
www.ascens-ist.eu

ASCENS
Autonomic Service-Component Ensembles

D4.1: First Report on WP4
Catalog of Patterns of Component- and Ensemble-Level
Self-Adaptation and Self-Expression, and Requirements for
Knowledge Modeling

Grant agreement number: 257414
Funding Scheme: FET Proactive
Project Type: Integrated Project
Latest version of Annex I: 7.6.2010

Lead contractor for deliverable: UNIMORE
Author(s): Franco Zambonelli (UNIMORE), Dhaminda B. Abeywick-
rama (UNIMORE), Nicola Bicocchi (UNIMORE), Mariachiara Puviani
(UNIMORE) Rosario Pugliese (UNIFI), Emil Vassev (UL)

Due date of deliverable: September 30, 2011
Actual submission date: November 15, 2011
Revision: Final
Classification: PU

Project coordinator: Martin Wirsing (LMU)
Tel: +49 89 2180 9154
Fax: +49 89 2180 9175
E-mail: wirsing@lmu.de

Partners: LMU, UNIPI, UDF, Fraunhofer, UJF-Verimag, UNIMORE,
ULB, EPFL, VW, Zimory, UL, IMT, Mobsya, CUNI

D4.1: First Report on WP4 (Final) November 15, 2011

Executive Summary

In this report we summarize the work performed in WP4 during the first year of the ASCENS project,
and the key results achieved. First, we frame the overall research approach that we have adopted.
Then we introduce the SOTA (“State Of The Affairs”) modeling approach, which we have defined
as an innovative conceptual framework to model adaptation requirements, knowledge requirements,
and to subsequently help designer in choosing the most appropriate adaption patterns. Following,
we present our preliminary taxonomy of self-adaptation patterns and analyze the key concepts and
mechanisms of dynamic self-expression. The ASCENS case studies have been extensively exploited
to assess research activities, also via some early simulation experiences.

ASCENS 2

D4.1: First Report on WP4 (Final) November 15, 2011

Contents

1 Introduction and Research Approach 5
1.1 Research Approach . 5
1.2 Relations with other WPs . 6
1.3 Structure of the Document . 7

2 Black-box Adaptation: What Adaptation is For? 7
2.1 The SOTA Goal-oriented Modeling Approach . 8
2.2 Using SOTA . 10

3 Model Checking SOTA Goal-Oriented Requirements 11
3.1 Approach Overview . 12
3.2 Verification: an Example . 15

4 Modeling of the SOTA Space and Knowledge Requirements 17
4.1 Identification . 17
4.2 Virtualization . 18
4.3 Metrification . 19
4.4 From WP4 to WP3: Knowledge Requirements . 19

5 White-box Adaptation: Adaptation Patterns 20
5.1 Rationale for the Analysis of Adaptation Patterns 20
5.2 Taxonomy . 21
5.3 Patterns and SOTA . 21
5.4 Adaptation Mechanisms and the ASCENS Language 23

6 White-box Adaptation: Towards Self-expression 24
6.1 Examples of Dynamic Self-expression . 24
6.2 Basic Mechanisms for Dynamic Self-expression . 24

7 Robotic Simulations 26

8 Summary and Next Steps 27
8.1 Summary . 27
8.2 Plans for Next Year Activities . 28

ASCENS 3

D4.1: First Report on WP4 (Final) November 15, 2011

ASCENS 4

D4.1: First Report on WP4 (Final) November 15, 2011

1 Introduction and Research Approach

One of the specific research objectives to be faced by ASCENS, and the specific focus of WP4, is to
study, analyze, and experiment with the various models, schemes, and mechanisms via which auto-
nomic self-adaptation can be expressed, at various levels, in service components (SCs) and in service
component ensembles (SCEs). The ultimate goal is to provide a sound and uniform set of conceptual
and practical guidelines and tools to guide developers of service component ensembles in the engi-
neered exploitation of such mechanisms at the level of abstract system modeling, verification, and
implementation.

The overall goal of WP4 is very ambitious. Indeed, the goal of studying adaptation in general
foundational terms contrasts with the many application- and domain-specific adaptation needs that one
can observe in different scenarios. The risk is that in missing the proper trade-off between generality
and usability. On the one hand, one can approach the problem by trying to be extremely general,
and thus missing in proposing conceptual and practical tools that can be effectively usable in specific
application scenarios. On the other hand, one can approach the problem in a more practical way, e.g.,
by working on real-world examples, and thus being eventually unable to synthesize general-purpose
foundational lessons. The research approach we have adopted has been shaped so to minimize such
risks.

1.1 Research Approach

To tackle the above issue, the first year of activities in WP4 has adopted a very pragmatic approach, as
illustrated in Figure 1. The idea has been to identify the many inter-related activities that are required
to effectively guide towards the most appropriate identification of the adaptation requirements of a
system and, thus, of the most appropriate architectural patterns by which such adaptation can be
achieved. In particular, the adopted research approach (and the scientific/technical contributions that
are currently being provided as a result of the activities) is as follows:

Figure 1: An overview of the research approach followed by WP4.

ASCENS 5

D4.1: First Report on WP4 (Final) November 15, 2011

• We have tried to model in very general terms the key conceptual dimension of adaptation, ex-
pressed as an observable property of a software system. That is, we have adopted a sort of
“black-box” approach to adaptation in which, abstracting from the actual mechanisms of adap-
tation and from domain-specific aspects of it, we questioned about “what adaptation is for” from
the viewpoint of system requirements and observable behavior of a system. The result of this
process is a robust conceptual and operational framework, SOTA (“State Of The Affairs”), that
can be used to elicit and rationally represent adaptation requirements.

• SOTA can be used to early assess adaptation requirements via model-checking techniques,
which is very important to verify such requirements well before any design choice is made
on the systems. Also, SOTA can be used to help identifying the awareness requirements of a
system, and thus as a tool by which to support the process of identifying which knowledge must
be made available to the system and its components, which processing techniques should be
applied to this knowledge, and which representation better suits such knowledge.

• SOTA enables expressing adaptation requirements without having to early commit to specific
adaptation schemes (a key shortcomings of many approaches to the engineering of self-adaptive
systems). However, and very important for our work in WP4, it represent a useful means to
move towards a “white-box” approach to adaptation, in which choices should be made about
the internal software structures and processes that one can adopt to achieve adaptation. That is,
SOTA can be a means by which one can be guided on identifying the specific mechanisms and
architectural patterns of self-adaptation, by focusing on what such mechanisms and patterns are
for, other then simply on what they are.

• On these bases, we have started classifying and analyzing – at the level of both individual SCs
and SCEs – the possible architectural schemes that can be adopted (and that have been often
proposed in different areas) to express adaptive behaviors. The result of this activity, which will
continue in the following years, will eventually be a rationally organized set of architectural
design patterns [GHJV95], that can help designers in selecting the most appropriate adaptation
solution for their problems.

• The self-adaptive patterns we analyze determine a sort of “weak”, or first-order, adaptation
[ST09]. To push adaptation capabilities farther, and make SCs and SCEs capable of adaptation
beside the specific situations which their current pattern enable, there is need of a “strong”,
or second-order, adaptation: SCs/SCEs should be able to “dynamically self-express” on need
the most suited architectural pattern of self-adaptation. Thus, we will also study the issue of
dynamic self-expression and in particular the mechanisms that make it possible for SCs/SCEs to
dynamically self-express a change in their structure. As of now, this study is can be considered
at a preparatory stage.

1.2 Relations with other WPs

The adopted research approach clearly implies coordinating with other WPs, and helps positioning
and relating with respect to them. In particular:

• The model checking of SOTA requirements clearly implies cooperating and harmonizing with
the activities devoted to verification in WP5. Although a strong cooperation with WP5 was
not originally planned, the possibility opened by the SOTA model as far as model checking is
concerned, calls for a future tighter coupling of the WP4 and WP5 activities.

ASCENS 6

D4.1: First Report on WP4 (Final) November 15, 2011

• The identification of knowledge requirements in SOTA will support the activities of WP3, where
the issues of knowledge representation and modeling are dealt with [VHGN11]. With this re-
gard, interaction and exchange of information have been already intense over the first year of the
project, and has already led to a substantial agreement on model and engineering issues related
to self-awareness and self-adaptation.

• The SOTA model has been defined and will be refined in strict cooperation with WP1 and WP2,
where a language for SCs/SCEs and innovative formal models for adaptive systems [HW11],
respectively, are being studied by taking into account the lessons of SOTA and, vice versa,
by usefully feeding back our WP4 activities. In particular: two joint meetings with WP1 re-
searchers have been already organized to verify that the WP1 language can support expressing
the adaptation model of SOTA; frequent and intense discussions with WP2 researchers have
taken place to ensure that the mechanisms and models there studied could have been effectively
framed within SOTA and the self-adaptive patterns frameworks.

• All activities have been and will be performed by focusing on the practical application scenarios,
as being studied in WP7. In particular, so far: the e-mobility case study have been adopted to
perform modeling and experiments on model-checking requirements with SOTA; the robotics
case study has been adopted for studying adaptation patterns.

1.3 Structure of the Document

The remainder of this document is organized as follows:

• Section 2 introduces the SOTA model and sketches its main characteristics and potentials;

• Section 3 sketches how the SOTA model can be made operational and can be used – as shown
via examples applied to the e-mobility case study – to effectively model check the consistency
of collected requirements;

• Section 4 shows how the SOTA model can be used to identify requirements for knowledge
modeling and representation;

• Section 5 introduces our early taxonomy of adaptation patterns, details a few patterns we have
identified, and discusses their language-related issues;

• Section 6 analyses the key mechanisms we have identified so far to enable self-expression;

• Section 7 sketches the early simulation experiments we have performed on the robotics case
study.

Eventually, Section 8 summarizes and details the future plan of activities.

2 Black-box Adaptation: What Adaptation is For?

The key motivations for studying adaptation are that: (i) we need to build a system to achieve some
functionalities; but (ii) there are contingent situations that may undermine the capability of achieving
such functionalities, because the system is immersed in an open-ended and dynamic environment;
thus, (iii) means must be devised for the system to be able to achieve its functionalities despite contin-
gencies.

ASCENS 7

D4.1: First Report on WP4 (Final) November 15, 2011

Accordingly, the starting point for understanding and framing adaptation concept is necessarily in
the modeling of the requirements of the system (i.e., analyzing adaptation from a “black-box” view-
point abstracting the actual mechanism via which adaptation can be achieved), in order to understand
both what the system should achieve, what are the contingencies that may prevent it to achieve, and
what are the mechanisms to achieve despite contingencies.

To this end, we have defined SOTA as a conceptual model to support the analysis of requirements
for complex self-adaptive, and the later architectural design. The SOTA conceptual model will be nat-
urally complemented by more elaborated formal models for adaptive ensembles, as being developed
developed in WP2 coherently with SOTA, and early described in [HW11].

2.1 The SOTA Goal-oriented Modeling Approach

The SOTA conceptual model builds on most assessed approaches to goal-oriented requirements engi-
neering [TPYZ09, MSS+10], and integrates and extends them with recent approaches on multidimen-
sional context modeling [RLS+11]. Such generalization and extension try to account for the general
needs of dynamic self-adaptive systems and components.

In general terms, a goal is a specific “state of the affairs” (from which the SOTA acronym derives)
that has to be reached by an entity. The capability of pursuing a goal naturally matches goal-oriented
and intentional entities (e.g., humans, organizations, and multiagent systems), and consequently auto-
nomic and self-adaptive systems.

Interestingly, goal-oriented modeling of self-adaptive systems enables a uniform and comprehen-
sive way of modeling functional requirements and non-functional ones, the former representing the
eventual state of affairs that the system has to achieve, and the latter representing the current state of the
affairs that the system has to maintain while achieving. For systems that are not goal-oriented in nature
(e.g., systems that simply encode some functionality or service) functional requirements can be ex-
pressed as a NULL goal, while the need for adaptivity reduces to expressing those goals that represent
non-functional requirement. In the following we will talk of “goals” when talking about functional
requirements, and will talk about “utilities” to refer to non-functional requirements (although other
may suggest adopting the term “constraints”).

In SOTA, the “state of the affairs” represents the state of everything in the world in which the
system lives and executes that may affect its behavior and that is relevant w.r.t. its capabilities of
achieving. We could also say that such state of affairs is the “context” of the systems. In particular,
the current “state of the affairs” S(t) at time t, of a specific entity e (let it be an SC or an SCE) can be
described as an n-tuple of si values, each representing a specific aspect of the current situation:

S(t) =< s1, s2, . . . , sn >

As an example, an e-mobility scenario includes a number of entities such as users, vehicles and
parking lot operators, all of which immersed in a multidimensional SOTA space that include dimen-
sions such as: parking space availability, charging lot availability, climate comfort level, other than
dimensions related to the street and traffic situation.

As an entity e executes, its position S changes either due to the specific actions of e or because of
the dynamics of e’s environment. Thus, we can generally see this evolution of S as a movement in a
virtual n-dimensional space S (see Figure 2):

S =< S1,S2, . . . ,Sn >

Or, accordingly to the standard terminology of dynamical systems modeling, we could consider S
as the phase space of e and its evolution (whether caused by internal actions or by external contingen-
cies) as a movement in such phase space.

ASCENS 8

D4.1: First Report on WP4 (Final) November 15, 2011

Figure 2: The trajectory of an entity in the SOTA space, starting from a goal pre-condition and trying
to reach the post-condition while moving in the area specified by the utility.

To model such evolution of the system in terms of “transitions”, θ(t, t+1) expresses a movement
of e in the S, i.e.,

θ(t, t+ 1) =< δs1, δs2, . . . , δsn >, δsi = (si(t+ 1)− si(t))

A transition can be endogenous, i.e., induced by actions within the system itself, or exogeneos,
i.e., induced by external sources. The existence of exogeneos transitions is particularly important
to account for, in that the identification of such source of transitions (i.e., the identification of which
dimensions of the SOTA space can induce such transition) enables identifying what can be the external,
non controllable, factors requiring adaptation.

A goal by definition is the eventual achievement of a given state of the affairs. Therefore, in very
general terms, the specific ith goal Gi for the entity e can be represented as a specific point in such
space or, more in general, as a sub-space of S, i.e.:

Gi =< A1, A2, . . . , An >,Ak ⊆ Sk

Getting more specific, a goal Gi got an entity e may not necessarily be always active. Rather, it
can be the case that an entity has a goal activated only when specific conditions occur. In these cases,
it is useful to characterize a goal in terms of a “pre condition” and of a “post-condition”, to express
when the goal has to activate and what the achievement of the goal implies, i.e., Gi = {Gpre

i , Gpost
i }

where both Gpre
i and Gpost

i represent two areas (or points) in the space S. In simple terms: when an
entity e finds itself in Gpre

i the goal gets activated and the entity should try to move in S so as to reach
Gpost

i , where the goal is to be considered achieved (see Figure 2). Clearly, a goal with no pre-condition
is like a goal whose pre-condition coincide with the whole space, and it is intended as a goal that is
always active.

Goals represent, to most extents, functional requirements. However, in many cases, a system
should try to reach its goals by adhering to specific constraints on how such goal can be reached.
By referring again to the geometric interpretation of the execution of an entity as movements in the
space S, one can say that sometime an entity should try (or be constrained) to reach a goal by having
its trajectory confined within a specific area (see Figure 2). We call these sorts of constraints on the

ASCENS 9

D4.1: First Report on WP4 (Final) November 15, 2011

execution path that a system/entity should try to respect “ utilities”, to reflect a nature that is similar to
that of non-functional requirements.

A utility Ui can be typically expressed as a subspace in Se:

U e
i =< A1, A2, . . . , An >,Ak ⊆ Sk

and can be either a general one for a system/entity (the system/entity must always respect the
utility during its execution) or one associated to a specific goal Gi (the system/entity should respect
the utility while trying to achieve the goal). For this latter case, the complete definition of a goal is
thus:

Gi = {Gpre
i , Gpost

i , Ui}

In some cases, it may also be helpful to express utilities as relations over the derivative of a di-
mension, to express not the area the trajectory should stay in but rather the “direction” to follow in the
trajectory (e.g., try to minimize execution time, where execution time is one of the relevant dimension
of the state of affairs). It is also worth mentioning that utilities can derive from specific system re-
quirements (e.g., for an e-vehicle, trying to reach a destination while minimizing fuel consumption) or
can derive from externally imposed constraints (e.g., trying to reach a destination in respect of existing
speed limitations).

A complete definition of the requirements of a system-to-be thus implies identifying the dimen-
sions of the SOTA space, defining the set of goals (with pre- and post-condition, and possibly associ-
ated goal-specific utilities) and the global utilities for such systems, that is, the sets:

S =< S1,S2, . . . ,Sn >

G = {G1, G2, . . . , Gn}

U = {U1, U2, . . . , U
e
n}

In the e-mobility scenario, all the entities such as users, vehicles and parking lot operators, can
be modeled in terms of entities having goals (e.g., a vehicle would like to reach a destination and
park close to it in short time). Also, utilities can be identified related to how such goals can be
achieved. Some of these utilities could be at the level of individual component goals (e.g., reaching
a destination with appropriate climate comfort level in the vehicle itself) or at the global system level
(e.g. minimization of overall pollution or traffic jams).

2.2 Using SOTA

Let us now shortly outline why SOTA is useful, and its definition has been indeed a key preparatory
activity for WP4.

• A sound requirements engineering activity is necessary to pave the way for the effective de-
velopment of a system. SOTA, by gathering from the lessons of goal-oriented requirements
engineering and from modeling approach to context-aware systems, appears very suitable with
this regard. In particular, SOTA supports a simple operational model that makes it possible to
adapt and apply existing model-checking techniques to goals and utilities, and thus assess and
improve requirements identification. This issue is described in Section 3.

• The identification of the SOTA space facilitates identifying the awareness requirements of the
system-to-be. In fact, for a system to be autonomic, i.e., adapt and self-manage its execution
autonomously, it must know whether it is acting in respect of goals and utilities. Thus, it must

ASCENS 10

D4.1: First Report on WP4 (Final) November 15, 2011

have knowledge of its current and predicted position in the SOTA space for those dimensions of
the SOTA space that are of relevance for goals and utilities. As a consequence, SOTA modeling
can be useful to derive the knowledge and awareness requirements of the system. This issue is
discussed in section 4.

• SOTA is a very practical conceptual framework to help understanding how, i.e., according to
which scheme, a system should be architected to as to facilitate it in adaptively achieving its
goals. That is, depending on the goals and utilities expressed during the requirements engineer-
ing phase, and depending on whether these are global or to be locally associated to components,
it is possible to be guided in the choice of the most suitable architectural patterns, both at the
level of components and ensembles. This specific issues is analyzed in Section 5, along with
the presentation of our early taxonomy of adaptation patterns.

3 Model Checking SOTA Goal-Oriented Requirements

The previous section presented the conceptual model for SOTA. In this section, by turning the concep-
tual model into an operational one, we show how SOTA can be an effective tool to perform an early,
goal-level, model checking analysis for adaptive systems.

In our work, operational software requirements are derived systematically from the underlying
goals and utilities. They contain tasks for goals and utilities modeling (e.g. refinement and de-
composition into requirements) and their operationalization (e.g. identifying the events sequence,
pre-conditions and post-conditions). Our approach essentially integrates and leverages the benefits
of goal-oriented requirements elaboration with formal analysis techniques on event-based systems,
two techniques that can be effectively integrated in a single approach [LKMU08]. In particular, our
model checking approach is based on an operational, event-based, untimed and asynchronous model
of labeled transition systems.

The advantages of the proposed approach are related to exploiting the goal-oriented modeling of
SOTA. It provides a systematic method for modeling real-world goals of a system, such as a refinement
hierarchy, conflicts and exceptions handling, thus gradually deriving specifications that satisfy the
goals. Last but not least, the approach can exploit event-based systems for automating formal analysis
of software architecture specifications, and for supporting software architecture design and program
verification and testing. More specifically:

• Model checking can be used to verify whether a set of required pre-conditions and post-conditions
forms a complete operationalization of a goal or utility.

• Model checking can be used to check the satisfaction of higher-level goals. This allows the
requirements engineer not to confine verification to a single goal or utility but a portion of the
goal graph (i.e. multiple goal or utility operationalization).

• Any inconsistencies and implicit requirements can be detected as deadlocks.

• Animation of the goals-oriented models can be performed using the standard animation and
simulation features of the LTSA.

The current model checking approach is based on formal verification, validation and simulation
techniques provided by the model checker Labeled Transition System Analyzer (LTSA) [MK06] and
its process calculus Finite State Processes (FSP) [MK06]. The formalism that we use to model goals
and utilities is the Fluent Linear Temporal Logic (FLTL) of the used model checker. Fluents have

ASCENS 11

D4.1: First Report on WP4 (Final) November 15, 2011

been used to provide a uniform framework for specifying properties that combine event and state-
based predicates, and to automatically verify their satisfaction by an event-based model. Our opera-
tional model was motivated by the formal Tropos language [FMPT01] and the KAOS methodology
[vLDDD91].

The approach is explored and validated using the e-mobility case study (individual planning vehi-
cles scenario [HWB+11]) of the ASCENS project, adapted to the goal-oriented requirements modeling
domain. An extended technical report [AZ11] is available that contains full details of the approach
and an extensive elaboration of the e-mobility case study. Full details on the e-mobility case study can
be found in deliverable D7.1.

3.1 Approach Overview

Our overall model checking process (Figure 3) is divided into four main stages.
First, early requirements are described using the well-assessed i* framework’s [MSS+10]. The

i* framework is centered on three concept types: actors, intentional elements and intentional links.
Actors are active entities of the organizational context who perform actions to achieve their goals, for
example vehicle drivers and parking lot operators in e-mobility. We use a strategic dependency model
to describe the dependency relationships among various actors. In the i* framework, there are several
types of intentional elements that can act as dependencies: goals, soft goals, tasks and resources. We
further extend this to include utilities. These represent the intentional elements of our i* model. In
our operational model, a goal is a functional requirement of the state of the affairs an actor eventually
aims to achieve, for example assigning a car park space. On the other hand, a utility represents a
non-functional requirement of the state of the affairs, which is required to be maintained or avoided
by an actor while achieving a goal. Examples of utilities are avoiding low battery levels or maintaining
climate comfort while reaching the destination. Exemplary goals and utilities for the e-mobility case
study are illustrated in Figure 4.

Second, and since the i* model only addressed static aspects, goals and utilities are represented
into an operational SOTA language, to describe the dynamic aspects of dependencies among SCs and
SCEs. The syntax of such SOTA language adopts a context-free grammar, which consists of a number
of productions. To represent the dynamic characteristics, actors, entities and dependencies are repre-
sented as classes in the SOTA language. On the one hand, the grammar provides information on the
class description defining the structure of the instances with their attributes. Attributes (constants or
variables) of a SOTA class are used to represent relationships between objects. The satisfaction of
goals and utilities can be expressed using three goal patterns: achieve, maintain and avoid. In general,
a goal will have the achieve pattern while a utility will have the maintain or avoid pattern. On the
other hand, the grammar defines properties expressed in typed first-order linear-time temporal logic
formula. Properties, which can be pre-conditions and post-conditions, are used to describe the dy-
namic aspects of actors, entities and dependencies. Domain properties provide descriptive statements
about the environment, which can be physical laws or organizational policies. We provide case study
examples of the grammar, instantiating it to classes.

Third, a methodology to map or translate SOTA to event-based, asynchronous FLTL of the LTSA
for formal model checking purposes is provided. To this end, each actor or entity, which can be an
SC/SCE from the object model, is modeled as a finite state process in FSP. Then the bounding of
the SOTA goal-oriented model is performed and fluents are identified. This involves transforming a
SOTA goal-oriented model that has an infinite state space into a finite state fluents-based SOTA model.
On this base, initiating and terminating events for each fluent are defined, and the pre-conditions and
post-conditions for goals and utilities are modeled as asynchronous FLTL assertions. In general, goals
are modeled as liveness properties while utilities are modeled as safety properties in FLTL. Finally,

ASCENS 12

D4.1: First Report on WP4 (Final) November 15, 2011

Requirements Model
/i* Model

SOTA Grammar/Language

SOTA Class Declaration

SOTA Goals and Utilities

verification

actors, intentional elements,
intentional links

class structure,
pre and postconditions,

domain properties

Requirements Engineer
/Modeler

counterexample traces visualization control

Map SOTA to
Asynchronous FLTL

Map SOTA to
Synchronous FLTL

SOTA class instantiation
for case study

iteratively refine and improve
requirements model

Goal-based
Animation

Verify Goal/Utility
Operationalization

Verify Higher-level
Goal/Utility Satisfaction

Verify Consistency
and Implicit Requirements

asynchronous FLTL assertions,
safety and liveness properties

synchronous FLTL assertions,
safety and liveness properties

goals - achieve pattern,
utilities - maintain,

avoid patterns

Figure 3: Model checking SOTA goal-oriented requirements: the overall approach.

ASCENS 13

D4.1: First Report on WP4 (Final) November 15, 2011

c. Utilities

Battery Level
Restrictions

Feasible Route Sequence

Reach On Time Assign Parking Lot

AND refinement

Achieve Achieve

Optimal Route Sequence

Achieve
Minimal Travel Time

Achieve
User Schedule

Achieve
User Preferences

Battery Charge
Preferences

Climate
Comfort

Assign Preferred
Parking Lot

Achieve

Maintain

AND refinement

a. Goal graph for Feasible Route Sequence goal

b. Goal graph for Optimal Route Sequence goal

Eco
Comfort

Maximal
Comfort

OR refinement

Maximum
Walking

Distance from
Parking Space

Charging Lot
Availability

Charging Lot
Availability

Achieve

Maintain Maintain

Achieve

Avoid Avoid

Avoid Avoid

AND refinement

Goal
Utility

LEGEND

Achieve

Minimization of
Driving Time

Maximization
of Usable

Working Time

Maximum
Walking

Distance from
Parking Space

Minimization
of Appointment

Conflicts

Traffic Flow
of the

Street Network

Parking Lot
Availability

Charging Lot
Availability

Battery Level
Restrictions

Power Output
Restrictions

Recuperation
Restrictions

Climate
Comfort

Maintain

Figure 4: Exemplary goal graphs and utilities for the e-mobility case study modeled according to the
i* framework.

ASCENS 14

D4.1: First Report on WP4 (Final) November 15, 2011

1 const N=4 // number of car spaces in the car park
2 PARKINGSPACECONTROL(N=4) = SPACES[N],
3 SPACES[i:0..N] = (when(i>0) arrive->availableParkingLots[i-1]->SPACES[i-1]
4 |when(i<N) depart->availableParkingLots[i+1]->SPACES[i+1]).
5 VEHICLEARRIVALS = (arrive->VEHICLEARRIVALS).
6 VEHICLEDEPARTURES = (depart->VEHICLEDEPARTURES).
7 ||CARPARK = (VEHICLEARRIVALS||PARKINGSPACECONTROL(4)||CHARGINGLOTSCONTROL(2)||VEHICLEDEPARTURES).
8 assert G_POST_ASSIGNPARKINGSPACE = []<>availableParkingLots[i:1..N]
9 ...

10 // The pre-condition (U_CHARGINGLOTSAVAILABLE) checks whether there is a charging lot
11 // available in the car park before considering availability of parking space.
12 assert G_ASSIGNPARKINGSPACE_CHARGINGLOTSAVAILABLE = (U_CHARGINGLOTSAVAILABLE && G_POST_ASSIGNPARKINGSPACE)
13 ...
14 // A higher-level goal with the use of the && operator
15 assert G_ASSIGNPARKINGSPACE_CLIMATECOMFORT = (U_CLIMATECOMFORT && G_POST_ASSIGNPARKINGSPACE)

Figure 5: FSP code for the ASSIGNPARKINGSPACE goal.

the LTS model of the software-to-be is obtained by composing the component behavior models with
the FLTL assertions defined for the goals and utilities.

In the fourth stage of our model checking process, we verify the asynchronous FLTL assertions
derived for the goals and utilities. Model checking is performed: to identify any incompleteness of
the SOTA goal-oriented requirements model; to identify inconsistencies and implicit requirements that
can be detected as deadlocks; and to animate the goals-oriented models using the standard animation
and simulation features of the LTSA. The counterexample traces generated in the model checking
process can iteratively refine and improve the SOTA requirements model, thus deriving a reliable and
robust requirements specification. This formal analysis is also important for the white box framework
and for the architectural patterns as it can help identify which patterns to adopt.

3.2 Verification: an Example

In this subsection we examine the actual verification with a case study example from e-mobility. The
key goal of the example reported is to exemplify some key advantages of the approach. A more
complete analysis of the case study can be found in [AZ11].

To illustrate goal or utility operationalization and higher-level goal satisfaction, an example of a
goal modeled in the e-mobility case study is provided next. In the description, first, the name of the
goal or utility is provided with a keyword–Achieve, Maintain or Avoid–which specifies the temporal
pattern of the goal or utility. In general, the Achieve pattern is associated with a goal while the Maintain
and Avoid patterns are identified with a utility. Next the goal or utility is described using natural
language to facilitate communication with any stakeholder. This is followed by a formal definition of
the goal or utility using first-order linear-time temporal logic notation. An LTSA model checker-based
FLTL code is provided next to define the goal or utility for verification purposes. Finally, the results
of model checking are discussed with any counterexamples generated.

Goal Achieve[ASSIGNPARKINGSPACE]
Def. Assigns a parking space to an e-vehicle. At least one charging lot needs to be available at the car
park before checking whether a parking space will eventually be available.
FormalDef. []¬(carpark.availableChargingLots = 0) ∧ ♦(carpark.spaces > 0)

The VEHICLEARRIVALS and VEHICLEDEPARTURES processes model the arrival and depar-
ture of vehicles to the car park (ln 5–6, Figure 5). The PARKINGSPACECONTROL process models a
car park with four parking spaces (ln 2–4). It allows cars to enter the park when there is at least one

ASCENS 15

D4.1: First Report on WP4 (Final) November 15, 2011

Figure 6: LTS model for the ASSIGNPARKINGSPACE goal.

space available.
The CARPARK is the composed process of vehicle arrivals, departures, parking space control

and charging lots control. The post-condition for this goal has been defined as a simple liveness
property, which asserts that it is always the case that a parking space will eventually be available
(G POST ASSIGNPARKINGSPACE, ln 8). The pre-condition for this goal is the utility
U CHARGING-LOTSAVAILABLE, which specifies that at least one charging lot needs to be available
at the car park. The automatons generated from this property are provided in Figure 6.

The automaton for G ASSIGNPARKINGSPACE CHARGINGLOTSAVAILABLE corresponds to
the negation of the property as required by model checking. It illustrates that * actions are required in
state 0. These actions allow the automaton to non-deterministically move to the acceptance state. As
there is parking space available there is no counterexample trace generated for the post-condition of
the goal. Ln 14–15 provide an example of a multiple goal operationalization with the use of the &&
operator. G ASSIGNPARKINGSPACE CLIMATECOMFORT is a higher-level goal concerned with
achieving user preferences (Figure 4). Goal decomposition is performed by refining it through the
conjunction of U CLIMATECOMFORT and G POST ASSIGNPARKINGSPACE.

A typical problem that can occur in goal-oriented modeling is that an inconsistency or an implicit
pre-condition can result in a deadlock in the specification. An inconsistency in the specification can
occur for several reasons. For example, if the post-condition of a goal does not imply its pre-condition
then the system might be in a state where the post-condition is true but the pre-condition is not. So the
goal needs to be satisfied but it is not, thus leading to an inconsistency.

To illustrate this, let us consider the assign parking space goal discussed previously. A pre-
condition was defined for this goal, which is the utility U CHARGINGLOTSAVAILABLE (ln 10–12,
Figure 5). This utility specifies that at least one charging lot needs to be available at the car park.
The pre-condition checks whether there is a charging lot available in the car park before considering
availability of parking space. There can be a situation where there is a parking space available (post-
condition satisfied) but no charging station (pre-condition not satisfied). As a consequence, the goal
needs to be satisfied but it is not, thus leading to an inconsistency.

On the other hand, implicit pre-conditions occur due to interactions between requirements on
different goals. An implicit pre-condition occurs in the following scenario. A post-condition of a goal
may implicitly prevent another goal being applied even if all the pre-conditions for the second goal
are true. Such a situation can cause a deadlock in the specification if we do not model additional

ASCENS 16

D4.1: First Report on WP4 (Final) November 15, 2011

constraints or properties to avoid it. Nevertheless, there is a benefit associated with implicit pre-
conditions as it allows requirements engineers to derive a more reliable specification.

The goal-oriented requirements models of SOTA can be animated using the standard animation
and simulation features of the LTSA tool (for example, see Figure 6). This can be used to explore
model behaviors interactively with the users and other stakeholders. Counterexample traces generated
can be used to iteratively refine and improve the SOTA requirements model, thus deriving a reliable
and robust requirements specification.

4 Modeling of the SOTA Space and Knowledge Requirements

The “state of the affairs” is a very general concept, and its dimensions include anything relevant to
keep a system up and running. Specifically, these can include hardware characteristics (e.g., available
memory, load of CPU, network bandwidth, available sensors and devices), software characteristics
(e.g., value of internal parameters, state and availability of related software components, current state
of inter-components interactions, access to shared resources), as well as environmental characteris-
tics (temperature, whether conditions, location and speed, state and availability of specific physical
resources and objects, etc.).

Accordingly, prior to analyzing goals and requirements, a key issue in SOTA concerns acquir-
ing a proper understanding of the domain-specific state of the affairs. This includes the phases of
Identification, Virtualization, and Metrification.

4.1 Identification

First, it is necessary to understand which characteristics are relevant, considering both goals and utili-
ties of the observed system. For both of them, areas Ai ⊆ Si can be expressed in terms of conditional
expressions over the values in Si. In the case, one of the dimensions Si are not relevant towards the
achievement of goals or towards the utilities, then for such goals and utilities Ai ≡ Si.

Indeed, in many practical cases, goals and utilities involves only a limited fraction of the n dimen-
sions of the overall state of affairs space. That is, Gi is expressed as a set of points or areas in an m
dimensional space (with m < n), projection of the original space, disregarding what happens in some
of the S dimensions. If we consider a base vector:

B =< b1, b2, . . . bn >, bi ∈ {0, 1}

such that

bi = 0⇔ ∀Gi ∈ G ∧ ∀Ui ∈ U −→ Ai ≡ Si

then goals and utilities can be expressed in the sub-dimensional space:

SS = B × S

The sub-dimensional space SS is important because it defines what information is relevant for the
system, and which ones can be disregarded. That is, it drives the requirements for which knowledge
has to be acquired, modeled, and made available to SCs and SCEs to enable adaptivity.

In addition, one should also account for specific contingent situations of the SOTA that may affect
the capability of a system of achieving its goal in respect of the utilities, and that are not explicit in
either G or U. It may be necessary to identify these contingencies, identify when and how they could
affect the capability of the system, and turn these explicitly either as utility functions (if we want to

ASCENS 17

D4.1: First Report on WP4 (Final) November 15, 2011

find ways for the system to handle such situations in any case) or as “impossibility areas”, i.e., areas
of the SOTA space in which the system, however self-adaptive, will no longer be able to achieve.

As an example, consider a robot whose goal is to explore and map an environment with (as util-
ity) the maximum possible speed will not have “temperature” as a natural dimension of the SOTA.
However, if we imagine the robot finding itself exploring a building in fire, then we can chose: to
continue ignoring this contingent state of the affairs and let the robot get burned, or to integrate tem-
perature as an additional dimension in the SOTA space and define a utility function associated with the
exploration goal that makes the robot stay away from high temperature areas. To most extent, if we
assimilate the identification of goals and utilities to the “use cases” of traditional software engineering,
the identification of such additional situations can be thought as the identification of the “alternative”
situations in use cases.

So far, we assume that all dimensions in S are independent from each other; that is, a movement in
Si does not affect the positions in the other dimensions Sj . Unfortunately, this is not always the case:
the very characteristics of the domain can induce domain-specific constraints on how the movements
can occur in such space. For instance, speed and residual battery of a modern electric vehicle are
clearly related. Changing speed implies a change in battery’s duration. Therefore, along with the
identification of the goals and utility sets G and U, it can be useful to identify constraints on the
SOTA dimensions and on the “trajectories” that a system can follow on them.

4.2 Virtualization

Each of the identified relevant dimensions of the SOTA space implies the need for the SC/SCE to
acquire information about its current positioning within the space. That is, there must exist some
actual sensors to acquire the corresponding information. However, this is not a challenging issue per
se: a number of different sensors are available to measure the most diverse features: from hardware-
related to software-related ones, from those related to events of the physical world, to those related to
the social world.

The key issue, instead, is that of providing SCs and SCEs with an appropriate view of what’s
happening, i.e., leveraging the typical low-level and punctual perspective of the actual sensors into
that of a “virtual sensor”, capable of providing an appropriate view representation of the values in that
dimension, specifically tuned for the needs of the SCs/SCEs under analysis.

As an example, with reference to the e-mobility scenario, consider a system that is devoted to assist
drivers as they drive. One of the dimensions of the SOTA space for such system can be the current
attention level of the person. As of today, even the simplest smart phone embeds accelerometers to
monitor the current patterns of movement of a user. However, actual accelerometers report movements
in terms of raw numeric time series, whereas for the activity dimension of the SOTA space to be
usable it would better consider activities as represented in terms of values such as “looking ahead”,
“sleeping”, “looking rear”. That is, as if a virtual sensor existed capable of reporting activity data in
such terms.

Another important aspect of the virtualization process is that it detaches the provisioning of the
virtual information from that of the actual sensors. For instance, it becomes irrelevant for an SC
or SCE to know which actual sensor feeds virtual sensors. Consider the case of the human activity
dimension. While the most obvious choice for producing such virtual information are smart phone
accelerometers, one could also adopt also image processing techniques to provide such information,
or even couple image processing with accelerometers to fuse the contributions of both into a more
reliable composed virtual sensor.

In general, virtual sensors are useful for: (a) grouping a number of physical sensors for the sake
of fault tolerance; (b) transparently converting low level sensor readings into semantically relevant in-

ASCENS 18

D4.1: First Report on WP4 (Final) November 15, 2011

formation; and (c) grouping different physical sensors allowing multi-modal recognition capabilities.
The issue of identifying, during the modeling of a system, which kinds of virtual sensors are

required to enable and facilitate adaptation, is thus necessary to properly drive activities related to
knowledge modeling and processing, the latter required to turn physical sensors into virtual ones.

4.3 Metrification

The above process of virtualization implicitly carries the definition of the granularity of transition.
That is, a transition for a component e, as previously defined:

θ(t, t+ 1)e =< δs1, δs2, . . . , δsn >, δsi = (si(t+ 1)− si(t))

takes actually place and is perceivable by the component e itself only if some of the δsi are differ-
ent from 0 according to the virtual sensors values.

Hence, once the virtual sensor dimensions of the SOTA space are identified (and thus the granu-
larity of transition), it may be necessary to associate a “metric” to the values in that space, to enable
SC and SCE assessing whether they are properly aiming towards goal and towards the respect of the
utilities.

As an example, a simple dimension such as temperature, may require to be mapped on different
scales depending on the application scenario. A robot, to avoid get burned, may properly use a virtual
temperature sensor with a scale of 10C. An driver-assistance system, on the other hand, may require a
virtual temperature sensor with a scale of 0,1C.

In many cases (e.g., for the temperature, whatever the virtual scale) dimensions can be expressed
as metric spaces of numerical values. In case of nominal values, instead, the issue of defining a
proper metric (i.e., which concept is close to which other, and how a transition between concept
can take place) arise. For instance, it is not straightforward to define a metric among high level
concepts such as user activities. In some cases, it is possible to convert them into numeric values (e.g.
standingstill = 0, walking = 1, running = 2, biking = 3, driving = 4) while in other cases the
dimension has to be considered discrete.

4.4 From WP4 to WP3: Knowledge Requirements

All the above consideration about the modeling of the SOTA space eventually ends up in identifying
in a quite accurate way the needs for the knowledge that a system has to achieve and how to properly
adapt. In general terms, the modeling of the SOTA space, helps clearly separating the phases related to
the modeling (and later implementation) of the system component to the one related to the modeling
(and later implementation of associated processing and representation techniques) of the knowledge
that they have to manage.

From the viewpoint of the ASCENS project, the modeling of the SOTA space is the natural inter-
section between the activities of WP3 and WP4: the identification phase is naturally in charge of WP4,
the metrification is naturally in charge of WP3, while the issue of virtualization has to be necessarily
addressed as a joint WP3/WP4 activity.

Further to this, the following of our analysis, and in particular the “white box” one, could help
identifying further requirements for the knowledge dimension, in particular as far as the issue of
whether knowledge should be locally to some SCs or globally to some SCEs. For example, an initial
conclusion is that a SC may have three levels of knowledge: (i) a complete self-knowledge that en-
compasses functionalities, internal structure, abilities, goals, policies, local services, execution history,
current situation, activities, intentions, etc.; (ii) incomplete but sufficient knowledge of its ensemble
in terms of common goals, ensemble states, communication mechanisms and interfaces, neighboring

ASCENS 19

D4.1: First Report on WP4 (Final) November 15, 2011

SCs, groups, etc.; and (iii) a rather general understanding of its operational environment in terms of
concepts, objects, events and situations. Further detailed requirements for knowledge representation
and reasoning have been elaborated in [VHGN11], and include:

• knowledge models: knowledge should be structured in four knowledge models: SC, SCE, envi-
ronment and situations;

• knowledge specification and storing: knowledge is a formal specification of knowledge data
stored by SCs and retrieved by inferential engines;

• ontology support: the ontology approach should be used to structure knowledge;

• general and factual knowledge: facts, rules and constraints should be used to allow for general
and factual knowledge about predicates, names, connectives, quantifiers and identity;

• distributed reasoning: knowledge might be shared for reasoning involving multiple SCs;

• situations: situations should be elaborated as a knowledge entity;

• policies: behavior policies might be used to drive the SCs in situations;

• experience: SCs experience need to be automatically stored and retrieved for reasoning pur-
poses.

5 White-box Adaptation: Adaptation Patterns

The SOTA modeling approach is very useful to understand and model the functional and adaptation
needs of a system, as well as to check the correctness of specifications.

However, when switching from the “black-box” requirements analysis to the actual “white box”
design of a system, the issue arise of identifying which architectural schemes should be chosen for
individual SCs as well as for SCEs. With adaptivity in mind, the goal of such choice is to make sure
that the adopted architectural scheme can support the capability of the system of self-adapt its behavior
without undermining its functional behaviors.

5.1 Rationale for the Analysis of Adaptation Patterns

The way we have initially undertaken the study of self-adaptation for SCs and SCEs have been by
identifying the key architectural patterns that could be adopted to enforce self-adaptation (other than
self-expression) at the level of individual components and of ensembles. The result of this early
analysis is extensively described in [CPZ11]. The rational underlying it can be summarized as follows:

• The capabilities of self-adaptation in a system necessarily requires the existence of control
loops, as it is widely recognized in the area of self-adaptive systems [BDMSG+09, CdLG+09,
VWMA11]. Control loops implies that, somehow, there exist means to inspect and analyze what
is happening in the system (at the level of SCs, or SCEs, or at the level of the environment in
which they situates) and have components of the systems react accordingly.

• Therefore, framing the possible architectural means by which such feedback control loops are
integrated in the system (whether integrated explicitly by design or emerging implicitly from
interactions) can be a suitable approach to identify self-adaptation patterns and reason on them.

ASCENS 20

D4.1: First Report on WP4 (Final) November 15, 2011

5.2 Taxonomy

The taxonomy of patterns that we have originally identified is schematically represented in Figure 7.
Without entering here into details (for which we forward the reader to [CPZ11], we can see that:

• At the level of individual components, and beside non-adaptive primitive service components
(i.e., simply capable of providing functions) the three main self-adaptive patterns categories
are: (i) reactive service components that are not coupled with an explicit control loop, but such
control loops exists only implicitly in their interactions with the environment (as in reactive
agent and component systems [BBD+06]); (ii) components that have an internal control loop to
direct their goal/utility-oriented behavior (as in intelligent and goal-oriented agents [BBD+06]);
(iiI) autonomic components explicitly coupled with an external control loop that monitor and
direct their behavior (as in most of autonomic computing architectures [KC03, HKC+06]).

• At the level of ensembles, the three key pattern categories are: (i) ensembles for which the
overall adaptive activities are not explicitly engineered by design, but for which adaptiveness
(and control loops) emerge from the interactions of the components with a shared environment
(as in phermone-based [BCD+06, KT11] and field-based approaches [MZ09]); (ii) ensembles in
which the overall adaptive behavior is explicitly designed by means of specifically conceived in-
teraction patterns between components (e.g., choreographies or negotiations [BS97, JFL+01]),
and in which mutual interactions implies the existence of control loops; (iii) ensembles in which
there exists a set of components or “coded behaviors” that have the explicit goals of enforcing
a global control loop over the ensembles, i.e., of controlling and directing their overall behavior
(as in coordinated systems and electronic institutions [ERAS+01]).

In addition, as from Figure 7, patterns at the component level are not orthogonal to the ones at
the ensemble level, e.g., it is not possible to adopt a negotiation patterns in a ensemble of reactive
components. This consideration is very important in that it can be useful to help designers in com-
prehensively attacking the choice of the most suitable adaptation patterns at both the component and
ensemble level.

5.3 Patterns and SOTA

From what already said, a catalog of patterns makes sense if it can guide designers in making choices.
However, after the preliminary analysis we have reported about (and which we consider very useful to
frame some key ideas) we found it difficult to proceed with the activities to produce a complete catalog
of self-adaptive patterns. In fact, for the catalog to be complete and capable of providing guidelines,
it had to be based on experiences and/or on some solid formal ground, neither of which we had at the
beginning of the project.

To this end, beside experiences on the case studies that will be extensively performed during
the second year of the project (and that have already started [Puv11]), we have studied how SOTA
modeling could provide advantages in the identification and modeling of patterns.

To understand what it could means to model patterns in terms of SOTA consider these two minimal
examples of (incomplete) patterns description.
Reactive Service Component

• Characteristics: Reactive Service Components are characterized by the capability of perceiving
(a portion of) the SOTA space and of applying actions to modify its position in it in the medium
term (that is they have utilities). However, they do not have means to aim in the long term, that
is, they do not have goals.

ASCENS 21

D4.1: First Report on WP4 (Final) November 15, 2011

Figure 7: An overview of self-adaptation patterns.

• SOTA Model: G = {∅},U = {U1, U2, . . . , Un}

• When to Adopt: As a general rule, this pattern has to be adopted for a component when:

– There is need for the component to ensure specific non-functional requirements in the
provisioning of its services but the goals are expressed at a higher-level of the overall
system, and cannot be mapped into individual goals

– External events are frequent and need a rapid adaptation.

• Examples: Examples of components that use this pattern can be found in ant-based foraging
systems [BDT99] and motion coordination [MMTZ06].

Goal-oriented Service Component

• Characteristics: Goal-oriented Service Components are characterized by the capability of per-
ceiving (a portion of) the SOTA space and of applying actions to modify its position in it in
the medium term (that is, they can have utilities) as well as in the long terms (that is, they have
goals).

• SOTA Model: G = {G1, G2, . . . , Gm},U = {U1, U2, . . . , Un}

• When to Adopt: As a general rule, such pattern has to be adopted when:

– There are components that are goal-oriented in nature (e.g., robots or navigator-enabled
cars);

– There are components that, despite being simply service-oriented in nature, they actively
try to adapt their behavior, even without waiting for external call (or stimuli).

ASCENS 22

D4.1: First Report on WP4 (Final) November 15, 2011

• Examples: An example of the use of this pattern is Jadex [BPL05], that supports cognitive agents
by exploiting the BDI model. Other examples are goal-oriented systems, like robots [KBM98].
Another example of architecture that describe the component using this kind of patter can be
the Rainbow architecture [CPGS09].

In both this examples, as preliminary as they can be, one can see that reasoning in terms of SOTA
can facilitate both the description of the patterns and the understanding of when to adopt them.

In addition, from the analysis and model checking of the overall set of SOTA goals and utilities for
a system to be, further hints can be derived for how (i.e., via which patterns) to architect the overall
system. Although this study is only at the beginning, we can give a feeling of how this could happen.

Consider that, after the SOTA analysis and its model checking, one find that there exists two goals
Gi and Gj that are “conflicting”, i.e.,

Gpre
i ∩Gpre

j 6= ∅ ∧Gi ∩Gj = ∅
Then it is clear that if both these goals have to be pursued at the same time by the system, the

designer is necessarily forced to decompose the system into two SCs (or SCEs), each of which devoted
to independently try to reach the goal.

Consider instead that the analyst identifies the existence of two goals Gi and Gj that are “compat-
ible” with each other, i.e.,

Gpre
i ∩Gpre

j = ∅
Then in this case the designer can evaluate to collapse the achievement of these two goals into a

single one, to be assigned to a single goal-oriented SC (or SCE). In alternative, if the analysis shows
that these two goals assume in any case the existence of two different SCs, the design can evaluate the
possibility of realizing these two SCs with a simple reactive patterns and collapse the two goals into
a single one, whose adaptive achievement is left in charge of a single external controller for the two
SCs.

As preliminary and simple as these examples can be, they show the potentials of SOTA modeling
in design, other than in analysis.

5.4 Adaptation Mechanisms and the ASCENS Language

For all the above adaptation patterns, the existence of a control loop implies the possibility for SCs
or SCEs system to “understand” when and how to adapt. That is, to understand in which condition
adaptation should take place and to put the appropriate adaptation actions at work, However, when
it comes to implementation, adaptation mechanism must be put in place, and there must be means
for designers and programmers to specify the actual adaptation mechanisms in simple and expressive
terms.

In recent years, Aspect-Oriented Programming and Context-Oriented Programming have emerged
as very flexible and promising approaches for programming self-adaptive software systems [GPS10,
GPS11]. The idea is to make available language constructs and mechanisms by which to specify –
within software components – which “situations” require adaptation and to dynamically activate the
most appropriate behaviors (i.e., methods or algorithms) in response to them.

Accordingly, a necessary activity in the study of self-adaptive patterns, described in detail in
[GLPT12], has been to:

• Understand how self-adaptive patterns could be effectively modeled within a tuple-based coordi-
nation language, to assess the coherence of the identified patterns and of the ASCENS language
being defined in WP1;

ASCENS 23

D4.1: First Report on WP4 (Final) November 15, 2011

• Understand how the adaptation mechanisms typical of AOP and COP can be effectively ren-
dered within the ASCENS language under definition.

Such study, other than helping to better understand the relations between adaptation and program-
ming languages, forms a necessary ground on which to rely to improve and refine our pattern catalog,
i.e., to include examples of realization of each patterns in the ASCENS language.

6 White-box Adaptation: Towards Self-expression

As from previous discussion, a self-adaptation pattern specifies a specific architectural design for SCs
or SCEs, with a specific accent on how the control loop enabling adaptation is integrated in them. A
specific choice for the engineering of such control loops can make a system capable of adapting to a
hopefully large, yet necessarily limited, range of contingencies.

Accordingly, a stronger, sort of meta-level, form of structural adaptation may be required, which
is what we define “self-expression”. Whenever the patterns adopted in a system (for some of its
SCs or SCEs) appears do not longer adequate to properly and/or effectively support adaptation, a re-
engineering of the structure of the system may be required, to re-shape the control loops that ensure
adaptation.

6.1 Examples of Dynamic Self-expression

We have analyzed with more details the issue of self-expression in [ZBC+11]. Here, to clarify, we
shortly summarize a there reported example of self-expression applied to the robotics case study.

Let us assume to have a large group of robots in charge of collectively explore and map an unknown
environment. In this case, and given the availability of many robots, it is possible to think at organizing
the group as a “swarm”, and exploit collective intelligence to reach the goal. That is:

• Have each robot be programmed as a simple reactive entity (at least for its tasks related to
exploring and mapping), i.e., without associating to each of them a control loop;

• Have the coordination among robots be based on repulsive pheromone trails (as in ant foraging
[BDT99]), i.e., have an implicit set of control loops embedded in the mediated pheromone-based
interactions that ensure adaptivity [BCD+06].

However, let us now assume that, for some unforeseen reasons, many of the robots dies (e.g.,
ran out of batteries earlier than expected due to high humidity rates). In this case, the swarm pattern
(which requires a large number of robots to be effective) can soon turns to be ineffective, and a pattern
based on direct goal-oriented negotiation between robots becomes be more suitable. This requires
the group of robots to change their pattern of interactions (to switch from a swarm-based pattern to a
negotiation-based one) and the robots themselves to switch from acting as simple reactive entities to
acting as rational goal-oriented entities.

In a sentence: both the robots and the ensemble of robots have to self-express different patterns to
re-engineer the structure of the control loops, in order to preserve effective adaptive capabilities.

6.2 Basic Mechanisms for Dynamic Self-expression

The study of self-expression in the first year involved, beside clarifying the issue by means of exam-
ples, identifying the basic mechanisms by which such self-expression can be actuated, either at the

ASCENS 24

D4.1: First Report on WP4 (Final) November 15, 2011

level of SCs or of SCEs. Such basic mechanisms then form the basis from cataloging the patterns that,
applying such mechanisms, enables an SC or an SCE to switch from one adaptation pattern to another.

Concerning the basic mechanisms, these have to be mechanisms that enables a dynamic change in
the architecture of a component or ensemble. In the area of self-adaptive software [ST09], the issue
of identifying such mechanisms have been extensively studies [ADLMW09, RC10], and there is a
general agreement that the basic mechanisms include:

• Internalization. An individual software component (or a software system) internalizes some
new component or behavior to change its basic internal architecture;

• Dismission. Vice versa, a component (or a software system) dismisses some of its components
or behavior.

When contextualizing this basic mechanisms to the specifics of adaptive SCs and SCEs, and with
a specific focus on the architecture of control loops, we obtain (for the level of individual SCs) the
following mechanisms:

• Attachment of control loop, e.g., a reactive service component becomes a component explicitly
coupled with an external control loop.

• Internalization of control loop, e.g., an autonomic service component becomes a goal-oriented
component with an internal control loop.

• Externalization of control loop, e.g., a goal-oriented service component with internal control
loop externalize its control loop to become an autonomic component;

• Dismission of control loop, e.g., a goal-oriented service component dismisses its control loop
to become a reactive service component.

Basically, from the viewpoint of SOTA modeling, this mechanisms imply dismissing, internal-
izing, or externalizing, the issue of controlling the achievements of specific goals and utilities (see
Figure 8).

Switching from the mechanism viewpoint to the pattern one, a pattern of dynamic self-expression
expresses a movement from one adaptive pattern to another one by applying the necessary mecha-
nisms. With reference to Figure 8, a possible pattern is the one in which a goal-oriented service com-
ponent becomes a reactive service component by applying a mechanism of dismission of its internal
control loop, and thus dismissing its responsibility over the taking care of goals and utilities.

At the level of SCEs, similar considerations could apply. However, it is clear that the application of
self-expression mechanisms at the level of SCEs cannot abstract from applying (a set of) mechanisms
at the level of the individual SCs. Also, we emphasize that dynamic changes in the structure of the
control loops devoted to control the achievement of goals and utilities necessarily affect the kind of
knowledge that components have to manage. That is, externalizing or internalizing control loops
necessarily implies externalizing or internalizing some knowledge.

Over the second year, the comprehension and formalization of self-expression patterns will pro-
ceed in parallel with the study and experimentation of the self-adaptive patterns to which they apply,
and of the implications of this on knowledge management.

ASCENS 25

D4.1: First Report on WP4 (Final) November 15, 2011

Figure 8: Patterns of individual dynamic self-expression.

7 Robotic Simulations

To better understand what adaptation means in practical terms, how adaptation can be performed both
at level of SCs and at level of SCEs, as well as to enrich our pattern catalog with specific guidelines
for their adoption, it is important to ground on practical experiences.

To this end, we have started experiencing with the robotics case study, in particular with the support
of the ARGoS open source robot simulator. The key goals of our first experiences have been to unfold
the idea of black-box adaptation and to pave the way for a better understanding of patterns.

The scenario we choose to kick off experiences [KB00] is aimed at understanding how each robot
can contribute to system-level adaptation, and consider a group of robots in an environment. Each
robot has the individual goal of finding some objects (sorts of virtual “food” items) in the environment
and, carrying one at a time, move them back to a specific location of the environment. At the level of
robot ensembles, though, a global goal (better, in SOTA terms, a global “utility”) is that of preserving
the overall level of batteries in the group of robot so as to ensure that the goal of finding and moving
all objects can be achieved.

Starting from this scenario we already performed a set of different simulations, whose detailed
description can be found in [Puv11], of which here we sketch only some key points.

In Figure 7 it is represented the area in which robots (situated in the lower part of the area, and
acting as a virtual “nest” for the robot) normally reside, and where objects are (black dots) randomly
distributed in it. The goal for robots is to periodically go out of the nest to find object to get back to it.

To shortly discuss a simple experiment, we have experienced a strategy in which, the robots of
the group, after having spent some time out of the nest for finding food, rest in the nest for a time
proportional to the time they have wondered around before finding food. The idea is: the more difficult
is to find objects, the more is better to rest, not to have the whole group exhaust its batteries. As it can
be seen in Figure 10 (where the X axis represents the simulation time and the Y axis represents the
number of robots currently searching for food), such a simple strategy make the average number of
active robots in the group adaptively change depending on the amount of existing food items (FI).

ASCENS 26

D4.1: First Report on WP4 (Final) November 15, 2011

Figure 9: The arena of the robotic simulation.

Figure 10: Results from a simple simulation experience.

8 Summary and Next Steps

Let us now summarize the key results achieved, and sketch the plans for the next year activities, also
outlining how they relate with the other WPs of the project.

8.1 Summary

Overall, the first year of the activities within WP4 has brought a substantial amount of interesting
scientific results. Specifically:

• We have defined the SOTA model, which can act as a sound comprehensive methodological
foundation for studying self-adaptation and self-expression.

• We have shown how the SOTA model can be an effective tool for enabling early checking of
requirements in complex autonomic software systems, and can interestingly more strongly relate
the activities of WP4 with those of WP5.

• Again based on the SOTA model, we have defined guidelines for helping in identifying the
requirements for knowledge modeling and identification. This activity has been performed in
strict relation with WP3.

ASCENS 27

D4.1: First Report on WP4 (Final) November 15, 2011

• We have defined a frame for classifying and identifying the key patterns of self-adaptation and
self-expression in autonomic service component ensembles, and modeled a set of key relevant
patterns. In addition, in cooperation with WP1, we have analyzed the issue of expressing such
patterns via a suitable programming language for adaptive systems.

• We have started some initial experiences on the ASCENS case studies.

8.2 Plans for Next Year Activities

The activity of the first year has solidly paved the way for a smooth continuation of the activities in
the next year, as well as for a tighter integration of the activities with the other WPs. In particular:

• Perform extensive simulations, and some real-world experiments, on the ASCENS case studies,
to gather feedbacks and knowledge related to the behavior of the identified self-adaptive pat-
terns, and eventually complete the pattern catalog. This work is expected to be carried on in
strict cooperation with WP1, as far as the rendering of these patterns in the ASCENS languages
is concerned, and with WP2, to start experiencing also with patterns based on advanced (e.g.,
game theoretic) mechanisms.

• Directly related, analyze how and in which conditions self-expression patterns can be effectively
applied. This will require continuing the analysis of the WP7 case studies and of use cases
within.

• Analyze how and to which extent the SOTA model, and in particular a requirements analysis
based on SOTA, can facilitate designers in choosing and engineering the most suitable self-
adaptive patterns for a system to be. This activity will be performed in strict cooperation with
WP3, as far as the modeling of the associated knowledge is concerned, and with WP5, to be
possibly supported by model checking techniques.

References

[Abe08] D. Abeywickrama. Pervasive services engineering for soas. In ICSOC, Interna-
tional Conference on Service Oriented Computing, PhD Symposium, page 29, Paphos,
Cyprus, December 2008.

[ADLMW09] J. Andersson, R. De Lemos, S. Malek, and D. Weyns. Modeling dimensions of
self-adaptive software systems. In B.H.C. Cheng, R. de Lemos, P. Inverardi, and
J. Magee, editors, Software Engineering for Self-Adaptive Systems, volume 5525 of
Lecture Notes in Computer Science, pages 27–47. Springer, 2009.

[ADM05] D. Ancona, D. Demergasso, and V. Mascardi. A survey on languages for programming
bdi-style agents, 2005.

[AHDJ01] P. Anthony, W. Hall, V.D. Dang, and N. Jennings. Autonomous agents for participating
in multiple online auctions. In Proc. of the IJCAI Workshop on EBusiness and the
Intelligent Web, pages 54–64, Seattle WA, USA, August 2001.

[AZ11] D. B. Abeywickrama and F. Zambonelli. Model checking SOTA goal-oriented re-
quirements. ASCENS Project Technical Report No. 01, October 2011.

ASCENS 28

D4.1: First Report on WP4 (Final) November 15, 2011

[BB05] A. Barros and E. Börger. A compositional framework for service interaction patterns
and interaction flows. In Proceedings of the Seventh International Conference on For-
mal Engineering Methods (ICFEM’2005), pages 5–35, Durham, UK, October 2005.
Springer Verlang.

[BBD+06] R.H. Bordini, L. Braubach, M. Dastani, A.E.F. Seghrouchni, J.J. Gomez-Sanz,
J. Leite, G. O’Hare, A. Pokahr, and A. Ricci. A survey of programming languages
and platforms for multi-agent systems. Special Issue: Hot Topics in European Agent
Research II Guest Editors: Andrea Omicini, 30:33–44, 2006.

[BCD+06] O. Babaoglu, G. Canright, A. Deutsch, G.A.D. Caro, F. Ducatelle, L.M. Gambardella,
N. Ganguly, M. Jelasity, R. Montemanni, A. Montresor, et al. Design patterns from
biology for distributed computing. ACM Transactions on Autonomous and Adaptive
Systems (TAAS), 1(1):26–66, 2006.

[BCD+07] P. Brittenham, R.R. Cutlip, C. Draper, B.A. Miller, S. Choudhary, and M. Perazolo.
It service management architecture and autonomic computing. IBM Systems Journal,
46(3):565–581, 2007.

[BDMSG+09] Y. Brun, G. Di Marzo Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu, H. Müller,
M. Pezzè, and M. Shaw. Engineering self-adaptive systems through feedback loops. In
B.H.C. Cheng, R. de Lemos, P. Inverardi, and J. Magee, editors, Software Engineering
for Self-Adaptive Systems, volume 5525 of Lecture Notes in Computer Science, pages
48–70. Springer, 2009.

[BDT99] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm intelligence: from natural to
artificial systems. Oxford University Press, USA, 1999.

[Bil04] E.A. Billard. Patterns of agent interaction scenarios as use case maps. Systems, Man,
and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 34(4):1933–1939, 2004.

[BP10] L. Baresi and L. Pasquale. Live goals for adaptive service compositions. In Pro-
ceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-
Managing Systems, pages 114–123, Cape Town, South Africa, May 2010. ACM.

[BPBK04] P. Bresciani, L. Penserini, P. Busetta, and T. Kuflik. Agent patterns for ambient intel-
ligence. In P. Atzeni, W. Chu, H. Lu, S. Zhou, and T.-W. Ling, editors, Conceptual
Modeling–ER 2004, volume 3288 of Lecture Notes in Computer Science, pages 682–
695. Springer, 2004.

[BPL05] L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex: A BDI-agent system combining
middleware and reasoning, pages 143–168. Springer, 2005.

[BS97] C. Beam and A. Segev. Automated negotiations: A survey of the state of the art.
Wirtschaftsinformatik, 39(3):263–268, 1997.

[CBC09] R. Charrier, C. Bourjot, and F. Charpillet. Study of Self-adaptation Mechanisms in
a Swarm of Logistic Agents. In 2009 Third IEEE International Conference on Self-
Adaptive and Self-Organizing Systems, pages 82–91, San Francisco, California, USA,
September 2009. IEEE Computer Society Press.

ASCENS 29

D4.1: First Report on WP4 (Final) November 15, 2011

[CdLG+09] B. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker,
N. Bencomo, Y. Brun, B. Cukic, et al. Software engineering for self-adaptive systems:
A research roadmap. In B.H.C. Cheng, R. de Lemos, P. Inverardi, and J. Magee, edi-
tors, Software Engineering for Self-Adaptive Systems, volume 5525 of Lecture Notes
in Computer Science, pages 1–26. Springer, 2009.

[CMS09] E. Cakar and C. Müller-Schloer. Self-organising interaction patterns of homogeneous
and heterogeneous multi-agent populations. In 2009 Third IEEE International Con-
ference on Self-Adaptive and Self-Organizing Systems, pages 165–174, San Francisco,
California, USA, September 2009. IEEE Computer Science.

[Com06] A. Computing. An architectural blueprint for autonomic computing. White paper,
36:34, 2006.

[CPGS09] S.W. Cheng, V. Poladian, D. Garlan, and B. Schmerl. Improving architecture-based
self-adaptation through resource prediction. In B.H.C. Cheng, R. de Lemos, H. Giese,
P. Inverardi, and J. Magee, editors, Software Engineering for Self-Adaptive Systems,
volume 5525 of Lecture Notes in Computer Science, pages 71–88. Springer-Verlang,
2009.

[CPZ11] G. Cabri, M. Puviani, and F. Zambonelli. Towards ataxonomy of adaptive agent-based
collaboration patterns for autonomic service ensembles. In 2011 Annual Conference
on Collaborative Technologies and Systems, pages 306–315, Philadelphia (USA),
May 2011.

[CSPSO11] C.E. Cuesta, J. Santiago Prez-Sotelo, and S. Ossowski. Self-organising adaptive struc-
tures: The shifter experience, 2011.

[CTN07] H.Q. Chong, A.-H. Tan, and G.-W. Ng. Integrated cognitive architectures: a survey.
Artificial Intelligence Review, 28(2):103–130, 2007.

[DA00] A.K. Dey and G.D. Abowd. Towards a better understanding of context and context-
awareness. In CHI 2000 Workshop on the What, Who, Where, When, and How
of Context-Awareness, pages 304–307, The Hague, The Netherlands, April 2000.
Springer-Verlag.

[Dal11] F. Dalpiaz. Exploiting Contextual and Social Variability for Software Adaptation. PhD
thesis, DISI- University of Trento, 2011.

[Dav11] J.G. Davis. From crowdsourcing to crowdservicing. Internet Computing, IEEE,
15(3):92–94, 2011.

[DB11] S. Dustdar and K. Bhattacharya. The social compute unit. Internet Computing, IEEE,
15(3):64–69, 2011.

[DCDG05] G. Di Caro, F. Ducatelle, and L.M. Gambardella. AntHocNet: an adaptive nature-
inspired algorithm for routing in mobile ad hoc networks. European Transactions on
Telecommunications, 16(5):443–455, 2005.

[DKP03] T.T. Do, M. Kolp, and A. Pirotte. Social patterns for designing multi-agent systems,
2003.

ASCENS 30

D4.1: First Report on WP4 (Final) November 15, 2011

[DMSFH+04] G. Di Marzo Serugendo, N. Foukia, S. Hassas, A. Karageorgos, S.K. Mostéfaoui,
O.F. Rana, M. Ulieru, P. Valckenaers, and C.V. Aart. Self-organisation: Paradigms
and applications. In S. A. Brueckner, G. Di Marzo Serugendo, and D. Hales, editors,
Engineering Self-Organising Systems, volume 3910 of Lecture Notes in Computer
Science, pages 1–19. Springer, 2004.

[DWH06] T. De Wolf and T. Holvoet. Design patterns for decentralised coordination in self-
organising emergent systems. In S. A. Brueckner, G. Di Marzo Serugendo, and
D. Hales, editors, Engineering Self-Organising Systems, volume 3901 of Lecture
Notes in Computer Science, pages 28–49. Springer, 2006.

[EM10] N. Esfahani and S. Malek. On the role of architectural styles in improving the adapta-
tion support of middleware platforms. In ECSA’10 Proceedings of the 4th European
conference on Software architecture, pages 433–440, Copenhagen, Denmark, August
2010. Springer-Verlang.

[ERAS+01] M. Esteva, J.A. Rodriguez-Aguilar, C. Sierra, P. Garcia, and J. Arcos. On the formal
specification of electronic institutions. In F. Dignum and C. Sierra, editors, Agent
mediated electronic commerce, volume 1991 of Lecture Notes in Computer Science,
pages 126–147. Springer, 2001.

[FGG+06] P. Feiler, R.P. Gabriel, J. Goodenough, R. Linger, T. Longstaff, R. Kazman, M. Klein,
L. Northrop, D. Schmidt, K. Sullivan, et al. Ultra-large-scale systems: The software
challenge of the future. Carnegie Mellon University, Software Engineering Institute,
2006.

[FMPT01] A. Fuxman, J. Mylopoulos, M. Pistore, and P. Traverso. Model checking early re-
quirements specifications in Tropos. In Proceedings of the 5th IEEE International
Symposium on Requirements Engineering, pages 174–181, Washington, DC, USA,
2001. IEEE Computer Society.

[FSJ98] P. Faratin, C. Sierra, and N.R. Jennings. Negotiation decision functions for au-
tonomous agents. International Journal of Robotics and Autonomous Systems, 24(3-
4):159–182, 1998.

[GAKT05] S. Graupner, A. Andrzejak, V. Kotov, and H. Trinks. Adaptive service placement
algorithms for autonomous service networks. In S.A. Brueckner, G. Di Marzo Seru-
gendo, A. Karageorgos, and R. Nagpal, editors, Engineering Self-Organising Systems,
volume 3464 of Lecture Notes in Computer Science, pages 280–297. Springer, 2005.

[Gel09] E. Gelenbe. Steps towards self-aware networks. Communications of the ACM,
52(7):66–75, 2009.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison Wesley,
Reading (MA), 1995.

[GHK+10] H. Gomaa, K. Hashimoto, M. Kim, S. Malek, and D.A. Menasc. Software adaptation
patterns for service-oriented architectures. In Proceedings of the 2010 ACM Sympo-
sium on Applied Computing, pages 462–469, Sierre, Switzerland, March 2010. ACM.

[GLPT12] E. Gjondrekaj, M. Loreti, R. Pugliese, and F. Tiezzi. Modeling adaptation with a
tuple-based coordination language. In 2012 ACM Symposium on Applied Computing,
page to appear, Riva Del Garda (I), March 2012.

ASCENS 31

D4.1: First Report on WP4 (Final) November 15, 2011

[GPS10] C. Ghezzi, M. Pradella, and G. Salvaneschi. Programming language support to
context-aware adaptation: a case-study with erlang. In Proceedings of the 2010 ICSE
Workshop on Software Engineering for Adaptive and Self-Managing Systems, pages
59–68, Cape Town, South Africa, May 2010. ACM.

[GPS11] C. Ghezzi, M. Pradella, and G. Salvaneschi. An evaluation of the adaptation ca-
pabilities in programming languages. In Proceedings of 6th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems, pages 50–59,
Waikiki, Honolulu, Hawaii, May 2011. ACM.

[GRB+05] V. Grimm, E. Revilla, U. Berger, F. Jeltsch, W.M. Mooij, S.F. Railsback, H.H. Thulke,
J. Weiner, T. Wiegand, and D.L. DeAngelis. Pattern-oriented modeling of agent-based
complex systems: lessons from ecology. Science, 310(5750):987–991, 2005.

[Hay08] B. Hayes. Cloud computing. Communications of the ACM, 51(7):9–11, 2008.

[HG11] N. Hocine and A. Gouaich. A survey of agent programming and adaptive serious
games, 2011.

[HKC+06] S. Hariri, B. Khargharia, H. Chen, J. Yang, Y. Zhang, M. Parashar, and H. Liu. The
autonomic computing paradigm. Cluster Computing, 9(1):5–17, 2006.

[HL05] B. Horling and V. Lesser. A survey of multi-agent organizational paradigms. The
Knowledge Engineering Review, 19(4):281–316, 2005.

[Hoh07] G. Hohpe. Soa patterns–new insights or recycled knowledge?, 2007.

[HTE97] A.F. Harmsen, Universiteit Twente, and M. Ernst. Situational method engineering.
Moret E. & Young Management Consultants, 1997.

[HW11] Matthias Hlzl and Martin Wirsing. Towards a system model for ensembles. In
Festschrift in honor of Carolyn Talcott, volume 7000 of LNCS. Springer, 2011.

[HWB+11] N. Hoch, B. Werther, H. P. Bensler, N. Masuch, M. Ltzenberger, A. Heler, S. Albayrak,
and R. Y. Siegwart. A user-centric approach for efficient daily mobility planning in
e-vehicle infrastructure networks. In G. Meyer and J. Valldorf, editors, Advanced Mi-
crosystems for Automotive Applications 2011, VDI-Buch, pages 185–198. Springer-
Verlag, 2011.

[HWHJ09] R. Haesevoets, D. Weyns, T. Holvoet, and W. Joosen. A formal model for self-
adaptive and self-healing organizations. In Software Engineering for Adaptive and
Self-Managing Systems, 2009. SEAMS’09. ICSE Workshop on, pages 116–125, Van-
couver, BC, Canada, May 2009. IEEE Computer Society.

[JDHS05] W. Jiao, J. Debenham, and B. Henderson-Sellers. Organizational models and interac-
tion patterns for use in the analysis and design of multi-agent systems. Web Intelli-
gence and Agent Systems, 3(2):67–83, 2005.

[JFL+01] N.R. Jennings, P. Faratin, A.R. Lomuscio, S. Parsons, MJ Wooldridge, and C. Sierra.
Automated negotiation: prospects, methods and challenges. Group Decision and Ne-
gotiation, 10(2):199–215, 2001.

ASCENS 32

D4.1: First Report on WP4 (Final) November 15, 2011

[JRL09] M.A. Janssen, N.P. Radtke, and A. Lee. Pattern-oriented modeling of commons
dilemma experiments. Adaptive Behavior - Animals, Animats, Software Agents,
Robots, Adaptive Systems, 17(6):508 – 523, 2009.

[KB00] M.J.B. Krieger and J.B. Billeter. The call of duty: Self-organised task allocation
in a population of up to twelve mobile robots. Robotics and Autonomous Systems,
30(1):65–84, 2000.

[KBD08] H. Kasinger, B. Bauer, and J. Denzinger. The meaning of semiochemicals to the design
of self-organizing systems. In Proceedings of the 2008 Second IEEE International
Conference on Self-Adaptive and Self-Organizing Systems, pages 139–148, Isola di
San Servolo (Venice), Italy, October 2008. IEEE Computer Society.

[KBD09] H. Kasinger, B. Bauer, and J. Denzinger. Design pattern for self-organizing emergent
systems based on digital infochemicals. In Engineering of Autonomic and Autonomous
Systems, IEEE International Workshop on, pages 45–55, Durham, UK, April 2009.
IEEE Computer Society.

[KBM98] D. Kortenkamp, R.P. Bonasso, and R. Murphy. Artificial intelligence and mobile
robots: case studies of successful robot systems. MIT Press Cambridge, MA, USA,
1998.

[KC03] J.O. Kephart and D.M. Chess. The vision of autonomic computing. Computer,
36(1):41–50, 2003.

[KGGH03] J. Koehler, C. Giblin, D. Gantenbein, and R. Hauser. On autonomic computing archi-
tectures. Research Report (Computer Science) RZ, 3487, 2003.

[KHKS09] A. Khalid, M.A. Haye, M.J. Khan, and Shamail S. Survey of frameworks, architec-
tures and techniques in autonomic computing. In ICAS ’09 Proceedings of the 2009
Fifth International Conference on Autonomic and Autonomous Systems, pages 220–
225, Valencia, Spain, April 2009. IEEE Computer Socity.

[KP98] N. Karacapilidis and D. Papadias. Hermes: supporting argumentative discourse in
multi-agent decision making. In In Proceedings of the AAAI-98, pages 827–832,
Madison, Wisconsin, USA, September 1998.

[KT11] J. Kesäniemi and V. Terziyan. Agent-environment interaction in mas-introduction and
survey. In Multi-Agent Systems Modeling, Interactions, Simulations and Case Studies,
pages 203–226. Springer Verlag, 2011.

[LB91] A.B. Loyall and J. Bates. Hap – a reactive, adaptive architecture for agents. Techni-
cal report, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,
1991.

[LKB00] A. Ledeczi, G. Karsai, and T. Bapty. Synthesis of self-adaptive software. In Aerospace
Conference Proceedings, pages 501–507, Big Sky Montana, March 2000. IEEE Com-
puter Science.

[LKMU08] E. Letier, J. Kramer, J. Magee, and S. Uchitel. Deriving event-based transition sys-
tems from goal-oriented requirements models. Automated Software Engineering,
15(2):175–206, June 2008. Kluwer Academic Publishers, Hingham, MA, USA.

ASCENS 33

D4.1: First Report on WP4 (Final) November 15, 2011

[LNGG11] M. Luckey, B. Nagel, C. Gerth, and Engels G. Adapt cases: Extending use cases for
adaptive systems. In Proceedings of 6th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems, pages 30–39, Waikiki, Honolulu,
Hawaii, May 2011. ACM.

[McG03] J.P. McGinnis. Transformations of dynamic interaction protocols in multi-agent sys-
tems, 2003.

[MHH11] Z. Maamar, H. Hacid, and M.N. Huhns. Why web services need social networks.
Internet Computing, IEEE, 15(2):90–94, 2011.

[MHLL08] H. Mei, G. Huang, L. Lan, and J.G. Li. A software architecture centric self-
adaptation approach for internetware. Science in China Series F: Information Sci-
ences, 51(6):722–742, 2008.

[MK06] J. Magee and J. Kramer. Concurrency: State Models and Java Programs. John Wiley
and Sons, second edition, April 2006.

[MMTZ06] M. Mamei, R. Menezes, R. Tolksdorf, and F. Zambonelli. Case studies for self-
organization in computer science. Journal of Systems Architecture, 52(8-9):443–460,
2006.

[MPR07] N. Maudet, S. Parsons, and I. Rahwan. Argumentation in multi-agent systems: Con-
text and recent developments. In I. Rahwan and P. Moraitis, editors, Argumentation
in Multi-Agent Systems, volume 4766 of Lecture Notes in Computer Science, pages
1–16. Springer-Verlang, 2007.

[MPS08] H. Müller, M. Pezzè, and M. Shaw. Visibility of control in adaptive systems. In Pro-
ceedings of the 2nd international workshop on Ultra-large-scale software-intensive
systems, pages 23–26, Leipzig, Germany, May 2008. ACM Press.

[MSS+10] M. Morandini, L. Sabatucci, A. Siena, J. Mylopoulos, L. Penserini, A. Perini, and
A. Susi. On the use of the goal-oriented paradigm for system design and law com-
pliance reasoning. In iStar 2010–Proceedings of the 4 th International i* Workshop,
page 71, Hammamet, Tunisia, June 2010.

[MT04] R. Menezes and R. Tolksdorf. Adaptiveness in linda-based coordination models. In
G. Di Marzo Serugendo, A. Karageorgos, O.F. Rana, and F. Zambonelli, editors, Engi-
neering Self-Organising Systems, volume 2977 of Lecture Notes in Computer Science,
pages 212–232. Springer, 2004.

[MZ09] Marco Mamei and Franco Zambonelli. Programming pervasive and mobile computing
applications: The tota approach. ACM Transactions on Software Engineering and
Methodologies, 18(4), 2009.

[OGT+99] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic,
A. Quilici, D.S. Rosenblum, A.L. Wolf, and E.L. Wolf. An architecture-based ap-
proach to self-adaptive software. IEEE Intelligent Systems, 14(3):54–62, 1999.

[OV02] E. Ogston and S. Vassiliadis. A peer-to-peer agent auction. In Proceedings of the first
international joint conference on Autonomous agents and multiagent systems: part 1,
pages 151–159, Bologna, Italy, July 2002. ACM Press.

ASCENS 34

D4.1: First Report on WP4 (Final) November 15, 2011

[PG03] M.P. Papazoglou and D. Georgakopoulos. Service-oriented computing. Communica-
tions of the ACM, 46(10):25–28, 2003.

[PJ96] S. Parsons and N.R. Jennings. Negotiation through argumentation - a preliminary
report. In Proceedings of the 2nd International Conference on Multi Agent Systems,
pages 267–274, Melbourne, VIC, Australia, July 1996. ACM Press.

[Puv11] M. Puviani. Adaptation in the robotics case study: Early simulation experiences.
ASCENS Project Technical Report No. 02, October 2011.

[RC10] A.J. Ramirez and B.H.C. Cheng. Design patterns for developing dynamically adaptive
systems. In Proceedings of the 2010 ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems, pages 49–58, Cape Town, South Africa, May
2010. ACM.

[RCMB10] A.J. Ramirez, B.H.C. Cheng, P.K. McKinley, and B.E. Beckmann. Automatically
generating adaptive logic to balance non-functional tradeoffs during reconfiguration.
In Proceeding of the 7th international conference on Autonomic computing, pages
225–234, Washington, DC, USA, June 2010. ACM.

[RLS+11] K. Rasch, F. Li, S. Sehic, R. Ayani, and S. Dustdar. Context-driven personalized
service discovery in pervasive environments. World Wide Web, 14(4):295–319, 2011.

[RR01] J. Ralyté and C. Rolland. An assembly process model for method engineering. In
K.R. Dittrich, A. Geppert, and M.C. Norrie, editors, Advanced information systems
engineering, volume 2068 of Lecture Notes in Computer Science, pages 267–283.
Springer, 2001.

[RSZF09] J.F. Roberts, T.S. Stirling, J.C. Zufferey, and D. Floreano. 2.5 d infrared range and
bearing system for collective robotics. In Intelligent Robots and Systems, 2009. IROS
2009. IEEE/RSJ International Conference on, pages 3659–3664, St. Louis, MO, USA,
October 2009. IEEE Computer Society.

[SFJ99] C. Sierra, P. Faratin, and N. Jennings. A service-oriented negotiation model between
autonomous agents. in Proceedings of Collaboration between Human and Artificial
Societies, pages 201–219, 1999.

[SLT+03] E. Sahin, T.H. Labella, V. Trianni, J.L. Deneubourg, P. Rasse, D. Floreano, L. Gam-
bardella, F. Mondada, S. Nolfi, and M. Dorigo. SWARM-BOT: Pattern formation
in a swarm of self-assembling mobile robots. In Systems, Man and Cybernetics,
2002 IEEE International Conference on, pages 145–150, Hammamet, Tunisia, Oc-
tober 2003. IEEE.

[Smi06] R.G. Smith. The contract net protocol: High-level communication and control in a
distributed problem solver. Computers, IEEE Transactions on, C-29(12):1104–1113,
2006.

[SS05] J. Sabater and C. Sierra. Review on computational trust and reputation models. Arti-
ficial Intelligence Review, 24(1):33–60, 2005.

[ST09] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and research chal-
lenges. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 4(2):14,
2009.

ASCENS 35

D4.1: First Report on WP4 (Final) November 15, 2011

[TB99] G. Theraulaz and E. Bonabeau. A brief history of stigmergy. Artificial life, 5(2):97–
116, 1999.

[TOH99] Y. Tahara, A. Ohsuga, and S. Honiden. Agent system development method based
on agent patterns. In Proceedings of the 21st international conference on Software
engineering, pages 356–367, Los Angeles, CA, USA, May 1999. ACM.

[TPYZ09] S. Tang, X. Peng, Y. Yu, and W. Zhao. Goal-directed modeling of self-adaptive soft-
ware architecture. In T. Halpin, J. Krogstie, E. Nurcan, S.and Proper, R. Schmidt,
P. Soffer, and R. Ukor, editors, Enterprise, Business-Process and Information Systems
Modeling, volume 29 of Lecture Notes in Business Information Processing, pages
313–325. Springer, 2009.

[TUV07] TUV. D1.2 Discovering Service-Interaction Patterns-Methods and Mining Algo-
rithms . Technical report, Vienna University of Technology, Austria, 2007.

[VBH+07] J. Vokřı́nek, J. Bı́ba, J. Hodı́k, J. Vybı́hal, and M. Pěchouček. Competitive contract net
protocol. In J. Van Leeuwen, G.F. Italiano, W. Van Der Hoek, C. Meinel, H. Sack, and
F. Plasik, editors, SOFSEM 2007: Theory and Practice of Computer Science, volume
4362 of Lecture Notes in Computer Science, pages 656–668. Springer, 2007.

[VG10] T. Vogel and H. Giese. Adaptation and abstract runtime models. In Proceedings of
the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing
Systems, pages 39–48, Cape Town, South Africa, May 2010. ACM.

[VHGN11] Emil Vassev, Mike Hinchey, Benoit Gaudin, and Paddy Nixon. Requirements and
initial model for knowlang: a language for knowledge representation in autonomic
service-component ensembles. In Fourth International C* Conference on Computer
Science & Software Engineering, pages 35–42. ACM, 2011.

[vLDDD91] A. van Lamsweerde, A. Dardenne, B. Delcourt, and F. Dubisy. The KAOS project:
Knowledge acquisition in automated specification of software. In Proceedings of the
AAAI Spring Symposium Series, pages 59–62. Stanford University, American Associ-
ation for Artificial Intelligence, March 1991.

[VM09] B. Varghese and G. McKee. Applying autonomic computing concepts to parallel com-
puting using intelligent agents. World Academy of Science, Engineering and Technol-
ogy, 55:366–370, 2009.

[VRHR11] P. Van Roy, S. Haridi, and A. Reinefeld. Designing robust and adaptive distributed
systems with weakly interacting feedback structures. Technical report, ICTEAM In-
stitute, Universit catholique de Louvain, 2011.

[VS03] J. Vázquez-Salceda. The role of Norms and Electronic Institutions in Multi-Agent
Systems applied to complex domains. The HARMONIA framework. AI Communica-
tions, 16(3):209–212, 2003.

[VWMA11] P. Vromant, D. Weyns, S. Malek, and J. Andersson. On interacting control loops in
self-adaptive systems. In Proceedings of 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, Waikiki, Honolulu, HI, USA,
May 2011. ACM.

ASCENS 36

D4.1: First Report on WP4 (Final) November 15, 2011

[WDNG+06] M. Wirsing, R. De Nicola, S. Gilmore, M.M. Hölzl, R. Lucchi, M. Tribastone, and
G. Zavattaro. Sensoria process calculi for service-oriented computing. In 2nd Inter-
national Symposium on Trustworthy Global Computing, pages 30–50, Lucca, Italy,
November 2006. Springer.

[WG09] D. Weyns and M. Georgeff. Self-adaptation using multiagent systems. Software,
IEEE, 27(1):86–91, 2009.

[WH07] D. Weyns and T. Holvoet. An architectural strategy for self-adapting systems. In Pro-
ceedings of the 2007 International Workshop on Software Engineering for Adaptive
and Self-Managing Systems, page 3, Minnesota, USA, May 2007. IEEE Computer
Society.

[WMA10a] D. Weyns, S. Malek, and J. Andersson. FORMS: a formal reference model for self-
adaptation. In Proceeding of the 7th international conference on Autonomic comput-
ing, pages 205–214, Washington, DC, USA, June 2010. ACM.

[WMA10b] D. Weyns, S. Malek, and J. Andersson. On decentralized self-adaptation: lessons from
the trenches and challenges for the future. In Proceedings of the 2010 ICSE Workshop
on Software Engineering for Adaptive and Self-Managing Systems, pages 84–93, Cape
Town, South Africa, May 2010. ACM.

[WMdLA10] D. Weyns, S. Malek, R. de Lemos, and J Andersson. Self-organizing architectures,
first international workshop, soar 2009, cambridge, uk, september 14, 2009, revised
selected and invited papers. In D. Weyns, S. Malek, R. de Lemos, and J Andersson,
editors, SOAR, volume 6090 of Lecture Notes in Computer Science. Springer, 2010.

[WWW98] P.R. Wurman, M.P. Wellman, and W.E. Walsh. The Michigan Internet AuctionBot: A
configurable auction server for human and software agents. In Proceedings of the sec-
ond international conference on Autonomous agents, pages 301–308, St. Paul, Min-
nepolis, USA, May 1998. ACM Press.

[ZBC+11] F. Zambonelli, N. Bicocchi, G. Cabri, L. Leonardi, and M. Puviani. On self-
adaptation, self-expression, and self-awareness, in autonomic service component en-
sembles. In AWARENESS Workshop at the 5th IEEE International Conference on
Self-adaptive and Self-organizing Systems, Ann Arbor (MC), 2011.

[ZF+97] L. Zhang, S. Floyd, et al. Adaptive web caching. In In Proceedings of the NLANR
Web Cache Workshop, pages 7–9, Boulder, Colorado, USA, June 1997.

[ZJW03] F. Zambonelli, N.R. Jennings, and M. Wooldridge. Developing multiagent systems:
The gaia methodology. ACM Transactions on Software Engineering and Methodology
(TOSEM), 12(3):317–370, 2003.

ASCENS 37

	Introduction and Research Approach
	Research Approach
	Relations with other WPs
	Structure of the Document

	Black-box Adaptation: What Adaptation is For?
	The SOTA Goal-oriented Modeling Approach
	Using SOTA

	Model Checking SOTA Goal-Oriented Requirements
	Approach Overview
	Verification: an Example

	Modeling of the SOTA Space and Knowledge Requirements
	Identification
	Virtualization
	Metrification
	From WP4 to WP3: Knowledge Requirements

	White-box Adaptation: Adaptation Patterns
	Rationale for the Analysis of Adaptation Patterns
	Taxonomy
	Patterns and SOTA
	Adaptation Mechanisms and the ASCENS Language

	White-box Adaptation: Towards Self-expression
	Examples of Dynamic Self-expression
	Basic Mechanisms for Dynamic Self-expression

	Robotic Simulations
	Summary and Next Steps
	Summary
	Plans for Next Year Activities

