that the main results of [Sob10] can be extended to P/T Petri
nets with boundaries, where arcs are weighted and places can contain more than one token. The results
in [Sob10, BMM11a] are particularly significant because they provide, for the first time, a minimal
algebra of (P/T) Petri nets, a task that has been attempted several times in the past, but typically lead
to cumbersome models or to frameworks allowing to build terms with no (P/T) Petri net counterpart.

Finally, we have exploited the tile model as a unifying framework to compare BI(P) with other
models of connectors and to propose suitable enhancements of BI(P).

The research thread illustrated above stem from previous work on stateless connectors. We recall
that a connector is called stateless when the interaction constraints it imposes over its ports stays the
same at each round; it is called stateful otherwise. In [BLM06], an algebra of stateless connectors
was presented that was inspired by previous work on simpler algebraic structures [BGM02, Ste98].
It consists of five kinds of basic connectors (plus their duals), namely symmetry, synchronization,
mutual exclusion, hiding and inaction. The connectors can be composed in series or in parallel. The
operational, observational and denotational semantics of connectors are first formalized separately
and then shown to coincide. Moreover, a complete normal-form axiomatization is available for them.
These networks are quite expressive: for instance it is shown [BLM06] that they can model all the
(stateless) connectors of the architectural design language CommUnity [FM97].

In [Sob10, BMM11a] the algebra of stateless connectors is extended with two constants, repre-
senting the empty/filled one-position buffer, with the key difference that the semantics for the buffer
in [BMM11a] accommodates for the asynchronous reception (and storage) of an unbounded number
of data. A similar extension was available in [ABC+09], where it was used to relate Reo with tiles.

Reo [Arb04] is an exogenous coordination model for software components. Reo is based on
channel-like connectors that mediate the flow of data and signals among components. Notably, a
small set of point-to-point primitive connectors is sufficient to express a large variety of interesting
constraints over the behavior of connected components, including various forms of mutual exclu-
sion, synchronization, alternation, and context-dependency. Typical primitive connectors are the syn-
chronous / asynchronous / lossy channels and the asynchronous one-place buffer. They are attached

ASCENS 8

D2.1: First Report on WP2 (Final) November 15, 2011

(i)
◦

s //
a �� α

◦
b��

◦ t
// ◦

(ii)
◦ //

�� α

◦ //

�� β

◦

��
◦ // ◦ // ◦

(iii)

◦ //

�� α

◦

��
◦ //

�� β

◦

��
◦ // ◦

(iv)

◦ //

��

◦

��◦ //

��

◦

��

β

◦ // ◦
◦ //α

◦

Figure 1: Examples of tiles and their composition

to ports called Reo nodes. Components and primitive connectors can be composed into larger Reo
circuits by disjoint union up-to the merging of shared Reo nodes.

Summing up the results in [Sob10, BMM11a, BMM11b, ABC+09] we obtain an equivalence
between BI(P) and the subclass of Reo circuits with (one-bounded) one-position buffers, via mu-
tual encoding in the tile model. Notably, the basic set of connectors we need are the stateless ones
of [BLM06] plus one-position buffers.

Tiles for connectors The Tile Model [GM00, Bru99] offers a flexible semantic setting for concurrent
systems [MR99, FM00, BM02] and for defining the operational and abstract semantics of connectors.

The name ‘tile’ is due to the graphical representation of such rules (see Fig. 1). A tile α : s
a
−→
b

t

is a rewrite rule stating that the initial configuration s can evolve to the final configuration t via α,
producing the effect b; but the step is allowed only if the ‘arguments’ of s can contribute by pro-
ducing a, which acts as the trigger of α (see Fig. 1(i)). Triggers and effects are called observations
and tile vertices are called interfaces. Tiles express the reactive behavior of connectors in terms of
〈trigger, effect〉 pairs of labels. In this context, the usual notion of bisimilarity over the derived La-
beled Transition System is called tile bisimilarity. The algebra of stateless connectors in [BLM06] can
be regarded as a kind of tile model where all basic tiles have identical initial and final connectors.

Tiles compose horizontally, in parallel, or vertically to generate larger steps. Horizontal com-
position α; β coordinates the evolution of the initial configuration of α with that of β, yielding the
‘synchronization’ of the two rewrites (see Fig. 1(ii)). Horizontal composition is possible only if the
effect of α provides the trigger for β. Vertical composition is the sequential composition of computa-
tions (see Fig. 1(iii)). Parallel composition builds concurrent steps (see Fig. 1(iv)). Tile bisimilarity is a
congruence (w.r.t. series and parallel composition) when a simple format is met by basic tiles [GM00].

Roughly, the semantics of component-based systems can be expressed via tiles when: i) compo-
nents and connectors are equipped with sequential composition s; t (defined when the output interface
of s matches the input interface of t), with identities for each interface and with a monoidal tensor
product s ⊗ t (associative, with unit and distributing over sequential composition); ii) observations
have analogous structure a; b and a ⊗ b. Technically, we require that configurations and observations
form two monoidal categories with the same underlying monoid of objects.

Related works The problem of interpreting BIP interaction models (i.e., the second layer of BIP) in
terms of connectors has been addressed for the first time in [BS08a], where BIP interaction is described
as a structured combination of two basic synchronization primitives between ports: rendezvous and
broadcast. In this approach, connectors are described as sets of possible interactions among involved
ports. In particular, broadcasts are described by the set of all possible interactions among participating
ports and thus the distinction between rendezvous and broadcast becomes blurred. The main drawback
of this approach is that it induces an equivalence that is not a congruence. The paper [BS10] defines a
causal semantics that does not reduce broadcast into a set of rendezvous and tracks the causal depen-
dency relation between ports. This is shown to correspond to the Algebra of Causal Interaction Trees,
that comprises a causality operator and a parallel composition operator. In the initial model, terms are

ASCENS 9

D2.1: First Report on WP2 (Final) November 15, 2011

sets of trees, where the successor relation represents causal dependency between interactions. Notably,
the causal semantic equivalence is a congruence w.r.t. such two operations.

Conclusions and on-going work The comparison between the Petri calculus and the tile model led
us to infer that the tile vertical composition is better suited than the one in the Petri calculus (and more
generally in the wire calculus) when concurrent systems are considered. Technically, the difference
relies in the vertical tile composition being monoidal, while this is not so for the wire calculus.

Some interesting research avenues for future work are (i) the comparison between Reo and BIP
connectors, in particular, the study of suitable extensions of BIP interaction model accounting for
stateful connectors; (ii) the representation of priorities in approaches such as the algebra of connectors
and the tile model; and (iii) the identification of suitable classes of connectors with link creation and
consumption along the lines of [BM02].

2.1.2 The dynamic component-based framework Dy-BIP (Task 2.1)

In the past year we proposed the Dy-BIP component framework based on rigorous operational seman-
tics for modeling both static and dynamic architectures. Dy-BIP can be considered as an extension of
the BIP language for the construction of composite hierarchically structured components from atomic
components. These are characterized by their behavior specified as automata extended with data and
functions described in C. A transition of an automaton is labeled by a port name, a guard (boolean
condition on local data) and an action (computation on local data). In BIP, architectures are com-
position operators on components defining their interactions. An interaction is described as a set of
ports from different components. It can be executed if there exists a set of enabled transitions labeled
by its ports. The completion of an interaction is followed by the completion of the involved transi-
tions: execution of the corresponding actions followed by a move to the target state. An operational
semantics for BIP has been defined in [BBBS08]. It provides a basis for the implementation of an
execution Engine that orchestrates component execution. The Engine knows the set of the interactions
modeling the architecture. It executes cyclically and atomically the following three-step protocol: 1)
from a state each component sends to the Engine the ports of its enabled transitions; 2) the Engine
computes the set of feasible interactions (sets of received ports corresponding to some interaction); 3)
the Engine chooses non-deterministically one interaction amongst the feasible interactions by sending
back to the components the names of their ports involved in this interaction. Figure 2(a) illustrates
a statically defined architecture defined by interactions pq and qr. Its consists of three components
offering communications through ports p,q and r.

Architecture Constraints

p q q r

q rp

p q r

p q rp q q r

(a) Static architecture

r

p[Cp] q[Cq]

p q

r[Cr]

r

p qp q q r q

(b) Dynamic architecture

Figure 2: Static and dynamic architecture.

In contrast to BIP, the set of interactions characterizing architectures in Dy-BIP changes dynami-
cally with states. A port p has an associated architecture constraint Cp which describes possible sets of

ASCENS 10

D2.1: First Report on WP2 (Final) November 15, 2011

interactions involving p. Feasible interactions from a state are computed as solutions of the constraint
obtained as the conjunction of the constraints of all the enabled transitions. Figure 2(b) illustrates a
dynamic architecture with three components offering ports p, q and r with associated constraints Cp,
Cq and Cr. As for the static architecture of this figure, the possible interactions are pq and qr.

We provided a formalization of the operational semantics for Dy-BIP. Its implementation consists
of an execution Engine which as for BIP, orchestrates components by executing atomically a three-
step protocol. The protocol differs in that components send not only port names of enabled transitions
but also their associated architecture constraints.

Dy-BIP is an extension of BIP. A BIP model with a global architecture constraint C, can be rep-
resented as a Dy-BIP model such that the constraint Cp associated with a port p is the set of the
interactions of C involving p.

Dy-BIP allows modeling dynamic architectures as the composition of instances of component
types. For the sake of simplicity, we assume that there is no dynamic creation/deletion of component
instances. The main results are:

• Definition of a language for the description of architecture constraints. The language is expressive
and amenable to analysis and execution. It defines formulas of a first order logic allowing quantifi-
cation over component types. Formulas characterize sets of interactions. They involve port names
used as logical variables. Given a formula, a feasible interaction is any set of ports assigned true by
a valuation which satisfies the formula.

• Study of a semantic model and an associated modeling methodology for writing architecture con-
straints associated with ports. For a port p, the associated constraint is decomposed into a causal
constraint and a filter constraint. A causal constraint expresses three types of dependency character-
izing interaction between ports [BS08b]: “absence of dependency”, “must interact”, “may interact”.
In contrast to causal constraints which enforce interactions, filter constraints are invariants used to
discriminate undesirable configurations of a component’s environment.

• Implementation principles for Engines handling symbolic architecture constraints. The proposed
implementation is based on the resolution architecture constraints on the fly. The Engines use
efficient constraint resolution techniques based on BDDs. For a given model, quantifiers over com-
ponents can be eliminated and formulas become Boolean expressions on ports. Notice that, another
possible implementation could be done based on the resolutions of global architecture constraints
after translation into a static architecture model.

• Experimental results and benchmarks showing benefits of using dynamic architectures compared
to static architectures. We consider several examples showing that compositional modeling of dy-
namic architectures allows enhanced conciseness and rigorousness. In particular, it is possible to
master complexity of intricate dynamic interaction by focusing on the capabilities for interaction of
individual components.

In contrast to other frameworks [IW95, Mét98], Dy-BIP relies on a clear distinction between be-
havior and architecture as a set of stateless architecture constraints characterizing interactions. These
constraints are specified compositionally as the conjunction of individual architecture constraints of
components. Frameworks usually describe dynamic architectures as a set of global transitions be-
tween configurations. Only process algebras adopt a compositional approach: Nonetheless, they do
not encompass a concept of architecture as behavior and composition operators are intermingled.

Dy-BIP differs from other formalisms such as [MK96] in that it has rigorous operational semantics.
In [GMW97], a First order logic extended with architecture-specific predicates is used. How-

ever, there is no separation between two basic synchronization protocols (rendezvous and broadcast)

ASCENS 11

D2.1: First Report on WP2 (Final) November 15, 2011

whose combination is expressive enough to represent any kind of interaction and avoids the exhaustive
enumeration of all possible rendezvous [BS08a].

In [KG10], a dynamic architecture is defined as a set of global transitions between global con-
figurations, whereas in Dy-BIP the global configuration is computed at runtime from the local con-
straints of each component. Constraints in [KG10] are expressed in a First Order Logic extended
with architecture-specific predicates, whereas in Dy-BIP, constraints are stateless (they are based on
the boolean representation of causal rules [BS08b]) and take advantage of the stateful behavior of the
components by eliminating some of the undesirable global configurations implicitly.

In [BD07] an operational semantics is provided as well as the composition of global configurations
from local ones. It uses rewriting logic for representing dynamic systems using three forms of depen-
dencies between services (mandatory, optional and negative). Nonetheless, as dynamism is supported
only at the installation phase, they assume that each component provides many services all the time
without any notion of state on each component’s behavior.

Other formalisms provide dynamism only at the deployment phase as they focus on enabling the
modification of components without taking off-line the whole system [BCDW04]. Although Dy-BIP
does not support the creation/deletion of components, this functionality can be achieved by using a
pool of components and writing the constraints that provide at runtime the interactions with compo-
nents of the right component type.

2.2 Task 2.1: strand on Advanced models of networking middleware

Traditional formalisms for the description of distributed systems, such as the π-calculus, abstract away
details of the communication infrastructure. This is not adequate for systems where behavior depends
on various kinds of resources, such as swarm intelligent systems, where agents must take into account
the available resources (e.g. amount of battery charge, signal strength. . .) when planning their actions,
or cloud computing systems, made of infrastructural elements with different policies, bandwidth and
access rights. Robot ensembles are examples of the former kinds of systems: robots communicate
through the ad-hoc wireless network they form; this network may change whenever the quantity of
resources available to robots changes, e.g. a robot may stop communicating due to low battery charge.

The need to capture a wide range of resources in the same theoretical framework led us to con-
sider presheaf models, categorical models where the structure of resources is decoupled from the way
resources are used, namely: resources and their operations form a category C, and the abstract syntax
and semantics are given in terms of functors from C to the category S et that associate resources with
the processes using them and with the behavior enabled by that quantity of resources.

The efficient treatment of resources is a key issue in verification, because the number of states
can become infinite when fresh resources are produced. Presheaf models are not finitistic, but coal-
gebras over a broad class of presheaves can be implemented as HD-automata [CM10, CKM10], more
concrete operational models that allows for name deallocation and hence are suitable for verification.

In months 1–12, first we considered presheaf models, that are algebraic/coalgebraic categorical
models where the structure of resources is decoupled from the way resources are used. Then we
defined a network-aware extension of the π-calculus (NCPi) [MS11], whose syntax allows expressing
the creation and the activation of connections, and whose semantics shows multisets of routing paths
that are covered concurrently. Finally, we investigated how NCPi relates to SCEL.

To integrate qualitative descriptions with quantitative ones in a uniform way within a single math-
ematical framework, in months 1–12 we have introduced a uniform framework for the definition of
Stochastic Process Calculi (SPCs). The framework is based on the notion of State to Function Labeled
Transition Systems (FuTSs) and allows for an SOS-like language definition, providing a simple and

ASCENS 12

D2.1: First Report on WP2 (Final) November 15, 2011

elegant solution to several issues typical of this class of languages. The approach has been applied to
the definition of significant fragments of major SPCs proposed in the literature.

The main aim of SPCs is the integration of qualitative descriptions with quantitative (especially
performance) ones in a single mathematical framework by building on the combination of Labeled
Transition Systems (LTSs) and Markov models—usually CTMCs. In a typical SPC, prefix-operators
are enriched with rates of exponentially distributed random variables (RVs) characterizing their dura-
tion. Although the same class of RVs is assumed in most SPCs, models and techniques underlying
such calculi turn out to be significantly different in many respects. Some differences are conceptual,
e.g. the process interaction paradigm, the association of rates with actions or not, the rate of synchro-
nizations. Other differences, instead, are purely technical. The prominent example of such a situation
is the modeling of the CTMCs race condition principle and its relationship to transition multiplicity.

2.2.1 A framework for resource-aware process calculi (Task 2.1)

As a concrete case-study for our investigation, we defined a network conscious, proper extension of
the π-calculus, called NCPi [MS11]. In particular:

• We distinguish two types of names: sites, which are the nodes of the network, and links, named
connectors between pairs of sites. Sites are just atoms, e.g. a, links have the form lab, meaning
that there is a link named l between a and b. The syntax has new primitives for handling links and,
since it is no more required for processes to communicate on shared channels, an extended output
primitive is introduced that specifies not only the emission site but also the destination one.

• We provide two semantics: an interleaving one, inspired by the π-calculus early semantics, where
an observation is a sequence of links representing the observable part of a routing path, and a
concurrent one, where concurrent transmissions can be observed in the form of a multiset of paths.
Restricted connector names do not appear in the observations, which thus can possibly be as abstract
as in the π-calculus.

• The behavioral equivalence in the interleaving case is not preserved by the input prefix, as in the
π-calculus, but in the concurrent case it is preserved by all operators, hence it is a congruence. This
is because the concurrent semantics provides more observations than the interleaving one, resulting
in a finer, compositional bisimilarity.

Now we give an overview of NCPi through a motivating example. We consider the system made of
a network manager M, using a reserved site m, and two processes p and q, which access the network
respectively through the sites a and b. The manager is the only entity that can create new links and
grant access to them. The process p wants to send a message to q, but we assume that there are no
links between a and b allowing p and q to communicate. The processes are

M = m(x).m(y).(lxy)(mxlxy.M) q = b(x).q′

p = ama.amb.a(l(xy)).L(lxy) | abc.p′ L(lxy) = lxy.L(lxy)

M receives two sites at m, creates a new link between them and sends this link from m to the first of
the received sites. The process p has two components: the first component sends a and b from a to
m, waits for a link at a and then activates a (persistent) transportation service over this link, which can
be used by the other component; the second component sends c from a to b. The process q simply
waits for a datum at b. Finally, the process L repeatedly activates a transportation service over its
argument: this is necessary, because transportation services can only be used once. The whole system
is S = p | M | q | L(lam) | L(l′ma), where lam and l′ma are the links that p and M use to interact.

ASCENS 13

D2.1: First Report on WP2 (Final) November 15, 2011

We have that p, L(lam) and M can do the following transitions

p
•;ama
−−−−→ amb.a(l(xy)).L(lxy) | abc.p′ L(lam)

a;lam;m
−−−−−→ L(lam) M

mma;•
−−−−−→ m(y).(lay)malay.M

where •; ama represents the beginning of transmission as a path of length zero, analogous to the π-
calculus output action: the • on the left side indicates that the path can only extend rightward, i.e.
subsequent hops will be listed after • from left to right in the form of a sequence of links; the string
ama describes the path, telling (from left to right) the site where the datum is available, the destination
site and the datum. Symmetrically, mma; • means that a, which has destination m, is received at m
and then goes through a path of length zero; it is analogous to the π-calculus input action. The label
a; lam; m represents the activation of a transportation service over lam.

When these processes are put in parallel in S , the above paths can be concatenated, resulting in a
path that represents a complete transmission over lam

S
•;lam;•
−−−−−→ amb.a(l(xy)).L(lxy) | abc.p′ | m(y).(lay)(malay.M) | q | L(lam) | L(l′ma) .

As in the π-calculus, the transmitted datum, namely a, is not observable. Then, a sequence of possible
transitions after this one is:

· · ·
•;lam;•
−−−−−→ a(l(xy)).L(lxy) | abc.p′ | (lab)(malab.M) | q | L(lam) | L(l′ma) (transmission of b)
•;l′ma;•
−−−−−→ (lab)(L(lab) | abc.p′ | M) | q | L(lam) | L(l′ma) (lab scope extension, lab < f n(p′))
•;•
−−→ (lab)(L(lab) | p′ | M) | q′[c/x] | L(lam) | L(l′ma) (transmission of c)

Notice that the last transition hides the link used for transmission, namely lab, because it is restricted.
We just observe •; •, analogous to the π-calculus τ-action.

The concurrent semantics allows observing in parallel all the pieces of a path. We may e.g. observe
S doing •; ama | a; lam; m | mma; •, which represents a three-element multiset. These observations are
those making the behavioral equivalence on the concurrent semantics finer and compositional.

The major difference between NCPi and SCEL is the level of abstraction: SCEL is a paramet-
ric language, where many details are left unspecified, while NCPi focuses on a specific aspect of
distributed systems, i.e. their connectivity. Other aspects are compared in the following.

Communication paradigm. The SCEL core language adopts an asynchronous mechanism, even
if some level of synchrony can be recovered through interaction policies). On the contrary NCPi,
being based on the π-calculus, is synchronous, in the sense that communication involves a sender, a
receiver and transportation services providers, and the result of the synchronization of these processes
is observed as a single transition. However, in NCPi there is room for asynchronous variations. For
instance, we can think of a fully asynchronous version, based on the asynchronous π-calculus, where
the semantics shows single forwarding steps. Adapting the SOS rules is straightforward

abr
•;abr
−−−−→ 0

p
•;abr
−−−−→ p′ q

a;lac;c
−−−−→ q′

p | q
•;lac;•
−−−−→ cbr | p′ | q′

p
•;aar
−−−−→ p′ q

aar;•
−−−−→ q′

p | q
•;•
−−→ p′ | q′

Shifting from synchronous to asynchronous communication might have an impact on the theory, as
happens for the π-calculus. A further investigation is this direction has yet to be carried out.

Resources and their categorical model. In NCPi, the resources of a process are its networks nodes
and connections, corresponding to its free names. Modeling connections as names enables restriction
and extrusion to generate new network pieces. The network owned by a NCPi process can be seen as

ASCENS 14

D2.1: First Report on WP2 (Final) November 15, 2011

a graph, so (some subcategory of) the category of graphs is a candidate index category for presheaves.
The SCEL core language does not provide resource management functionalities, but we can imagine
that these will be part of some of its dialects, in the form of suitable policies and knowledge handling
mechanisms. These languages will then admit categorical models.

A network of robot communications Besides our motivating example, we are exploiting the use of
NCPi for modeling communication between robots. In fact, robots in an ensemble can be regarded as
nodes of an ad-hoc network, where two robots are connected if they are able to communicate directly
with each other. Communication to robots outside the signal range involves a chain of forwarding
between robots until the destination is reached. Translating to NCPi, we could have a process for
each robot, with the communication device being modeled as a subprocess activating transportation
services towards each other robot within the signal range.

Conclusions and on-going work We provided motivations for investigating a general framework for
resource-aware calculi. In particular, we considered presheaf models, that are algebraic/coalgebraic
categorical models where the structure of resources is decoupled from the way resources are used.
Then we presented NCPi, a network-aware extension of the π-calculus whose syntax allows expressing
the creation and the activation of connections, and whose semantics shows multisets of routing paths
that are covered concurrently. Finally, we described how NCPi relates to SCEL.

We plan to devise an asynchronous version and a presheaf model for NCPi, and investigate a
general preasheaf-based framework covering various kinds of resources. Finally, we want to apply
this framework to SCEL, as soon as resource management mechanisms will be explicitly specified.

2.2.2 State to function LTSs for stochastic process calculi (Task 2.1)

Several, significantly different, approaches have been proposed for handling transition multiplicity
correctly. In [DLLM09c], we proposed a variant of LTSs, namely Rate Transition Systems (RTSs),
as a tool for providing a uniform semantics to some of the most representative SPCs. In RTSs, a
transition is a triple of the form (P, α,P). The first and second components are as in LTSs, while the
third component P is the continuation function which associates a real non negative value to each
state P′. A non-zero value represents the rate of the exponential distribution characterizing the time
for the execution of the action represented by α, necessary to reach P′ from P via the transition. If, on
the other hand, P maps P′ to 0, then state P′ is not reachable from P via the transition.

To provide a uniform general account of the many SPCs proposed in the literature, we propose
State to Function Labeled Transition Systems, FuTSs for short, a natural generalization of RTSs. As
mentioned above, in RTSs, the co-domain of continuation functions is required to be the set of non-
negative real numbers, used as rates (or to represent non-reachability). In FuTSs the above constraint
is removed: the co-domains of the continuation functions are only required to be commutative semi-
rings, so that FuTSs are a generic framework. Let C stand for a commutative semi-ring and FTF(S ,C)
denote the class of total functions from set S to Cwith finite support. In the simplest case, an L-labeled
FuTS over C is a tuple (S , L,C,�) where S is a countable, non-empty, set of states, L is a countable,
non-empty, set of transition labels, C is a commutative semi-ring, and�⊆ S × L × FTF(S ,C) is the
transition relation. It is easy to see that standard CTMCs are isomorphic with total deterministic {δe}-
labeled FuTSs over R≥0, where the label δe denotes exponentially distributed random delay. Similarly,
by conventionally using the label π for denoting discrete random experiments, DTMCs are isomorphic
with total deterministic {π}-labeled FuTSs over [0, 1], where [0, 1] is an appropriate commutative
semi-ring built on the [0, 1] interval and every continuation P is a probability distribution function,
i.e. ⊕P = 1. RTSs coincide with total deterministic ∆A-labeled FuTSs over R≥0, for given action

ASCENS 15

D2.1: First Report on WP2 (Final) November 15, 2011

set A, with ∆A =def {δe
a | a ∈ A} (where δe

a means that action a has exponentially distributed
duration). Finally, the model of Interactive Markov Chains [Her02], where non-deterministic behavior
is integrated with the stochastic one, is isomorphic with total deterministic ({δe} ∪ A)-labeled FuTS
over {R≥0,B}, where, of course, we assume δe < A—in this last case we used the general definition of
FuTS, which allows the use of finite families of commutative semi-rings.

A rich set of operators on FTF(S ,C) is available, such as pointwise definition [s1 7→ γ1, . . . , sm 7→

γm]C, addition (P + Q) s =def (P s) +C (Q s), summation ⊕P =def
∑

s∈S (P s) and sev-
eral multiplications. The definition of the FuTS operational semantics of SPCs are heavily based on
FTF(S ,C)-operators, in an SOS-like style, making the framework simple, powerful and elegant.

Conclusions and on-going work A uniform framework for the definition of Stochastic Process Cal-
culi [HHK02] has been introduced, as detailed in [DLLM11], while earlier work of the authors can be
found in [DLLM09a, DLLM09b, DLLM09c]. The framework is based on the notion of State to Func-
tion Labeled Transition Systems and allows for an SOS-like language definition, providing a simple
and elegant solution to several issues typical of this class of languages, e.g. transition multiplicity in
relation with the rate condition principle of Continuous Time Markov Chains.

We plan to apply the State to Function Transition Systems framework to the definition of quanti-
tative extensions of the ASCENS language, SCEL, with particular emphasis on stochastically timed
dialects. Furthermore, we are interested in investigating on a co-algebraic view of FuTSs.

3 On Task 2.2: Adaptive SCs: building emergent behavior from lo-
cal/global knowledge

In the Introduction we wrote that the research on this task should be concerned with the “develop[ment
of] robust mathematical foundations for interaction scenarios [...] address[ing] models that can favor
a mixture of static and dynamic analysis tools by adhering to the NCE schema”.

At the end of the first year, also the work on this task shows two different facets. One concerns
the development of models for interaction scenarios that adhere to the NCE schema, and it focused on
Contract distillation by distributed synthesis. On a more foundational issue, the identification of Con-
ceptual models for autonomicity was planned, and two frameworks for different views of adaptivity
were proposed.

3.1 Task 2.2: strand on Contract distillation by distributed synthesis

This facet of the task, reported in §3.1.1, addresses client-service interactions distinguishing between
three phases: Negotiate, Commit and Execute. The participants negotiate their behaviors, and if an
agreement is reached they commit and start an execution which is guaranteed to respect the interaction
scheme agreed upon. These ideas are materialized via a calculus of contracts enriched with semiring-
based constraints [BCDM11], which allow clients to choose services and to interact safely with them.
A concrete representation of these constraints with logic programs is straightforward, reducing con-
straint solution (and thus the establishment of a contract) to the execution of a logic program.

3.1.1 Constraints for service contracts (Task 2.2)

Interaction scenarios that are characterized by highly dynamic, autonomic components are not easily
verifiable, because of the difficulty of correctly designing communication protocols. Very successful
has been the decision to abstract away from the actual data and their algorithmic complexity, and to
focus on communication properties. Typically, the number of states of a system becomes finite (while

ASCENS 16

D2.1: First Report on WP2 (Final) November 15, 2011

possibly very large) and verification techniques based on model checking and static analysis become
feasible, and quite effective. The typical property to check is lack of deadlock, more precisely, stuck-
freedom [RR02]: there are no messages waiting forever to be sent or sent messages which are never
received, thus assuring that the interaction between partners will successfully end. The key idea is
to associate to a process an abstract description of its behavior, and to check if the pairs of processes
which are expected to communicate do match. The most common styles used to model abstract process
behaviors are session types (originally introduced in [THK94]) and behavioral contracts [CGP09].
The extended version of [CDCP11] discusses several different approaches to the global and local
descriptions of communication protocols. We criticize the existing approaches on two grounds. The
first problem is that the result of the static analysis is on-off: either the interaction is acceptable or
not. The second problem is that the verification process must be repeated for every pair of partners. It
would be more convenient to split it into two parts: a compilation step, to be executed at deployment
time, where the abstract behavior is determined, and a matching step to be executed at run time, for
every pair of partners willing to communicate. We believe that an approach based on constraints
would be able to overcome these difficulties: (i) the compilation step should generate a constraint
modeling the behavior; (ii) the matching step should be simply constraint composition, successful
only if the resulting constraint is satisfiable; (iii) the actual execution should be monitored by ask-
like guards, reminiscent of concurrent constraint programming. The advantage of a constraint-based
approach [BCDM11] is clear: the necessary constraints can be built inductively at compile time,
composed at matching time and tested at run time taking advantage of concepts well-studied in the
area of constraint programming. We present our constraint system as an instantiation of the class of
named constraint semirings, which have been originally proposed as the underlying structure of the
cc-pi calculus [BM07], a process calculus for modeling agreements on non-functional parameters in a
service oriented scenario. The target calculus we propose is close in spirit to the cc-pi calculus, except
for the fact that the primitives of our target calculus are meant to model two-party interactions.

Constraint semirings [BMR97] are semirings with an idempotent additive operation and a commu-
tative multiplicative operation. Named constraint semirings in addition come equipped with a notion
of relevant names that allows plugging constraints into languages with an explicit concept of names.
Named constraint semirings inherit from ordinary constraints on the boolean semiring properties and
efficient algorithms, like constraint propagation and dynamic programming. We exploit a simple and
standard named constraint semiring: the one employed by logic programming, where the Herbrand
signature contains as many unary operations as actions and a constant to model termination. The
semiring values are sets of assignments with Herbrand terms to all the names. However, only the
assignments to the tuples of names forming the support are relevant. The correspondence with logic
programming is quite simple: given a set of clauses and a goal P(x1, . . . , xn), its semantics in terms of
our constraint system is the set of all the ground instantiations of the goal which satisfy the clauses.
The support is at most the set {x1, . . . , xn}. Goal composition is multiplication, while multiple clauses
for the same goal model sum. Variables appearing in the body but not in the head of a clause are
existentially quantified. The effect of recursive clauses is obtained by an explicit fixpoint operator.

Our approach [BCDM11] combines a mixture of static and dynamic analysis tools by adhering
to the Negotiate-Execute-Commit (NCE) scheme. Agents negotiate certain desired behaviors, but
without any guarantee of success. However, if and when an agreement is reached (commit), under
certain conditions a coordinated computation of the involved agents can start, which is guaranteed to
have the properties agreed upon in the negotiation phase. Specifically, we present a simple source
calculus with client and service processes and with a semantics given in terms of labeled transition
systems: the clients are recursive and can place nested service calls, while services are permanent
(namely a service is not consumed by a call) and nonrecursive. The calculus is nondeterministic, with
external choices, and a client-service behavior which allows for more choices is considered to be more

ASCENS 17

D2.1: First Report on WP2 (Final) November 15, 2011

desiderable, provided they are stuck-free. A target calculus is then defined, where clients and services
are compiled to, augmenting them with named constraint semirings, which encode their behavior.

To understand our approach, let us first consider the case of a client without nested calls and with a
single service. The source client is then compiled into a target client combined with a constraint with
just one name in its support, say x. The constraint is thus just a set of traces, representing the behavior
of the client. The compiled code is very similar to the source, except that its choices are guarded by
check constructs, similar to the ask constructs of concurrent constraint programming, which enable
the corresponding continuations only if the global constraint allows it. The source service is also
compiled, yielding a constraint on y which represents its behavior, but no check guards are included.
The negotiation phase consists of multiplying the two constraints, and their result with the constraint
x = y. The resulting constraint contains exactly all the executions of the source client-service system
which are not stuck. If the constraint is not 0, i.e. if it is not the empty set, the commit takes place,
and the execution phase can start. Thanks to the check guards, the traces possible for the target client-
service system are exactly those in the constraint. Notice that while the client (service) compilation is
static, and thus it does not fit in the NCE scheme, it does not depend on the particular service (client)
partner it will be matched to. Thus the open endness requirement is here satisfied by the possibility of
deploying new services (clients) without the need of any further modification of the existing services
(clients). For instance, let T be a client which offers the choice between co-actions α and β, and S
be a service which offers the choice between actions α and γ, and only co-actions and actions interact
successfully. Therefore T and S can safely interact only choosing α and α, respectively. In our calculus
we have T = �.α.4.0+β.4.0 and S = �.α.4 + γ.4, where � is service call, 4 is call end, and �, 4 are
service and end acceptance. The interactions offered by T and S are represented, respectively, by the
constraints c = (x = α(end))⊕ (x = β(end)) and d = (y = α(end))⊕ (y = γ(end)) (noting that we write
constraints using only actions). It holds that c⊗d⊗(x = y) = (x = α(end))⊗(y = α(end))⊗(x = y) , 0,
which reflects the fact that the only successful interaction between T and S is (over) α.

Let us now consider the general case of a client with nested calls and several services. Services
are compiled in the usual way. The behavior of the client, instead, must be represented by a constraint
with several names in the support. In fact, different service calls may not be independent: imagine that
the client makes a choice in an inner call which must be matched by the corresponding service. Then
the client returns to the outer level and makes another choice which must be matched this time by
the service corresponding to the outer call. The two choices may be dependent, and this requirement
is represented by a constraint with a two-name support. Thus the ability of the constraint system of
representing sets of tuples of traces allows us to guarantee stuck-freedom for complex client-service
pairs, which at the best of our knowledge have not been considered in the literature by now. An
example of this kind of clients is �.α.�.β.(γ.4.δ.4.0 + µ.4.ρ.4.0), where the choices made by the
two nested calls depend on each other. Such a dependency can arise, for instance, when modeling
a traveler who asks both for a flight (α) to an airline company and for a room (β) to a hotel in two
alternative different dates. The client request (room, flight) are represented respectively by actions γ, δ
for one date and µ, ρ for the other date. This client offers then the choice between the pairs of traces
< α(δ(end)), β(γ(end)) > and < α(ρ(end)), β(µ(end)) >. The constraint resulting from the negotiation,

(x1 = α(δ(end))) ⊗ (x2 = β(γ(end))) ⊕ (x1 = α(ρ(end))) ⊗ (x2 = β(µ(end))),
with support {x1, x2}, obliges the run of related service call to be coherent.

Conclusions and on-going work We proposed a NCE approach for guaranteeing stuck-freedom in
interactions between client and services [BCDM11]. We have augmented a client-service calculus
with semiring-based constraints, which allow clients to choose services and to interact with them in a
safe way. A run time combination (multiplication in the simple cases) of client and service constraints
ensures that all and only the stuck-free interactions are possible.

ASCENS 18

D2.1: First Report on WP2 (Final) November 15, 2011

It would be interesting to generalize the current target calculus by exploiting the formalism of Soft
Constraint Logic Programming [BMR01]. In that paper, the ground semantics of a logic program (a
goal and set of clauses) is not a set of ground assignments of the free variables of its goal, but rather a
function from ground assignments to values of (another) constraint semiring. These values could give
a measure of how acceptable the assignments are. Such functions, computed point-wise, form again a
constraint semiring, and thus the formal treatment turns out simple and elegant. In particular, the three
semantics of logic programming (operational, denotational and model theoretical) can be defined also
for soft constraint logic programming and proved equivalent. In our setting, a particular client-service
computation would not be only possible or impossible, but it could be assigned an acceptance weight,
which might itself be structured by measuring the quality of service obtained in the interaction.

In a different direction, we plan to study how to integrate our semiring-based constraints and,
more in general, to exploit the interaction mechanism of the concurrent constraint pi-calculus [BM07]
within the ASCENS language SCEL. We expect the most natural way would be by representing the
SCEL knowledge in terms of constraints while the SCEL policies by (a variant of) the communication
mechanism of the concurrent constraint pi-calculus which allows merging constraints arising from
different SCs. In this respect, the main challenge seems to be how to handle in SCEL names which
are shared by different SCs or even SCEs.

3.2 Task 2.2: strand on Conceptual models for autonomicity

While the meaning of “adaptivity” may seem intuitively obvious, various communities use different
and incompatible definitions of the term, and surprisingly few generally applicable, precise definitions
are available in the literature.

For the second facet of the task we therefore present two conceptual frameworks for adaptivity:
The first one, presented in §3.2.1 [HW11], is concerned with “black-box” adaptation and based on the
GEM system model for ensembles. Black-box adaptation describes how well a system can perform in
various environments without looking at the internal mechanisms used to achieve adaptation. It gives
rise to a preorder of adaptivity on ensembles based on their ability to satisfy goals or maximize a per-
formance measure in different environments. The second framework, presented in §3.2.2 [BCG+11],
defines a notion of “white-box” adptation conceived around a prominent role of clearly and neatly
identified control data: computational data that govern the execution and are conveniently managed
to enact adaptive behaviors. White-box adaptation is therefore concerned with how the adaptation
process is achieved, not with the environments to which the system can adapt. Most foundational
models and programming paradigms proposed for describing or implementing autonomic or adaptive
computation fit perfectly within these two frameworks.

3.2.1 GEM: A General Model for Ensembles and Black-Box Adaptation (Task 2.2)

The goal of the General Ensemble Model (GEM) is to provide a denotational model of ensembles and
to define notions such as (black-box) adaptation, awareness and emergence based on a solid mathe-
matical basis. GEM views systems as relations, similar to Mesarovic and Takahara’s General Systems
Theory [MT75], but GEM allows the specification of ensemble properties using various logics, and it
also introduces heterostatic (i.e., optimizing a utility function) and probabilistic systems.

If I is a (finite or infinite) set, andV = (Vi)i∈I a family of sets we define an ensemble or (general)
system or component of type V as a relation S of type V. It is in many cases helpful to regard some
of the sets Vi ∈ V as inputs and others as outputs, even though these are often not system-inherent
properties. We can do so by defining an isomorphism which, roughly speaking, dividesV into inputs
X, outputs Y and internal state Z, and identifies S with a relation of type (X,Y,Z), see Fig. 3.

ASCENS 19

D2.1: First Report on WP2 (Final) November 15, 2011

X = (X1, …, Xk)

Z = (Z1, …, Zm)

Y = (Y1, …, Yl)

(V1, …, Vn) ≅ (X, Y, Z)

Figure 3: Ensemble in GEM

Since we are usually interested in systems that change their behavior over time, we define modal
and timed systems: Let T , the possible worlds or time structure, be a set, let R be a binary relation on
T , (Ai)i∈I a family of sets, and let Vi = F [T → Ai]. A modal system or modal ensemble over (Ai)i∈I

with possible worlds T is a general system S over (Vi)i∈I . If R is a preorder we call T a time system or
time ensemble over (Ai)i∈I with time structure T . The available space does not allow us to introduce
heterostatic or probabilistic ensembles, but GEM can easily accomodate these extensions.

S1

S2

X1
nc

X2
nc

Y1
nc

Y2
nc

Y1
out = X2

in

Figure 4: Combination operator for partial cascade

The hierarchical construction of most ensembles is mirrored in GEM by combination operators
that combine several relations (regarded as models of components) into a new relation (the model of
the system composed of these components). By defining appropriate combination operators, we can
express any kind of composition of components. Fig. 4 depicts a partial cascade, a simple combination
operator that connects some of the outputs of a system S 1 to corresponding inputs of S 2 while leaving
other inputs and output connected to the environment.

In order to specify properties of systems we connect the relational system model to different logics:
If L is a suitable logic and γ a formula of L that represents a goal or requirement of the system, we
define the notion “System S satisfies goal γ”, written S |= γ. This very general construction allows
us to express properties of ensembles in a wide variety of logics and therefore to apply many different
formal methods to the investigation of ensembles expressed in GEM.

Having introduced the fundamentals of GEM we can now define black-box adaptation. To this end
we assume that a combination operator ⊗ is given; this operator combines three systems (which may
themselves be composed of simpler systems): an environment ηwhich we regard as mostly outside the
control of the system designer, a “network” or sensor/actuator system ν which simulates or represents
the connection of the ensemble to the environment, and the system S . We assume that S is designed
by the software developer and that it has to achieve a certain goal in the given environment or in a
range of environments in order to be considered successful.

Consider a system S which is executed in environment η with network ν. In order to realize the

ASCENS 20

D2.1: First Report on WP2 (Final) November 15, 2011

given specification or goal γ the system has to satisfy following properties:

η, ν, S 6|= ⊥ (1)

η, ν, S |= γ (2)

Property (1) states that the system resulting from the composition of S , η and ν is not empty. This
condition is necessary since an inconsistent systems vacuously satisfies any goal γ. Property (2)
immediately expresses the fact that the system satisfies the goal in question.

Usually we do not speak of adaptation when a system works in just a single, deterministic envi-
ronment; we expect an adaptive system to work in a variety of different situations. Since environments
are relations, this can be achieved by having an environment with non-deterministic and time-variant
behavior. However it often simplifies the comparison and analysis of different systems if we do not
merge different behaviors into a single environment and instead model adaptation by having several
environments, e.g., η and η′ such that the system satisfies the goal for all environments:

η, ν, S |= γ and η′, ν, S |= γ

Different network conditions may be modeled in a similar way.
Adaptation to a new environment or network is not the only possible kind of black-box adaptation;

it might also be necessary to change the goals that an ensemble pursues while leaving the environment
constant, or, in other words, the system may have to adapt to new requirements. In that case we obtain
the adaptation condition

η, ν, S |= γ′

If the new goal γ′ is implied by the old goal γ, any system satisfying γ already satisfies γ′. Other-
wise it is, in general, not possible for a system to adapt to new goals unless this goal is communicated
to the system, either by one of the unconnected inputs of the system or, more frequently, by changes
in the environment. For example, we might change the color of a beacon from green to red to signal to
a foraging robot that we want it to stop foraging and return to the base station. Therefore, it is usually
not sensible to request that a system can adapt to any change in environment and goals, we rather have
to restrict adaptation to these scenarios where the goal is correctly communicated to the ensemble.

To formalize these notions we define an adaptation domain A that describes a range of environ-
ments E, networks N and goals G, to which we want the system to adapt and define the notion S can
adapt toA, written S A:

A ⊆ E ×N × G

S A ⇐⇒ ∀(η, ν, γ) ∈ A : η, ν, S |= γ

The adaptation space A is a set of adaptation domains, A ⊆ P(E × N × G). It is partially ordered
by inclusion; for any adaptation space we define a preorder of adaptivity for systems as follows:

S v S ′ ⇐⇒ ∀A ∈ A : S A =⇒ S ′ A

In that case we say that S ′ is at least as adaptive as S (with respect to A). If S v S ′ and there is an
adaptation domainA ∈ A for which S ′ A but S 6 A then we say that S is less adaptive than S ′ or
that S ′ is more adaptive than S (with respect to A) and write S < S ′.

Black-box adaptation defined in terms of adaptation spaces gives us a very general notion to com-
pare the capability of various ensembles to adapt to changing environments. It does, however, not
specify any mechanism how this adaptation can be achieved. To this end the notion of white-box
adaptation, that will be introduced in the next section, is necessary.

ASCENS 21

D2.1: First Report on WP2 (Final) November 15, 2011

3.2.2 White-Box Adaptivity: A conceptual framework (Task 2.2)

The aim of this task is to develop robust mathematical foundations for interaction scenarios that are
characterized by highly dynamic, autonomic components, that can update their behavior depending
on the current environment, join and leave an interaction, fork new components, react to events and
compensate past activities. This is a challenging goal, that we address starting with some much easier
questions that concern individual autonomic components rather than ensembles: “When is a software
system adaptive?”, and “how can we identify the adaptation logic in an adaptive system?” We think
that the limited effort placed in the investigation of the foundations of (self-)adaptive software systems
might be due to the fact that it is not clear what are the characterizing features that distinguish such
systems from plain (“non-adaptive”) ones.

We are developing a conceptual framework for white-box adaptation [BCG+11], proposing a sim-
ple structural criterion to characterize adaptivity. Our framework requires to make explicit that the
behavior of a component depends on some well identified control data. Now, we define white-box
adaptation as the run-time modification of the control data. A component is thus deemed adaptable
if it has a clearly identified collection of control data that can be modified at run-time. And if the
control data are not identified or cannot be modified, then the system is not adaptable. Further, a com-
ponent is adaptive if it is adaptable and its control data are modified at run-time, at least in some of its
executions. And a component is self-adaptive if it is able to modify its own control data at run-time.

Under this perspective any computational model or programming language can be used to imple-
ment an adaptive system, just by identifying the part of the data that governs the behavior. Conse-
quently, the nature of control data can vary considerably, ranging from simple configuration parame-
ters to a complete representation of the program in execution that can be modified at run-time. This
latter scenario is typical of computational models that support meta-programming or reflective features
even if, at least in principle, it is possible for any Turing-complete formalism.

Figure 5: Control data in MAPE-K.

Starting from the MAPE-K model [Hor01], several
contributions have described possible architectures for
adaptive systems (or for autonomic systems, for which self-
adaptivity is a main feature). According to the MAPE-K
architecture, which is a widely accepted reference model,
a self-adaptive system is made of a component implement-
ing the application logic, equipped with a control loop that
monitors the execution through sensors, analyses the col-
lected data, plans an adaptation strategy, and finally exe-
cutes the adaptation of the managed component through
effectors; all the phases of the control loop access a shared
knowledge repository. Adaptation according to this model
naturally fits in our framework with an obvious choice for
the control data: these are the data of the managed compo-
nent which are either sensed by the monitor or modified by
the execute phase of the control loop. Thus the control data represent the interface exposed by the
managed components through which the control loop can operate, as shown in Fig. 5. Clearly, by our
definitions the managed component is adaptive, and the system made of both the component and the
control loop is self-adaptive.

The construction can be iterated, as the control loop itself could be adaptive. Think e.g. of an
adaptive component which follows a plan to perform some tasks. This component might have a
manager which devises new plans according to changes in the context or in the component’s goals.
But this planning component might itself be adaptive, where some component controls and adapts
its planning strategy, for instance determining the new strategy on the basis of a tradeoff between

ASCENS 22

D2.1: First Report on WP2 (Final) November 15, 2011

Figure 6: Tower of adaptation.

Figure 7: External (top) and internal (bottom) patterns.

Figure 8: Reactive pattern.

optimality of the plans and computational cost. In this case also the manager (the control loop) should
expose in an interface its control data, which are conceptually part of its knowledge repository. In this
way, the approach becomes compositional in a hierarchical way, which allows one to build towers of
adaptive components (Fig. 6).

Patterns from the taxonomy of [CPZ11] can be cast easily in our framework (see Fig. 7) as well.
In the internal control loop pattern, the manager is a wrapper for the managed component and it
is not adaptable, while in the external control loop pattern the manager is an adaptable component
that is connected with the managed component. The taxonomy of [CPZ11] includes a third adaptive
pattern that describes reactive components (see Fig. 8). Such components are capable to modify
their behavior in reaction to an external event, without any internal control loop. In our conceptual
framework, a reactive system of this kind is (self-)adaptive if we consider as control data the variables
that are modified by sensing the environment.

The nature of control data can vary considerably depending both on the degree of adaptivity of the
system and on the nature of the computational formalisms used to implement it. Examples of control
data include configuration variables, rules (in rule-based programming), contexts (in context-oriented
programming), interactions (in connector-centered approaches), policies (in policy-driven languages),
aspects (in aspect-oriented languages), monads and effects (in functional languages), and even entire
programs (in models of computation exhibiting higher-order or reflective features).

We started developing a simple formal model, based on labeled transition systems, as a proof-of-
concept for validating the idea of developing formal models of adaptive systems where the key features
of our approach are first-class citizens. We applied it to model a small scenario of an archetypal
adaptive system, namely a robot swarm whose goal is to collect items in an unknown area.

Conclusions and on-going work We presented a conceptual framework for adaptivity [BCG+11].
Its key feature is a neat identification of the control data governing and enacting adaptive behaviors.

ASCENS 23

D2.1: First Report on WP2 (Final) November 15, 2011

Most adaptive behaviors approaches either based on foundational models (such as logical reflection)
or programming paradigms (such as context-oriented programming) fit perfectly in the framework.

We plan to exploit our conceptual framework by developing sound design principles for architec-
tural styles and patterns in order to ensure correctness-by-design, and guidelines for the development
of adaptive systems conforming to such patterns. We also plan to develop analysis and verification
techniques for adaptive systems grounded on the central role of control data. For example, data-
and control-flow analysis techniques could be used to separate, if possible, the adaptation logic of a
system (that modifies the control data) from the application logic (that just reads them). Another cur-
rent line of research aims at developing variants of computational models specifically inspired on our
framework. Some steps in this direction have been already taken, starting from a very basic concept
of adaptive transitions systems [BCG+11]. Another candidate is the reflective, rule-based approach
from [MT02]: we plan to use the Maude framework to develop prototype models of archetypal and
newly emerging adaptive scenarios. Even if we focused the present work on adaptation issues of indi-
vidual components, we also intend to develop a framework for adaptation of ensembles, i.e., massively
parallel and distributed autonomic systems which act as a sort of swarm with emerging behavior. This
could require to extend our local notion of control data to a global notion, where the control data of
the individual components of an ensemble are treated as a whole, which will possibly require some
mechanism to amalgamate them for the manager, and to project them backwards to the components.

4 On Task 2.3: Modeling SCEs with collaborative and competitive be-
havior

The research on this task has the ambition of “develop[ing] a theory combining as much as possible
the flexibility and compositionality of computer science semantic models with the expressiveness of
models developed by economic theorists”, with an in-depth analysis of the “adapt[ion] and re-use in
this context many co-algebraic tools well-known for ordinary transition systems”.

One side concerns the application of Game paradigms for service composition, adopting either
non-cooperative job scheduling games, with an interest in abstractly capturing those scenarios where
a Nash equilibrium is reached, and minority games for service composition, as needed by e.g. a
peer-to-peer energy management scenario. On a more foundational issue, Coalgebraic techniques for
dynamical systems pushed the coalgebraic view of weighted automata: non-deterministic automata
where each transition has also a quantity expressing the cost of its execution.

4.1 Task 2.3: strand on Game paradigms for service composition

We formulate in §4.1.1 a repeated non-cooperative job scheduling game, proposed in [BMT10, BMT11],
whose players are Grid sites and whose strategies are scheduling algorithms. We exploit the concept of
Nash equilibrium to express a situation in which no player can gain any profit by unilaterally changing
its strategy. Specifically, we investigate different strategies in different contexts and we show whether
each such strategy is a Nash equilibrium or not. In the negative cases we provide counter-examples,
in the positive cases we either give formal proofs or motivate our conjectures by experimental results
supported by simulations and exhaustive search.

An fruitful application of the adaptation in service component is peer-to-peer energy management.
The domestic energy market is changing with the increasing availability of energy generating home-
devices, such as solar panels, which provide energy for the house where they are installed as well as
enabling the selling of surplus energy. In §4.1.2 we consider a scenario where households have the
chance to trade energy for purchasing to and for selling from a number of different actors.

ASCENS 24

D2.1: First Report on WP2 (Final) November 15, 2011

4.1.1 A game-theoretic model of Grid systems (Task 2.3)

Grid Computing and Cloud Computing aim at creating an illusion of a simple and yet large virtual
computer from a great set of heterogeneous computers sharing various resource types to benefit a
virtual organization. A common scenario includes several sites which share their computational and
storage resources in the form of clusters of machines and a global scheduler which is responsible for
the scheduling of jobs over sites. Grid sites may have conflicting interests, for e.g. some site prefers
first to execute its own local jobs over the Grid jobs, in order to minimize the sum of completion time
of the former jobs. In such non-cooperative systems, since Grid sites are not under control of a cen-
tralized broker, optimization does not amount to maximizing/minimizing a unique common function,
but rather to find a stable situation in which, for instance, sites guarantee to equally treat remote and
local jobs. In order to analyze the impact of selfishness and the potential non-cooperativeness in Grid
systems, in [BMT10, BMT11] we develop a theory combining the flexibility and compositionality of
computer science semantic models with the expressiveness of the game-theoretic approaches.

Game theory [Osb04] attempts to formally capture behaviors in strategic situations, in which an
individual agent success in making choices depends on the choices of others. A game consists of a
set of players, a set of possible actions (moves), and a set of specified player payoffs that are assigned
depending on the actions performed by every player. At each step, every player chooses an action and
gets a payoff in return. A player strategy is a sequence of actions such that each action refers to a
round of the game. A central notion in Game theory is that of Nash equilibrium [Nas51], a situation
in which no player can improve its own payoff by unilaterally changing its strategy.

We formulate a game in which Grid sites are the players of the game, and the actions available
to them range over various job scheduling policies. The game we define is non-cooperative, namely
players take decisions independently from each other, and repeated, such that it consists in some
number of repetitions of a base game, and we assume that the number of repetitions is finite but
unknown to players. Each time there is a job to be executed in the Grid, each player bids or not
for the purpose of winning the job. If a player is willing to execute a Grid job, it will propose its
Earliest estimated Response Time (ERT) which is an estimation of the time interval between the job
submission and the beginning of the job execution. Next, the global scheduler assigns to the winner
- namely, the site that guarantees the minimum ERT for that job - (i) the execution of that job (ii) a
payoff that is the length of the job. Conversely, a zero payoff is assigned to other sites. The aiming
environment is defined by the availability/non-availability of Grid and local jobs, as well as by the
workload on each one of their site.

The contribution of [BMT10] is two-fold: on the one side to formalize the notion of Labeled
Transition Game, which basically allows formulating a non-cooperative game in terms of a kind of
Labeled Transition Systems; on the other side, to formally prove that in absence of local jobs, the eager
strategy profile where every site bids its ERT upon arrival of a new Grid job is a Nash equilibrium.
Paper [BMT11] extends the analysis carried out in [BMT10] to different strategies. Specifically, we
have provided a coherent classification by formally and/or experimentally proving a class of results
which hold under different orthogonal Grid features. Such an analysis considers all the cases which can
be obtained by varying three parameters: (i) presence/absence of local jobs, (ii) presence/absence of
heavy load - the heavy load condition requires that at any time unit there must be enough incoming jobs
so that every site that is free and willing to execute a Grid job cannot be inactive, (iii) variable/fixed
job length during the whole repeated game, in the second option jobs must have the same length.
Depending on the presence of local jobs, two different eager strategies can be adopted by the players:
in the presence of both local and Grid jobs, the selfish strategy according to which a player bids for
a Grid job only if there is no incoming local job; in absence of local jobs, the collaborative strategy
which states that a player bids for a Grid job if there is any available. Each strategy is shown to be or
not to be a Nash equilibrium upon varying job length and heavy load parameters.

ASCENS 25

D2.1: First Report on WP2 (Final) November 15, 2011

Conclusions and on-going work We analyzed the potential non-cooperativeness and the impact of
selfishness in Grid systems, by exploiting the concept of Nash Equilibrium inherited from Game the-
ory [BMT10]. We gave a coherent classification [BMT11] of use cases specifying different strategies
under different orthogonal Grid features and stated whether each strategy is a Nash equilibrium or not.

We are confident that the approach discussed here could be adapted to Cloud Computing, with
limited modifications. Indeed, Cloud basically inherits from Grid its underlying job scheduling mech-
anism. For this reason, we plan to apply our method to face some of the main challenges raised by the
ASCENS Cloud case study.

4.1.2 Smart meter aware domestic energy trading agents (Task 2.3)

An interesting application of the adaptation in service component is represented by peer-to-peer energy
management. In [CPCA11] we figure out a scenario where households will have the chance to trade
energy for purchasing to and for selling from a number of different actors.

We exploited software agents as a suitable component-based technology to model and implement
a system composed of different actors: consumers, which buy energy, prosumers, which produce and
consume energy, gencos, which produce and sell energy on large scale. The scenario is complex
because prosumers produce cheaper but more limited energy than gencos. Moreover, this scenario
requires a high degree of adaptability, because of different aspects: (i) the need for energy is different
during the day and varies during the week; (ii) weather conditions influence energy production, for
instance a cloudy day decreases the energy produced by solar panels; (iii) the price of the energy
produced by prosumers change depending not only on weather conditions but also on the base of the
demand; (iv) gencos too have a threshold over which the energy becomes very expansive.

Given this scenario, we applied a game-theoretical approach. In particular, we applied an instance
of the minority game, a family of games where the choice of the minority wins (in our case, the
minority of consumers is expected to have a lower price). We implemented the system by Jade, and
connected agents to a physical Smart Meter to provide a near-to-reality simulation. Results are quite
good: the paid price is usually close to the expected price, and the whole production of energy is close
to the needed one, avoiding waste of energy. This demonstrates not only that single agents are able to
adapt to personal interests, but also that the emerging behavior is the one expected by the community.

Conclusions and on-going work The domestic energy market is changing with the increasing avail-
ability of energy micro-generating facilities. On the long run, households will have the possibility to
trade energy for purchasing to and for selling from a number of different actors. We modeled such a
futuristic scenario using software agents. We produced an implementation including the interfacing
with a physical Smart Meter and provided simulation results. Given the high autonomy of the actors
in the domestic market and the complex set of behaviors, the agent approach proves to be effective for
both modeling and simulating purposes.

The simulation of agents managing an open energy market on the base of minority game theory
pointed out the capability of the system to reach an equilibrium in a short period of time and, more
important, based on choices that tend to the respect of the environment (see [CPCA11] for details).

4.2 Task 2.3: strand on Coalgebraic techniques for dynamical systems

Autonomic, and more generally adaptable and reconfigurable systems, are complex objects where
such aspects like feedback and stability play a key role. Describing and analyzing those aspects calls
for a systemic view of systems, where classical models of nondeterministic computation might be
integrated with tools from Control Theory. In this context, SCE’s could actually be described and
analyzed as dynamical systems. A suitable tool appears to be weighted automata, a generalization

ASCENS 26

D2.1: First Report on WP2 (Final) November 15, 2011

of classical non-deterministic automata where each transition, in addition to an input letter, has also
a quantity expressing the weight (e.g. cost or probability) of its execution, drawn from a semiring
[KS86]. Recent investigation have pointed out that weighted automata are, in a very precise sense, a
generalization of (discrete) time-invariant linear systems from Control Theory [Rut07, Bor09].

4.2.1 A coalgebraic view on Resource Aware operational models (Task 2.3)

The paper [BBB+11] is part of a line of an ongoing research that aims at re-using in the weighted
automata context those co-algebraic tools well-known from ordinary transition systems. This will in
turn lead to coinductive reasoning and algorithms for equivalence checking and minimization.

As for non-deterministic automata, the behavior of weighted automata can be expressed in terms
of either (weighted) bisimilarity or (weighted) language equivalence. Coalgebras provide a categorical
framework for the uniform study of state-based systems and their behaviors. We show that coalgebras
can suitably model weighted automata in two different ways: coalgebras on Set (the category of sets
and functions) characterize weighted bisimilarity, while coalgebras on Vect (the category of vector
spaces and linear maps) characterize weighted language equivalence. Relying on the second charac-
terization, we show three different procedures for computing weighted language equivalence. The first
one consists in a generalization of the usual partition refinement algorithm for ordinary automata. The
second one is the backward version of the first one, which leads to a matrix-based algorithm of cubic
complexity. The third procedure relies on a syntactic manipulation of rational weighted languages
seen as multivariate streams (a.k.a. formal power series).

Conclusions and on-going work Ultimately, one would like to develop a comprehensive coalge-
braic framework integrating classical models of computation and Control Theory, where such concepts
as feedback, controllability and stability could be described and analyzed.

ASCENS 27

D2.1: First Report on WP2 (Final) November 15, 2011

References

[ABC+09] Farhad Arbab, Roberto Bruni, Dave Clarke, Ivan Lanese, and Ugo Montanari. Tiles for
Reo. In Andrea Corradini and Ugo Montanari, editors, WADT, volume 5486 of Lect.
Notes Comp. Sci., pages 37–55. Springer, 2009.

[ADG98] Robert Allen, Rémi Douence, and David Garlan. Specifying and analyzing dynamic
software architectures. In Egidio Astesiano, editor, FASE, volume 1382 of Lect. Notes
Comp. Sci., pages 21–37. Springer, 1998.

[Arb04] Farhad Arbab. Reo: a channel-based coordination model for component composition.
Mathematical Structures in Computer Science, 14(3):329–366, 2004.

[BBB+11] Filippo Bonchi, Marcello Bonsangue, Michele Boreale, Jan Rutten, and Alexandra
Silva. A coalgebraic perspective on linear weighted automata. Submitted, 2011.

[BBBS08] Ananda Basu, Philippe Bidinger, Marius Bozga, and Joseph Sifakis. Distributed seman-
tics and implementation for systems with interaction and priority. In Kenji Suzuki, Teruo
Higashino, Keiichi Yasumoto, and Khaled El-Fakih, editors, FORTE, volume 5048 of
Lect. Notes Comp. Sci., pages 116–133. Springer, 2008.

[BCDM11] Maria Grazia Buscemi, Mario Coppo, Mariangiola Dezani, and Ugo Montanari. Con-
straints for service contracts. In Roberto Bruni and Vladimiro Sassone, editors, TGC,
volume in press of Lect. Notes Comp. Sci. Springer, 2011.

[BCDW04] Jeremy S. Bradbury, James R. Cordy, Jürgen Dingel, and Michel Wermelinger. A survey
of self-management in dynamic software architecture specifications. In David Garlan,
Jeff Kramer, and Alexander L. Wolf, editors, WOSS, pages 28–33. ACM, 2004.

[BCEH05] Paolo Baldan, Andrea Corradini, Hartmut Ehrig, and Reiko Heckel. Compositional
semantics for open Petri nets based on deterministic processes. Mathematical Structures
in Computer Science, 15(1):1–35, 2005.

[BCG+11] Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch Lafuente, and Andrea
Vandin. A conceptual framework for adaptation. Submitted, 2011.

[BD07] Meriem Belguidoum and Fabien Dagnat. Dependency management in software compo-
nent deployment. In Vladimir Mencl and Frank S. de Boer, editors, FACS, volume 182
of Electr. Notes Theor. Comput. Sci., pages 17–32, 2007.

[BGM02] Roberto Bruni, Fabio Gadducci, and Ugo Montanari. Normal forms for algebras of
connection. Theor. Comput. Sci., 286(2):247–292, 2002.

[BLM06] Roberto Bruni, Ivan Lanese, and Ugo Montanari. A basic algebra of stateless connectors.
Theor. Comput. Sci., 366(1-2):98–120, 2006.

[BM02] Roberto Bruni and Ugo Montanari. Dynamic connectors for concurrency. Theor. Com-
put. Sci., 281(1-2):131–176, 2002.

[BM07] Maria Grazia Buscemi and Ugo Montanari. Cc-pi: A constraint-based language for
specifying service level agreements. In Rocco De Nicola, editor, ESOP, volume 4421 of
Lect. Notes Comp. Sci., pages 18–32. Springer, 2007.

ASCENS 28

D2.1: First Report on WP2 (Final) November 15, 2011

[BMM11a] Roberto Bruni, Hernán C. Melgratti, and Ugo Montanari. A connector algebra for p/t
nets interactions. In Joost-Pieter Katoen and Barbara König, editors, CONCUR, volume
6901 of Lect. Notes Comp. Sci., pages 312–326. Springer, 2011.

[BMM11b] Roberto Bruni, Hernán C. Melgratti, and Ugo Montanari. Connector algebras, petri nets,
and BIP. In Ed Clarke, Irina Virbitskaite, and Andrei Voronkov, editors, PSI, volume in
press of Lect. Notes Comp. Sci. Springer, 2011.

[BMR97] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based constraint sat-
isfaction and optimization. J. ACM, 44(2):201–236, 1997.

[BMR01] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based contstraint
logic programming: syntax and semantics. ACM Trans. Program. Lang. Syst., 23(1):1–
29, 2001.

[BMT10] Maria Grazia Buscemi, Ugo Montanari, and Sonia Taneja. Toward a game-theoretic
model of grid systems. In Martin Wirsing, Martin Hofmann, and Axel Rauschmayer,
editors, TGC, volume 6084 of Lect. Notes Comp. Sci., pages 57–72. Springer, 2010.

[BMT11] Maria Grazia Buscemi, Ugo Montanari, and Sonia Taneja. A game-theoretic analysis of
grid job scheduling. Submitted, 2011.

[Bor09] Michele Boreale. Weighted bisimulation in linear algebraic form. In Mario Bravetti and
Gianluigi Zavattaro, editors, CONCUR, volume 5710 of Lect. Notes Comp. Sci., pages
163–177. Springer, 2009.

[Bru99] Roberto Bruni. Tile Logic for Synchronized Rewriting of Concurrent Systems. PhD
thesis, Computer Science Department, University of Pisa, 1999.

[BS08a] Simon Bliudze and Joseph Sifakis. The algebra of connectors - structuring interaction
in BIP. IEEE Trans. Computers, 57(10):1315–1330, 2008.

[BS08b] Simon Bliudze and Joseph Sifakis. Causal semantics for the algebra of connectors.
In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever,
editors, FMCO, volume 5382 of Lect. Notes Comp. Sci., pages 179–199. Springer, 2008.

[BS10] Simon Bliudze and Joseph Sifakis. Causal semantics for the algebra of connectors.
Formal Methods in System Design, 36(2):167–194, 2010.

[CDCP11] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. On global
types and multi-party sessions. In Roberto Bruni and Jürgen Dingel, editors,
FMOODS/FORTE, volume 6722 of Lect. Notes Comp. Sci., pages 1–28. Springer, 2011.

[CGP09] Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of contracts for web
services. ACM Trans. Program. Lang. Syst., 31(5), 2009.

[CKM10] Vincenzo Ciancia, Alexander Kurz, and Ugo Montanari. Families of symmetries as
efficient models of resource binding. In Bart Jacobs, Milad Niqui, Jan J. M. M. Rutten,
and Alexandra Silva, editors, CMCS, volume 264(2) of Electr. Notes Theor. Comput.
Sci., pages 63–81, 2010.

[CM10] Vincenzo Ciancia and Ugo Montanari. Symmetries, local names and dynamic (de)-
allocation of names. Inf. Comput., 208(12):1349–1367, 2010.

ASCENS 29

D2.1: First Report on WP2 (Final) November 15, 2011

[CPCA11] Nicola Capodieci, Andrea Pagani, Giacomo Cabri, and Marco Aiello. Smart meter aware
domestic energy trading agents. In IEEMC. ACM, 2011.

[CPZ11] Giacomo Cabri, Mariachiara Puviani, and Franco Zambonelli. Towards a taxonomy
of adaptive agent-based collaboration patterns for autonomic service ensembles. In
Waleed W. Smari and Geoffrey C. Fox, editors, CTS, pages 508–515. IEEE Computer
Society, 2011.

[DLLM09a] Rocco De Nicola, Diego Latella, Michele Loreti, and Mieke Massink. Marcaspis: a
markovian extension of a calculus for services. In Nicola Cannata, Emanuela Merelli,
and Irek Ulidowski, editors, FBTC, volume 229(4) of Electr. Notes Theor. Comput. Sci.,
pages 11–26, 2009.

[DLLM09b] Rocco De Nicola, Diego Latella, Michele Loreti, and Mieke Massink. On a uniform
framework for the definition of stochastic process languages. In Marı́a Alpuente, Byron
Cook, and Christophe Joubert, editors, FMICS, volume 5825 of Lect. Notes Comp. Sci.,
pages 9–25. Springer, 2009.

[DLLM09c] Rocco De Nicola, Diego Latella, Michele Loreti, and Mieke Massink. Rate-based tran-
sition systems for stochastic process calculi. In Susanne Albers, Alberto Marchetti-
Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas, editors,
ICALP (2), volume 5556 of Lect. Notes Comp. Sci., pages 435–446. Springer, 2009.

[DLLM11] Rocco De Nicola, Diego Latella, Michele Loreti, and Mieke Massink. State to function
labelled transition systems: a uniform framework for defining stochastic process calculi.
Technical Report ISTI-2011-TR-012, ISTI, 2011.

[FM97] José Luiz Fiadeiro and T. S. E. Maibaum. Categorical semantics of parallel program
design. Sci. Comput. Program., 28(2-3):111–138, 1997.

[FM00] Gian Luigi Ferrari and Ugo Montanari. Tile formats for located and mobile systems.
Inf. Comput., 156(1-2):173–235, 2000.

[GM00] Fabio Gadducci and Ugo Montanari. The tile model. In Gordon D. Plotkin, Colin
Stirling, and Mads Tofte, editors, Proof, Language, and Interaction, pages 133–166.
The MIT Press, 2000.

[GMW97] David Garlan, Robert T. Monroe, and David Wile. Acme: an architecture description
interchange language. In J. Howard Johnson, editor, CASCON, page 7. IBM, 1997.

[Her02] Holger Hermanns. Interactive Markov Chains: The Quest for Quantified Quality, vol-
ume 2428 of Lect. Notes Comp. Sci. Springer, 2002.

[HHK02] Holger Hermanns, Ulrich Herzog, and Joost-Pieter Katoen. Process algebra for perfor-
mance evaluation. Theor. Comput. Sci., 274(1-2):43–87, 2002.

[Hor01] Paul Horn. Autonomic Computing: IBM’s perspective on the State of Information Tech-
nology, 2001.

[HW11] Matthias Hölzl and Martin Wirsing. Towards a system model for ensembles. In Gul
Agha, Olivier Danvy, and José Meseguer, editors, Festschrift in honor of Carolyn Talcott,
volume 7000 of LNCS. Springer, 2011.

ASCENS 30

D2.1: First Report on WP2 (Final) November 15, 2011

[IW95] Paola Inverardi and Alexander L. Wolf. Formal specification and analysis of software
architectures using the CHAM model. IEEE Trans. Softw. Eng., 21(4):373–386, 1995.

[KG10] Jung Soo Kim and David Garlan. Analyzing architectural styles. Journal of Systems and
Software, 83(7):1216–1235, 2010.

[KS86] Werner Kuich and Arto Salomaa. Semirings, Automata, Languages, volume 5 of EATCS
Monographs in Theoretical Computer Science. Springer, 1986.

[Mét98] Daniel Le Métayer. Describing software architecture styles using graph grammars. IEEE
Trans. Softw. Eng., 24(7):521–533, 1998.

[MK96] Jeff Magee and Jeff Kramer. Dynamic structure in software architectures. In David
Garlan, editor, SIGSOFT, volume 21(6) of ACM SIGSOFT Softw. Eng. Notes, pages
3–14. ACM, 1996.

[MR99] Ugo Montanari and Francesca Rossi. Graph rewriting, constraint solving and tiles for
coordinating distributed systems. Applied Categorical Structures, 7(4):333–370, 1999.

[MS11] Ugo Montanari and Matteo Sammartino. Network conscious π-calculus. Submitted,
2011.

[MT75] M. D. Mesarović and Y. Takahara. General Systems Theory: Mathematical Foundations,
volume 113 of Mathematics in Science and Engineering. Academic Press, New York,
San Francisco, London, 1975.

[MT97] Nenad Medvidovic and Richard N. Taylor. A framework for classifying and comparing
architecture description languages. In Mehdi Jazayeri and Helmut Schauer, editors,
ESEC / SIGSOFT FSE, volume 1301 of Lect. Notes Comp. Sci., pages 60–76. Springer,
1997.

[MT02] José Meseguer and Carolyn L. Talcott. Semantic models for distributed object reflection.
In Boris Magnusson, editor, ECOOP, volume 2374 of Lect. Notes Comp. Sci., pages 1–
36. Springer, 2002.

[Nas51] John Nash. Non-cooperative games. The Annals of Mathematics, 54(2):286–295, 1951.

[Osb04] Martin J. Osborne. An introduction to game theory. Oxford University Press, 2004.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software archi-
tecture. ACM SIGSOFT Softw. Eng. Notes, 17:40–52, 1992.

[RR02] Sriram K. Rajamani and Jakob Rehof. Conformance checking for models of asyn-
chronous message passing software. In Ed Brinksma and Kim Guldstrand Larsen, edi-
tors, CAV, volume 2404 of Lect. Notes Comp. Sci., pages 166–179. Springer, 2002.

[Rut07] Jan J. M. M. Rutten. Coalgebraic foundations of linear systems. In Till Mossakowski,
Ugo Montanari, and Magne Haveraaen, editors, CALCO, volume 4624 of Lect. Notes
Comp. Sci., pages 425–446. Springer, 2007.

[Sob09] Pawel Sobociński. A non-interleaving process calculus for multi-party synchronisation.
In Filippo Bonchi, Davide Grohmann, Paola Spoletini, and Emilio Tuosto, editors, ICE,
volume 12 of Electr. Proceedings Theor. Comput. Sci., pages 87–98, 2009.

ASCENS 31

D2.1: First Report on WP2 (Final) November 15, 2011

[Sob10] Pawel Sobociński. Representations of Petri net interactions. In Paul Gastin and François
Laroussinie, editors, CONCUR, volume 6269 of Lect. Notes Comp. Sci., pages 554–568.
Springer, 2010.

[Ste98] Gheorghe Stefanescu. Reaction and control i. mixing additive and multiplicative net-
work algebras. Logic Journal of the IGPL, 6(2):348–369, 1998.

[THK94] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based language and
its typing system. In Constantine Halatsis, Dimitris G. Maritsas, George Philokyprou,
and Sergios Theodoridis, editors, PARLE, volume 817 of Lect. Notes Comp. Sci., pages
398–413. Springer, 1994.

ASCENS 32

	Introduction
	On Task 2.1: Resource-aware operational models
	Task 2.1: strand on Foundations of resource-aware connectors
	Connectors for P/T nets and BIP (Task 2.1)
	The dynamic component-based framework Dy-BIP (Task 2.1)

	Task 2.1: strand on Advanced models of networking middleware
	A framework for resource-aware process calculi (Task 2.1)
	State to function LTSs for stochastic process calculi (Task 2.1)

	On Task 2.2: Adaptive SCs: building emergent behavior from local/global knowledge
	Task 2.2: strand on Contract distillation by distributed synthesis
	Constraints for service contracts (Task 2.2)

	Task 2.2: strand on Conceptual models for autonomicity
	GEM: A General Model for Ensembles and Black-Box Adaptation (Task 2.2)
	White-Box Adaptivity: A conceptual framework (Task 2.2)

	On Task 2.3: Modeling SCEs with collaborative and competitive behavior
	Task 2.3: strand on Game paradigms for service composition
	A game-theoretic model of Grid systems (Task 2.3)
	Smart meter aware domestic energy trading agents (Task 2.3)

	Task 2.3: strand on Coalgebraic techniques for dynamical systems
	A coalgebraic view on Resource Aware operational models (Task 2.3)

