
www.ascens-ist.eu

ASCENS
Autonomic Service-Component Ensembles

D5.1: First Report on WP5
Verification Techniques for SCs and Correctness Proofs
for Negotiate-Commit-Execute Schemes

Grant agreement number: 257414
Funding Scheme: FET Proactive
Project Type: Integrated Project
Latest version of Annex I: 7.6.2010

Lead contractor for deliverable: UJF-Verimag
Author(s): Jacques Combaz, Barbara Jobstmann (UJF-Verimag),
Fabio Gadducci (UNIPI), Alberto Lluch Lafuente (IMT), Gianluigi
Ferrari (UNIPI), Michele Boreale, Lucia Acciai (UDF), Andrea Vandin
(IMT)

Due date of deliverable: September 30, 2011
Actual submission date: November 15, 2011
Revision: Final
Classification: PU

Project coordinator: Martin Wirsing (LMU)
Tel: +49 89 2180 9154
Fax: +49 89 2180 9175
E-mail: wirsing@lmu.de

Partners: LMU, UNIPI, UDF, Fraunhofer, UJF-Verimag, UNIMORE,
ULB, EPFL, VW, Zimory, UL, IMT, Mobsya, CUNI



D5.1: First Report on WP5 (Final) November 15, 2011

Executive Summary

This document summarizes our work performed in Year 1 targeted to develop new techniques and
theories to support the design and the implementation of correct and reliable service components and
service component ensembles. We have worked in several different directions in order to get closer
to our goal. They all of have in common that they aim to incorporate quantitative aspects of a SC or
SCE (such as probabilistic behaviors, response rates, cost and resource efficiency). Our contributions
can be grouped into the following main directions: (1) We have developed a framework and a tool to
evaluate and automatically synthesize controllers that behave efficiently with respect to a given cost
and reward model. (2) We have developed SMC-BIP (Statistical Model Checker), a stochastic ex-
tension of our component-based framework BIP (Behavior-Interaction-Priority) and its toolset. This
allows us to analyze component-based systems with stochastic behaviors. (3) We have presented a uni-
form semantics for name passing calculi, one popular formalisms for the specification of concurrent
and distributed systems with a dynamically evolving topology. (4) We have analyzed the theoretical
boundaries of behavioral type systems for the pi-calculus, mechanism to enforce desired behavioral
properties of SC and SCE. We have also developed an initial translation from SCEL (Service Com-
ponent Ensemble Language) to BIP. (5) Finally, we have introduced stochastic history expressions, a
language to statically analyze security aspects of a system.
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1 Introduction

Our goal in Workpackage 5 is to develop new techniques and the underlying theories to support the
design and the implementation of correct and reliable service components and service component en-
sembles. We are working in several directions. The first one deals with correctness on the level of a
service component considering in particular non-functional properties like resource-awareness. The
second deals with correctness of ensembles of service components mainly focusing on constructive
techniques. Given the particular importance of security in ensembles, the third will address the prob-
lem of building secure ensembles. Finally, we work on techniques to check if an SCs’ implementation
complies with a high-level specification. We organized the work necessary to achieve our goal in the
following four tasks.

5.1 Verification and Design of Service Components: This task focuses on algorithmic techniques
for verification and design (e.g., MC and synthesis) of SCs with respect to functional and non-
functional properties. This includes techniques that extend or improve existing verification and
synthesis algorithms, as well as, techniques for verification and synthesis for more complex
specifications and properties addressing resource issues or dealing with dynamically changing
systems.

5.2 Verification of Service Component Ensembles: This task focuses on constructive verification
based on compositional reasoning to establish global properties of ensembles from properties
of individual service components.

5.3 Security Policies and Access Control: This task is dedicated to the study of techniques ensur-
ing security properties of ensembles. We plan to develop a security model – security policies
and their enforcement mechanisms – for designing and composing secure ensembles.

5.4 Verification of SCs’ implementation compliance with high-level specification: This task
will develop the code behavior checking techniques which allow checking compliance between
implementation of an SC and its high-level specification.

This deliverable summarizes the work performed in Year 1. In Year 1, we have mainly worked
on Task 5.1 (Verification and Design of Service Components) and Task 5.3 (Security Policies and
Access Control). Work on the two remaining tasks is planed to start in Year 2. In the following we
give a detailed description of all four tasks according to the description of work In Section 2, we
first summarize our contributions in Year 1 and then give a detailed description of each contribution
separately.

Task T5.1: Verification and Design of Service Components.
(Start month: 1, duration 36 months.)

In this task, we study three different generalization of the classical verification setting taking resources
and adaptive behaviors into account. In particular, we will model check systems with dynamic allo-
cation of resources, study behavioral types and logics for abstract modeling and verification, and
investigate the tools and techniques for Model Checking and Synthesis in a quantitative framework.

Model checking systems with dynamic allocation of resources. The emergence of novel proposals
for the use and deployment of connectors, and the “global resources” metaphor interpreting them as
suitable service components, require the developments of new foundational methodologies, as well as
new verification tools and techniques. Consider for example recent paradigms concerning the spec-
ification of distributed systems with changing topologies, often used for security applications, such
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as nominal calculi. The search for denotational models brought the introduction of new algebraic
semantics, e.g. in terms of so-called presheaf models, where the role of names is explicitly taken
into account [FMS02]. At the same time, standard finite state techniques proved unsuitable for the
handling of name allocation, and fostered new verification tools such as HD-automata [MP05]. The
aim of this activity is to build on existing expertise in order to build a formal framework accounting
for the specific requirements imposed by service components, in particular their (complex) interaction
with the environment, and the possible self-readjustment of their own behavior as a response to such
interaction. This will require the development of new foundational models, as well as the enrichment
of existing proposals for the verification of systems whose states may have a complex interaction with
the environment. The long term goal is to reconcile the denotational and operational views, as done
for presheaves and HD-automata [GMM06].

Behavioral types and logics for abstract modeling and verification. In the setting of process calculi,
type systems have traditionally been employed to statically enforce safety or liveness communication
properties, from simple ones, such as arity mismatch avoidance [Mil91], to more sophisticated ones,
such as deadlock freedom [Kob02] and responsiveness [AB08a]. A recent trend is the use of behav-
ioral type systems [IK01, CRR02, AB08b], where behavioral abstractions (types) are extracted out of
pi-like process specifications and then model-checked against given logical requirements. In order to
make this analysis feasible, behavioral types belong to a process calculus (e.g. CCS) more tractable
than the original one. The properties of interest are described in a modal logic expressive enough
to capture not only behavior-, but also the spatiality-related aspects of processes. In this respect, a
natural choice is Caires and Cardelli’s Spatial logic [CC03]. In a recent work [AB09], decidability of
an interesting fragment of this logic has been proved.

We aim at adapting the approach outlined above to the calculi and languages considered in WP1
and the BIP algebra. More specifically, we want to define flexible behavioral type theories that support
the assembly of components and ensembles, and can be used as information-gathering tools during the
self-modification of SCEs. The basic idea is being able to extract an abstract operational model of the
components and of the network accounting for the occurrence of the run-time events of interest (e.g.
resource acquisition/consumption, or variation in connectivity or bandwidth, etc.), and then to check
their adequacy against given (functional, security, QoS) requirements. Adequacy of ensembles with
respect to the given requirements could be assessed by checking separately the abstractions thus ob-
tained, also relying on forms of assume-guarantee reasoning, where the assumptions may be built out
of available (typically incomplete) knowledge of the environment. Compared to traditional functional
analysis, the new framework calls for an extension of types with quantitative information (probability,
cost, . . . ) about the events of interest. In order to re-use existing tools, behavioral types must be care-
fully crafted, as they should basically become the front-end language of an existing model-checker or
static analyzer. The new types could then be embedded into a quantitative/probabilistic behavioral rep-
resentation of the system, aiming at the quantitative evaluation of ensembles, such as the probability
that certain (un)desired behavior emerge. The applicability of this framework should not be thought
as confined to the design phase of the system. Rather, it should become part of its self-reconfiguration
engine, in a Negotiate/Commit/Execute scenario where agents may dynamically and autonomously
run verification tools in order to gather (probabilistic) information about the future evolution of the
ensemble, given their local knowledge, and use this information in the self-modification process as
appropriate.

Model checking and Synthesis in a quantitative Framework. Quantitative constraints such as
rewards, timing, or probabilistic specifications have been successfully used to state and analyze non-
functional properties such as energy consumption, performance, or reliability (cf. [HKNP, ENLT,
Hav98b, HMRT01, BK08b]). Functional properties are typically viewed in a purely qualitative sense.
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Desired properties are written in temporal logics and the outcome of verification is a simple Yes or
No answer stating that a system satisfies or does not satisfy the desired property. We believe that this
black and white view is insufficient both for verification and for synthesis of service components. In
particular, for adaptive components a “degree of adaptivity” would be desirable. Therefore, we pro-
pose that specifications should have a quantitative aspect.

Our recent research shows that quantitative techniques give new insights into qualitative specifi-
cations. In particular, we use probabilities to correct unfeasible specifications, which are specifica-
tions that cannot be implemented for instance due to conflicting constraints [CHJ08]. Average-reward
properties allow us to express properties like default behavior or preference relations between imple-
mentations that all satisfy the functional property [BCHJ09b]. Quantitative constraints also allow us
to define a notion of robustness with respect to a functional specification [BGHJ09b]. Intuitively, we
classify a system as more robust than another system, if it is able to tolerate more unexpected behav-
iors of its environment than the other, without violating its specification. Robustness is a key concept
that will help dealing with the adaptive nature of SCs.

Apart from robustness, our framework allows the user to state requirements more concisely and
more accurately, which is necessary in the presents of adaptive and reconfigurable systems. At the
same time, the redefinition of the verification and synthesis problems as quantitative problems yield
new theoretical and implementation challenges, which we will address in this task.

Task T5.2: Verification of Service Component Ensembles.
(Start month: 13, duration 36 months.)

In our opinion, any general compositional verification theory will be highly intractable and will be of
theoretical interest only. We need to study compositionality results for particular classes of properties
and/or particular classes of systems as explained below.

Our work on constructive verification led to the development of theory implemented on the D-
Finder tool [BBSN08, BBSN09]. D-Finder uses heuristics for proving compositionally global deadlock-
freedom of a component-based system, from the deadlock-freedom of its components. The method is
compositional and proceeds in two steps.

• First, it checks that individual components are deadlock-free. That is, they may block only at
states where they are waiting for synchronization with other components.

• Second, it checks if the components’ interaction graph is acyclic. This is a sufficient condition
for establishing global deadlock-freedom at low cost. It depends only on the system architec-
ture. Otherwise, D-Finder symbolically computes increasingly strong global invariants of the
system, based on results from the first step. Deadlock-freedom is established if there exists
some invariant that is satisfied by the system’s initial state.

Benchmarks published in [BBSN09] show that such a specialization for deadlock-freedom, com-
bined with compositionality techniques, leads to significantly better performance than is possible with
general-purpose monolithic verification tools.

We will investigate compositionality techniques for high-level composition operators and specific
classes of properties. We propose to investigate two independent directions:

• One direction is studying techniques for specific classes of properties. For instance, finding
compositional verification rules guaranteeing deadlock-freedom or mutual exclusion instead
of investigating rules for safety properties in general. Potential deadlocks can be found by
analysis of dependencies induced by interactions between components [GS05]. For proving
mutual exclusion, a different type of analysis is needed.
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• The other direction is studying techniques for particular architectures. Architectures charac-
terize the way interaction among a system’s components is organized. For instance, we might
profitably study compositional verification rules for ring or star architectures, for real-time sys-
tems with preemptable tasks and fixed priorities, for time-triggered architectures, etc. Compo-
sitional verification rules should be applied to high-level coordination mechanisms used at the
architecture level, without translating them into a low-level automata-based composition.

The results thus obtained should allow us to identify “verifiability” conditions (i.e., conditions under
which verification of a particular property and/or class of systems becomes scalable). This is similar
to finding conditions for making systems testable, adaptable, etc. In this manner, compositionality
rules can be turned into correct-by-construction techniques.

Task T5.3: Security Policies and Access Control.
(Start month: 13, duration 24 months.)

We will investigate secure interaction among service components in an ensemble, considering wrap-
pers that implement Access Control policies, and experiment on using the Negotiate/Commit/Execute
paradigm also to deal with Security. Specifically, we will investigate means to: (a) expressing flexible
security policies in terms of constraints, building on C-semirings and cc-pi [BM07]; (b) supporting
security decision-making by explicit representation of potential confidentiality leaks and principals’
trusting relationships, building on existing information-theoretic [Bor09] and probabilistic models
[NKS07]; (c) enforcing secure interaction among service components in an ensemble, considering
wrappers that implement dynamic access control policies, expressed as polymorphic interface types
in context of the MetaKLAIM language [FMP04].

A prominent issue related to security in this setting is expressing flexible and reconfigurable poli-
cies that allow components in a SCE to self-adapt in reaction to challenges posed by potentially hostile,
ever-changing environment and network. C-semirings are algebraic structures that allow specifying
so-called soft constraints, which, upon evaluation, do not just return true or false, but more infor-
mative values, of, say, probabilistic or fuzzy nature. C-semirings are a key component of the cc-pi
calculus [BM07], a model that combines basic features of process calculi and concurrent constraint
programming [BMR97]. In cc-pi, constraint resolution between two parties willing to communicate,
but possibly posing conflicting requirement on QoS and Security, must happen prior to actual synchro-
nization. In this way, one is able to describe systems not only from the point of view of communication
but also from that of negotiation. We plan to enhance the languages developed within work package
1 with constructs inspired by the cc-pi-calculus, thus providing linguistic support to the specification
and analysis of dynamical, flexible Access Control policies. Development of reasoning techniques
tailored to flexible Access Control based on the resulting model will follow.

Mobility, and more generally change of context, implies that a component might find itself in a
hostile environment, or disconnected from its preferred security infrastructure, e.g., its usual certifi-
cation authorities. Further, the autonomy requirement means that even in this scenario, it must be
able to assign privileges to other entities - components or infrastructure elements - based on usually
incomplete information about those entities. We plan to support security decision-making by explicit
representation of potential confidentiality leaks and principals’ trusting relationships. In this respect,
we will build on existing information-theoretic of leakage [Bor09] and probabilistic models of com-
putational trust [NKS07].

Using MetaKLAIM, components’ interfaces can be modeled via polymorphic types extracted at
run-time from code at run-time and used to express trustiness guarantees. The type system for MetaK-
LAIM permits to ensure security related properties, without resorting to the notion of capability. Types
are extracted from code at run-time and used to express trustiness guarantees. Dynamic type check-
ing ensures that the trustiness guarantees of the network applications are maintained whenever trusted
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components inter-operate with potentially untrusted ones. This is certainly an important aspect of the
ensembles of components we want to design. We will however investigate extensions of the types
mentioned above, and of the underlying verification mechanism, in order to take into account other
security aspects. For example, we will study integrations with the types for controlling access to re-
sources and mobility introduced in KLAIM [DFPV00, GP09].

Finally, we plan to develop a security model – security policies and their enforcement mecha-
nisms – for designing and composing secure ensembles. by extending the approach introduced in
[BDFZ08b, BDFZ09b].

Task T5.4: Verification of SCs’ implementation compliance with high-level specification.
(Start month: 9, duration 39 months.)

This task will provide techniques for checking that the low-level implementation of an SC is compli-
ant with the high-level formal behavior specification of an SC. In contrast to T5.1 and T5.2, which
addresses behavior compliance only for high-level design models, this task will allow to reason about
the “business code” of an SC. This makes an important contribution to the SCs development cycle
since the business code of an SC is hand-written (i.e. provided by the developer), thus it is prone to be
inconsistent with its specification (either when created or when changes occur either in the code or in
the high-level specification).

We plan to use the explicit-state model checker GMC (developed by CUNI) separately on in-
dividual SCs, thus demonstrating that the implementation of a particular SC fulfills its high-level
specification, e.g., in terms of its observable behavior. In this task, we will focus on the business code
implementation. Correctness of the communication code is guaranteed by construction, since it is
generated directly from the specification.

Further, we will extend the GMC model checker to scale up to large SC’s. This will be achieved
by adopting techniques from abstraction-based model checking to track some of the SC’s data explic-
itly while using automatically chosen abstract domains for the rest. In addition, we will investigate
methods to deduce ownership properties of concurrently shared data structures to further prune the
state space to be sought in presence of shared memory concurrency.
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2 Discussion on the Work Done

Our work in the Year 1 can be grouped into five main contributions.

1. Synthesizing Efficient Controllers
We present a general framework to evaluate and construct controllers with respect to how effi-
cient they behave in a given probabilistic environment. A controller is a reactive system that reg-
ularly observes its environment and then provides control actions to influence the environment
in the desired way. Efficiency is defined in terms of a cost model (e.g., energy consumption) and
a reward model (e.g., reliability). The cost and the reward model associate to each sequence of
actions a number indicating the current costs (and rewards, respectively). The controller aims
to find an optimal trade-off between costs and rewards, e.g., to be energy efficient. Given our
framework we show how to measure the efficiency of a given controller and how to construct
a controller that is optimal, i.e., a controller that minimizes the ratio between the accumulated
costs and the accumulated rewards.

2. Statistical Model-Checking
We present SMC-BIP, a stochastic extension of our component-based framework BIP and its
toolset. A BIP model consists of a set of components and synchronizations (possibly with priori-
ties) between them. SMC-BIP provides two main features: (1) a stochastic syntax and semantics
extension of BIP and (2) a statistical Model Checker (SMC). Our new formalism allows using
probabilistic variables assignments to specify stochastic aspects of individual components. The
non-determinism resulting from multiply enabled synchronizations is resolving using uniform
distribution, therefore SMC-BIP has purely stochastic semantics. Given an SMC-model and
a property (either as Bounded Linear Temporal Logic (BLTL) formula or as use-defined trace
analyzer) our SMC engine can decide with some confidence whether the system satisfies the
given property.

3. Model Checking Systems with Dynamic Allocation of Resources
We analyze name passing calculi, one popular formalisms for the specification of concurrent
and distributed systems with a dynamically evolving topology and therefore well-suited for
SCE. More precisely, (1) we present a denotational model (based on a presheaf category) for fu-
sion calculi, calculi with complex topologies, where system states are equipped with constraints
expressing the identity of some of the allocated names (i.e., resources). (2) We show how to
extend these calculi with a hierarchical name structure, which can be used for a white-box ap-
proach to network management (i.e., that each system is aware of the topology of the network it
is embedded in). (3) In order to tackle the inherent complexity of automated verification in such
scenarios, we have developed a state-space reduction technique for rule-based specifications.
(4) Finally, we have some preliminary results on extending our reduction technique to exploit
name-reuse when reasoning about counterpart models, which are transition systems where states
are enriched with information about their internal structure (many-sorted unary algebras) and
transitions are labeled with (partial) morphisms, explicitly correlating entities of the source and
target states (counterpart relations).

4. Behavioral Types and Logics for Abstract Modeling and Verification and
a translation from SCEL to BIP
We studied behavioral types and their properties as a mechanism to enforce desired behav-
ioral properties of SC and SCE. On the theoretical side, we have shown that, under standard
complexity-theoretic assumptions, the worst-case complexity of model checking for any ar-
guably interesting fragment of the behavioral type system for the pi-calculus is exponential;
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also, we have identified classes of properties for which decidability holds, including safety ones.
On the practical side, we have investigated the relationships between a variant of SCEL and BIP
and obtained a prototype translation. This translation will make it possible to exploit the BIP
framework in WP5, especially to take advantage of the existing analysis tools and instruments.
A key point of our translation is modeling the knowledge of each SCEL component (and en-
semble) as a BIP component. Any access to Knowledge is then translated into an interaction
with this component.

5. On Quantitative Security Policies
We present a way to statically analyze security using a language-based approach. Our main
ingredients are: local policies, call-by-contract invocation, type-effect systems, model checking
and secure orchestration. Our starting point is the abstraction of system behavior, called history
expression, which are processes of a suitable process calculus. Traditionally this approach takes
only qualitative aspects of the behavior into account but we believe that quantitative aspect,
such as typically rates at which the different activities are performed, are equally important for
SC(E).

In order to handle quantitative aspects with introduced stochastic history expressions (HEµ),
an extension of history expressions, that associates to each action a rate. We provided a quanti-
tative semantics in terms of continuous-time Markov chains and showed that HEµ is a stochastic
extension of Basic Process Algebra with iteration. Our second main contribution is sharpening
security policies with quantitative constraints. Roughly, quantitative security policies are safety
properties that enforce bounds on the speed at which actions have to be performed. These poli-
cies are first class operators inside HEµ, so that security can be taken into account from the
very beginning of application development. Given an HEµ expression and a policy we showed
how to measure the probability of policy violations using a probabilistic model checker (e.g.,
PRISM). A high probability does not guarantee conformance with a policy, i.e, there can still
be unlikely computations that violate the policy. Therefore, we showed how to use execution
monitors that abort such unlikely unsafe computations to enforce a policy during the execution.

A more detailed descriptions of each contribution can be found in subsequent sections.
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2.1 Synthesizing Efficient Controllers

Synthesis aims to automatically generate a system from a specification. We focus on synthesizing
reactive systems [MP95] from specifications given in temporal logics [Pnu77]. In this setting, specifi-
cations are usually given in a qualitative sense, i.e., they classify a system either as good (meaning the
system satisfies the specification) or as bad (meaning the system violates the specification). Quantita-
tive specifications assign to each system a value that provides additional information about the system.
Traditionally, quantitative techniques are used to analyze properties like response time, throughput, or
reliability of a system (cf. [dA97, Hav98a, BK08a, KNP09]).

Recently, quantitative reasoning has also been used to state preference relations between sys-
tems satisfying the same qualitative specification [BCHJ09a]. E.g., we can compare systems with
respect to robustness, i.e., how reasonable they behave under unexpected behaviors of their environ-
ments [BGHJ09a]. A preference relation between systems is particularly useful in synthesis, because
it allows the user to guide the synthesizer and ask for “the best” system. In many settings a better sys-
tem comes with a higher price. E.g., consider an assembly line that can be operated in several modes
that indicate the speed of the line, i.e., the number of units produced per step. We would prefer a con-
troller that produces as many units as possible. However, running the line in a faster mode increases
the power consumption and the probability to fail, resulting in higher repair costs. We are interested
in an “efficient” controller, i.e., a system that minimizes the power and repair costs per produced unit.
The efficiency of a system is a natural question to ask; it has also been observed by others, e.g, Yue et
al. [YBK10] used simulation to analyze energy-efficiency in MAC Protocol.

We shown how to automatically synthesize a system that has an efficient average-case behavior in
a given environment. We defined efficiency as ratio between a given cost model and a given reward
model. To further motivate this choice, consider the following example: assume we want to implement
an automatic gear-shifting unit (ACTS) that optimizes its behavior for a given driver profile. The goal
of our implementation is to optimize the fuel consumption per kilometer (l/km), a commonly used
unit to advertise efficiency. In order to be most efficient, our system has to maximize the speed (given
in km/h) while minimizing the fuel consumption (measured in liters per hour, i.e., l/h) for the given
driver profile. If we take the ratio between the fuel consumption (the “costs”) and the speed (the
“reward”), we obtain l/km, the desired measure.

Given an efficiency measure, we ask for a system with an optimal average-case behavior. The
average-case behavior with respect to a quantitative specification is the expected value of the specifi-
cation over all possible behaviors of the systems in a given probabilistic environment [CHJS10]. We
describe the probabilistic environment using Markov Decision Processes (MDPs), which is a more
general model than the one considered in [CHJS10]. It allows us to describe environments that react
to the behavior of the system (like the driver profile).

Formally, given a finite alphabet Σ over a set of events c, r : Σ∗→ N mapping finite sequences
of letters to rewards and costs, respectively, the ratio objective R c

r
[BGHJ09a] maps an infinite word

w = w0w1w2 · · · ∈ Σω to the following value:

R c
r
(w) = lim

n→∞
lim inf
m→∞

∑m
i=n c(w0 . . . wi)

1 +
∑m

i=n r(w0 . . . wi)
(1)

Even though the formula looks rather complicated it is quite intuitive. The two sums are the accu-
mulated rewards of c and r encountered up to position m of the word w. The +1 in the denominator
avoids division by 0 if the accumulated costs are 0. It has no effect in all other cases. The inner limit
(m→∞) tells us to sum the rewards along the entire infinite word. The outer limit (n→∞) allows
us to ignore a finite prefix of the word. In particular, if the sum in the numerator is finite, then this
limit ensures that R c

r
(w) = 0. So the value of R c

r
(w) depends only on the infinite part of w. We are

interested in evaluating a system with respect to its average-case behavior, which corresponds to the
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expected value of the function R c
r

over all possible behaviors of the systems in a given probabilistic
environment [CHJS10].

Our contributions can be summarized as follows:

1. We developed a framework to automatically construct a system that has an efficient average-case
behavior with respect to a reward and a cost model in a probabilistic environment. To the best of
our knowledge, this is the first approach that allows to automatically synthesis efficient systems.
In our framework, finding an optimal system corresponds to finding an optimal strategy in an
MDP with ratio objective.

2. We introduced and study MDPs with ratio objectives .We presented several algorithms to com-
pute optimal strategies in MDPs under ratio objectives. All algorithms are based on decom-
posing the MDP into end-components [dA97]. The algorithms differ in the way they compute
an optimal strategy for a single end-component. One algorithm uses fractional linear program-
ming. The second one, a simple adaption of an algorithm presented in [dA97], is based on a
reduction to linear programming. The third algorithm is based on policy iteration and a se-
quence of reductions to MDPs with long-run average-reward objective. This novel algorithm
based on policy iteration is particularly interesting, since it can readily be applied to symbol-
ically encoded MDPs and to large structures [WBB+10]. We compared our framework based
on MDPs with ratio objectives to related work and discuss the need for separating the cost and
reward model.

3. We have implemented all algorithms in a stand-alone tool and compare them on our examples.In
order to increase the scope of our approach, we also integrated the best-performing algorithm
into the explicit-state version of PRISM [KNP09], a well-known probabilistic model checker.

For a detailed description of the work, we refer the reader to [vEJ11, vEJ12] .
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2.2 Statistical Model-Checking

The association between an expressive modeling formalisms, with sound semantical basis, and effi-
cient analysis techniques and tools is essential for successful model-based development for autonomic
systems. While expressivity is needed for obvious reasons (such as mastering heterogeneity and com-
plexity), sound and rigorous models are mandatory in order to establish and reason meaningfully about
systems’ correctness and performance at design time. Additionally, efficient tools are equally needed
to provide, as rapidly as possible, feedback on the models and consequently to assist designers and
increase their productivity, during the whole design process.

The BIP [BIP] (Behavior-Interaction-Priority) formalism is such an example of a highly expres-
sive, component-based framework with rigorous semantical basis, developed for supporting develop-
ment of embedded systems. BIP allows the construction of complex, hierarchically structured models
from atomic components characterized by their behavior and their interfaces. Atomic components are
composed by layered application of interactions and of priorities. Interactions express synchronization
constraints between actions of the composed components while priorities are used to filter amongst
possible interactions and to steer system evolution so as to meet performance requirements e.g. to
express scheduling policies.

BIP is supported by an extensible tool-set which includes tools for checking correctness, various
model transformation and code generation. Correctness can be either formally proven using invariants,
that is, assertions automatically generated from BIP models that hold on all executions, or tested using
simulation. For the latter case, simulation is driven by a specific middleware, the BIP engine, which
allows to generate, explore and inspect execution traces corresponding to BIP models. Model trans-
formations allow to realize static optimizations as well as specific transformations towards distributed
implementation of models. Finally, code generation targets both simulation and implementation mod-
els, for different platforms and operating systems support (e.g., distributed, multi-threaded, real-time,
etc.).

We developed a stochastic extension of the BIP formalism and toolset, namely SMC-BIP. Adding
stochastic aspects permits to model uncertainty in the design e.g., by including faults or execution
platform assumptions. Another advantage is that it allows to combine the simulation engine of BIP
with statistical inference algorithms in order to reason on properties in a quantitative manner.

SMC-BIP relies on two key features. The first is a stochastic extension of the syntax and the
semantics of the BIP formalism. This extension allows us to specify stochastic aspects of individ-
ual components and to produce execution traces of the designed system in a random manner. The
second feature is a Statistical Model Checking (SMC) engine that, given a randomly sampled finite
set of executions/simulations of the stochastic system, can decide with some confidence1 whether the
system satisfies a given property. The decision is taken through either a Monte Carlo (that estimates
the probability), or an hypothesis testing algorithm [Wal45, You05] (that compares the probability to a
threshold). Due to SMC restrictions, these properties shall be evaluated on bounded executions. Here,
we restrict to Bounded Linear Temporal Logic (BLTL), but we also allow the user to plug her own
trace analyzer that shall respect a C-Interface. As it relies on sampling executions of a unique distri-
bution, SMC can only be applied to pure stochastic systems i.e., systems without non-determinism.
The problem is that most of components-based design approaches exhibit non-determinism due to
interleaving semantics, usually adopted for parallel execution of components and their interactions.
SMC-BIP allows specifying systems with both non-deterministic and stochastic aspects. However,
the semantics of such systems will be purely stochastic, as explained hereafter.

Syntactically, we add stochastic behavior to atomic components in BIP by randomizing individ-

1By reasoning on a finite st of executions there is always a probability to make a mistake; the confidence can be given by
the user.
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Figure 1: SMC-BIP tool architecture and work flow

ual transitions. Indeed, it suffices to randomize the assignments of variables, which can be done in
the C functions used on transition. Hence, from the user point of view, dealing with SMC-BIP is
as easy as dealing with BIP (the parser checking that all the assignations are indeed randomized or
deterministic. As explained above, this extension leads to the description of stochastic systems with
non-deterministic aspects. As an example, an atomic component with two such randomized transi-
tions is nothing more than a Markov Decision Process. BIP allows such a syntactical specification,
however the resulting semantics is the one of a pure stochastic system, which is automatically guaran-
teed as follows. First, observe that synchronizing individual transitions will not add non-determinism.
Indeed, to perform such an interaction (synchronization in BIP), we simply compute the product of
assignments of individual transitions to get a probability distribution on the resulting interaction. This
is allowed as there is no notion of shared variables in BIP, which means that the distributions associ-
ated to transitions in separate components are independent. Second, when several such randomized
interactions are enabled, the non-determinism is (or can be) partially solved by using priorities. Only
interactions with maximal priority are legal for execution, while the other ones are filtered. Third,
the remaining non-deterministic choices amongst maximal interactions is solved using a uniform dis-
tribution. That is, for example, if two maximal interactions are enabled, each one of them will be
selected for execution with probability 1

2 . As a summary, stochastic BIP allows designing systems
with both stochastic and non-deterministic aspects (as an example an atomic component with several
randomized transitions), but their semantics is purely stochastic.

The structure is given in Figure 1. The tool takes as inputs a system written in the stochastic
extension of BIP, a property, and a series of parameters needed by the statistical test (see [You05]).
Then the tool creates an executable model and a monitor (the user may also add her own monitor
instead of a BLTL formula) for the property. From there, the SMC core engine will generate and
monitor executions until a decision can be taken by SMC. As our approach relies on SMC, we are
guaranteed that the execution will eventually terminate.

While still at the prototype level, SMC-BIP has been already applied to several case studies com-
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ing from serious industrial applications. As an example, in [BBB+10a], we have applied SMC-BIP to
estimate the precision of clock synchronization achieved by using the PTP protocol embedded in an
aircraft communication network. The full system has more than 23000 states which makes it inaccessi-
ble to classical model checking techniques. Using the tool, we have been able to show that the original
precision expected by the system designers only holds over 10 percents of the behaviors. We latter
estimated the correct value of the synchronization precision, again through SMC, hence correcting
the original design. SMC-BIP has been also applied to the analysis of Avionics Full Duplex Ether-
net (AFDX) [Inc05] networks, that is a network standard developed by Airbus for building highly
reliable, time deterministic aircraft data networks based on commercial, off-the shelf Ethernet tech-
nology. AFDX provides an abstraction over the communication media as a set of virtual links, that
is, uni-directional communication channels (from one transmitter towards one or several receivers)
with given quality of service in terms of bandwidth and latency constraints. We used the SMC-BIP
tool for finding estimates on latencies for particular virtual links in complex AFDX networks. Con-
trary to existing approaches, ours is capable to retrieve stochastic informations regarding the model
[BBB+10b].
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2.3 Model Checking Systems with Dynamic Allocation of Resources

One of the long term goals of the sub-task is to “reconcile the denotational and operational views”
for specification languages, such as nominal calculi, that can adapt to model systems with an ever-
changing topology. The aim of this foundational work is to support the development of novel verifica-
tion tools and techniques for such languages.

After our initial work in [GMM06], which traces the correspondence between presheaves cate-
gories and History Dependent automata [MP05], we aimed for denotational semantics of calculi that
feature resource-allocating constructs and efficient verification techniques for these calculi.

In [CKM10] we show how to use symmetries to obtain efficient models of resource binding, thus
produce smaller and more manageable automata to be used in verification. In parallel to this work, we
analyzed calculi where the handling of the topology is more complex, and system states are equipped
with constraints expressing the identity of some of the allocated names (i.e., resources). The research
presenting a denotational model for these fusion calculi is coming to fruition now [BBCG11]. Our
current work is addressing calculi with an even more complex handling of names, possibly with a
hierarchical structure over them, also stimulated by novel calculi proposing a white-box approach to
the network management (meaning that each system is aware of the topology of the network it is
embedded in), as in [MS11].

On the more operational side, several formalisms for modeling systems with a dynamic handling
(including creation or deletion) of resources have been proposed. Notable examples are History De-
pendent Automata [MP05], High-level Allocational Büchi Automata [DRK02], Graph Transition Sys-
tems (e.g. [Ren06]) and Counterpart models (e.g. [GLLV10]). Reasoning about such systems requires
to rely on extensions of traditional temporal logics with quantifiers. Several semantics for such logics
exist, but there is not a widely accepted agreement on the right semantics. In [GLLV10] we propose
a semantics for quantified modal logics for counterpart models, i.e. transition systems where states
are enriched with information about their internal structure (many-sorted unary algebras), and transi-
tions are labeled with (partial) morphisms, explicitly correlating entities of the source and target states
(counterpart relations).

To tackle the inherent complexity of automated verification in such scenarios we are working on a
state space reduction technique [LMV11] for rule-based specifications, mainly inspired by symmetry
reduction and abstract interpretation. The main idea is to use canonizer functions mapping each state
into a (not necessarily unique) canonical representative of its equivalence class modulo a bisimulation
equivalence relation, capturing some specific system regularities. The approach is very flexible and
subsumes in an uniform way symmetry reduction as well as other kinds of reductions like name reuse
and name abstraction.

Our current efforts are devoted to bring these two lines of research together, i.e. to extend the
c-reduction technique to exploit name-reuse when reasoning about counterpart models. Similar issues
have been already studied by various authors [DRK02, MP05, Ren06] and we have also taken some
preliminary steps into this direction [LV11].
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2.4 Behavioral Types and Logics for Abstract Modeling and Verification

In the setting of process calculi, type systems have traditionally been employed to statically en-
force safety or liveness communication properties, from simple ones, such as arity mismatch avoid-
ance [Mil91], to more sophisticated ones, such as deadlock freedom [Kob02] and responsiveness [AB08a].
A recent trend is the use of behavioral type systems [IK01, CRR02, AB10], where behavioral abstrac-
tions (types) are extracted out of pi-like process specifications and then model-checked against given
logical requirements. In order to make this analysis feasible, behavioral types belong to a process
calculus (e.g. CCS) more tractable than the original one. The properties of interest are described in a
modal logic expressive enough to capture not only behavior-, but also the spatiality-related aspects of
processes. In this respect, a natural choice is Caires and Cardelli’s Spatial logic [CC03]. In a recent
work [AB09], decidability of an interesting fragment of this logic has been proved. We aim at adapting
the approach outlined above to the calculi and languages considered in WP1 and the BIP algebra.

During this first year of the project, we have finalized our research on decidability of behav-
ioral type system for the pi-calculus, by extending [AB09] with additional results on complexity and
decidability [AB11]. More precisely, we have proved that, under standard complexity-theoretic as-
sumptions, the worst-case complexity of model checking for any arguably interesting fragment of the
considered logic is exponential; also, we have identified classes of properties for which decidability
holds, including safety ones.

During this year, we have also started investigating the possible relationships between a variant of
SCEL and BIP and we have obtained the prototype translation introduced in the following subsection.

From SCEL to BIP—Links with WP1

As a first step towards the bridging of WP1 and WP5 we propose a prototype translation from a
variant of SCEL into BIP [BIP]. This translation would make it possible to exploit the BIP framework,
especially to take advantage of the existing analysis tools and instruments.

A key point of our translation is modeling the knowledge of each SCEL component (and ensem-
ble) as a BIP component. Any access to Knowledge is then translated into an interaction with this
component. This will result in several dyadic interactions between BIP components: one representing
the knowledge and the other representing the actual SCEL term. The lower level of BIP components,
the behavior, will be described in terms of automata and Petri nets where arcs and transitions, respec-
tively, represent those interactions.

As an example, Figure 2 reports a knowledge component that is receiving a get invocation (via the
arc labeled kgetn) with retrieval pattern g. In the transition from state i, a built-in function get accesses
the actual memory and updates the content of variable o, which is then sent back to the invoker by the
subsequent transition labeled koutn.

Any component asking for a get from the knowledge should first interact with kgetn, by sending
a retrieval pattern T , and then wait for the reply by interacting with koutn. This piece of behavior can
be described by the Petri net if Figure 3, where the last interaction is highlighted in blue. In the picture,
N ([[P ]]) stands for the translation of the behavior of the SCEL component after the get operation. The
other primitives can be translated in the same vein.

Clearly, in order to guarantee the correctness of the analysis with the tools provided by the BIP
framework, this translation should be proved to be correct and complete. As a next step and as future
works, we plan to finalize the translation, together with any related technical result, for the latest
version of SCEL introduced in [NFLP11].
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2.5 On Quantitative Security Policies

In the last few years a new trend is emerging, that exploits the network for computing in a different
manner. Applications are no longer built as monolithic entities, rather they are constructed by plugging
together computational facilities and resources offered by (possibly) untrusted providers. Illustrative
examples of this approach are the Service Oriented, GRID and CLOUD paradigms. Since applications
have little or no control of network facilities, security issues became even more acute. The literature
has several proposals that address these problems. They can be roughly divided into dynamic, that
monitor executions possibly stopping them when insecure; and static, that analyze at binding time the
published behavioral interfaces to avoid risky executions.

A language based approach supporting the static analysis of security has been developed in [BDFZ09a,
BDFZ08a, BDF09, BDF06]. Its main ingredients are: local policies, call-by-contract invocation, type-
effect systems, model checking and secure orchestration. However, this approach only takes into ac-
count qualitative aspects of behavior, neglecting quantitative ones, typically the rates at which the
different activities are performed. The importance of describing also quantitative aspects of systems is
witnessed by several quantitative models and analysis tools that have recently been put forward in the
literature. To cite only a few, the stochastic process algebras PEPA[Hil96], the Stochastic π-calculus
[Pri95], EMPA [BG96], the stochastic model checker PRISM[KNP02].

We extended the approach of [BDF09] to also deal with quantitative aspects. Our starting point is
the abstraction of system behavior, called history expression, that are processes of a suitable process
calculus.

We extended history expressions by associating a rate with actions, so landing in the world of
stochastic process calculi. In this way, we obtained stochastic history expressions (HEµ). Our first
goal is to give them a quantitative semantics in terms of continuous-time Markov chains (CTMC), so
making usable well-known techniques for quantitative analysis [BHHK03, KNP07, CGH]. We used
a variation of the stochastic kernels over measurable spaces [BDEP97, Pan09] to represent CTMC in
the style of [CM10b, CM10a]. To overcome the difficulties with recursion, we restricted stochastic
history expressions to a disciplined iteration, namely binary Kleene star (for a different approach,
see [CM10b]). As a matter of fact, HEµ turn out to be a stochastic extension of BPA∗δ [FZ94, BW90].

Our second main contribution is sharpening security policies with quantitative constraints. Roughly,
quantitative security policies are safety properties that enforce bounds on the speed at which actions
have to be performed. These policies are first class operators inside HEµ, so that security can be taken
into account from the very beginning of application development. To express policies we consider
CSLS , a linear subset of CSL [BHHK03, ASSB00].

Because of the inherent stochasticity of our programming model, policies are to be controlled in
two complementary modalities: potential or actual. The first one applies to the CTMC semantics,
hence the check is on the expected behavior — rates in the CTMC associated with the an HEµ expres-
sion e represent the average speed of the actions in e. Potential analysis then measures the probability
of policy violations. This kind of verification can be carried out through a probabilistic model checker,
e.g. PRISM [KNP02].

The actual control can only be done dynamically, because in a specific, unlikely computation,
the actual speed of an action can greatly deviate from its rate. Security is then enforced during the
execution through an execution monitor aborting such a unlikely, unsafe computation.

Potential verification enables a user to accept/discard an application when the probability of a
security violation is below/above a certain threshold he feels acceptable. Complementary, actual mon-
itoring will stop the unwanted execution, so guaranteeing security.

To clarify our formal development, we introduce below a simple example. We want to analyze a
system, the behavior of which is specified by the following process. The system starts a race between
actions a and c. In the case a is the first to complete, b is performed and then the whole process restarts.

ASCENS 20



D5.1: First Report on WP5 (Final) November 15, 2011

hstart (b, 1) · h

(a, 0.5)

(c, 1)

(b, 1)

Table 1: CTMC associated with h

Otherwise, if c wins the race, the process restarts right after c completion. We model the expected
execution speed by associating to each action a rate, used then as the parameter of an exponentially
distributed random variable. For simplicity, suppose that here the action a has rate 0.5, while the
actions b and c have both rates 1.

We model the system above through the following HEµ expression h = (((a, 0.5) · (b, 1)) +
(c, 1)) ∗ δ. The operator ∗ is the binary Kleene star, that expresses the iteration of the process (the δ
is the deadlock process preventing the iteration to terminate). As said, the long term behavior of HEµ
expressions is conveniently specified by a CTMC. In our case, we give a graphical representation of
the semantics of h in Figure 1. The syntax and the semantics of the stochastic history expressions are
formally defined in [DFM11].

Assume now that the system has to respect a quantitative actual policy φ saying that “action amust
never last more than 1 second”. This policy is to be reflected into a potential requirement, expressing
that, in the long-run, the system will violate φ with low probability. A suitable CSLS formula that
represents this potential quantitative policy is ψ = C≤1%(φ). We omit here the details and only read
ψ as: the computations violating φ are less than 1% of the total.

We now verify whether the expression h respects the potential policy ψ or not. To this purpose, we
compute the vector of the steady state distribution of the CTMC associated with h. Each entry of the
vector expresses the portion of time spent in each part of the computation. The steady distribution of
the CTMC in Figure 1 is [0.6̄, 0.3̄]. The first entry is related with the part where a and c are racing, the
second one with the part when b is executing. By standard reasoning on the properties of exponential
random variables, the probability that a lasts longer than 1 second is p = 0.36, the probability that the
action a wins the race is q = 0.3̄. Hence, we obtain that ψ is violated because the probability that φ is
violated is about 8%. Indeed, multiplying 0.6̄, the first entry of the vector (when action a is executing),
by q (the probability that a is the one that completes) and by p (the probability that the duration of a
violates φ) we get about 0.08.

This analysis suggests to deploy the system equipped with a monitoring mechanism that abort an
execution when it is about to violate φ.
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3 Conclusion and Summary of the Main Achievements

During the first year, we have worked in the following research directions incorporating quantitative
aspects of a SC or SCE:

• We developed a framework to (i) evaluate the efficiency of a controller and (ii) construct a
controller that behaves most-efficient in a given probabilistic environment. Efficiency is defined
in terms of a cost model (e.g., energy consumption) and a reward model (e.g., reliability). The
controller aims to find an optimal trade-off between costs and rewards.

• We developed SMC-BIP, a statistical model checking method and tool for the BIP framework.
SMC-BIP permits to model uncertainty in the design and can verify quantitative properties.
Moreover, it can handle large models that cannot be verified using classical model checking
techniques, as shown by an avionics case study for which we successfully applied SMC-BIP.

• We used the SMC-BIP tool to estimate (1) the precision of clock synchronization in an aircraft
communication network using the PTP protocol and (2) the latencies for particular virtual links
in complex AFDX (Avionics Full Duplex Ethernet) networks.

• We have presented a denotational model (based on a presheaf category) for fusion calculi, cal-
culi with complex topologies, where system states are equipped with constraints expressing the
identity of some of the allocated names (i.e., resources).

• We have developed a state-space reduction technique for rule-based specifications that allows
us to verify larger models.

• We have finalized our research on behavioral type systems for the pi-calculus. We have identi-
fied a decidable fragment of Spatial logic [CC03] and we have proven that any model checking
algorithm for this logic is characterized by exponential complexity.

• We have started investigating the relationship between a variant of SCEL and BIP and proposed
a prototype translation of the former into the latter.

• We have introduced stochastic history expressions (HEµ), a formalism to statically check quan-
titative aspects of security issues in a distributed context.
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4 Next Steps and Long-Term Technical Goals

For the rest of the project, we planed to work on the directions including the following:

• We will develop a symbolic version of our synthesis algorithm for constructing efficient con-
trollers. This will allow us to control systems of large size and complexity. We plan to integrate
this algorithm into the probabilistic model checker PRISM in order to combine our synthesis
technique with more traditional verification techniques to enable the construction of correct and
efficient systems. Our notion of efficiency also allows us to construct systems that are “robust”
with respect to given a specification, because robustness can be seen as a trade-off between vio-
lations of the desired system constraints (the costs) and violations of the assumed environment
constraints (the rewards). We envision to evaluate our symbolic implementation by constructing
efficient (robust) controllers for models of SC and SCE.

• For verification of BIP models, we will work on the following topics:

– a new technique based on stochastic abstraction to address the challenge of combinatorial
complexity in verification of heterogeneous systems,

– the design of new and efficient statistical model checking algorithms that exploit the struc-
ture of the system/property through Bayesian and rare event simulation theories, and

– the integration of our methods in an industrial context.

• We plan to investigate suitable classes of nominal automata such as HD-automata to specify and
verify resource usage policies of service components. The first step of our research will con-
sists on extending nominal techniques to manage general resources rather than simple names.
Roughly, we will represent resources as nominal entities: structures that can bind names. Usage
policies will be abstractly represented as sets of words with multiple data values, namely the
language recognized by nominal automata. In this setting, checking correctness of usage poli-
cies will result into a model checking problem. To this purpose, we plan to extend the classical
automata-like model checking techniques to the case of nominal automata. Finally, we intend
to apply these nominal techniques to manage SCEL policies.

• During the next years of the project, we plan to start investigating whether behavioral-type sys-
tems for the SCEL language can be defined. The first step of our investigation will consist in
defining how to extract an abstract operational model of the components for the occurrence of
the run-time events of interest. Such a model should give a quantitative/probabilistic behavioral
representation of the whole system. The second step will consist in the definition of a logic, suit-
able to define qualitative and quantitative properties of interest. Logical correspondence results
between the abstractions and the original systems will guarantee correctness and completeness
of our proposal.
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