
www.ascens-ist.eu

ASCENS
Autonomic Service-Component Ensembles

D6.1: First Report on WP6
SCE Tooling – Tool Integration Requirements
and Technology

Grant agreement number: 257414
Funding Scheme: FET Proactive
Project Type: Integrated Project
Latest version of Annex I: 7.6.2010

Lead contractor for deliverable: LMU
Author(s): Roberto Bruni (UNIPI), Jacques Combaz (UJF-
Verimag), Alberto Lluch Lafuente (IMT), Michele Loreti (UDF),
Philip Mayer (LMU), Carlo Pinciroli (ULB), Stephan Reiter (LMU)

Due date of deliverable: September 30, 2011
Actual submission date: November 15, 2011
Revision: Final
Classification: PU

Project coordinator: Martin Wirsing (LMU)
Tel: +49 89 2180 9154
Fax: +49 89 2180 9175
E-mail: wirsing@lmu.de

Partners: LMU, UNIPI, UDF, Fraunhofer, UJF-Verimag, UNIMORE,
ULB, EPFL, VW, Zimory, UL, IMT, Mobsya, CUNI

D6.1: First Report on WP6 (Final) November 15, 2011

Executive Summary

This document describes the requirements for the SCE Workbench, which shall integrate most of
the tools developed in the course of the ASCENS project into a single user-friendly development
environment that assists researchers and programmers in the design, creation and evaluation of Service
Component Ensembles (SCEs). Several of these tools are being built within the ASCENS project,
while others are updated versions of existing tools to make them suitable for SCE development.

Our work is based on the results from the SENSORIA project, where an IDE with similar goals
and intentions was built although for a different set of tools. The Service Development Environment
(SDE) is based on the Eclipse IDE and augments it with functionality that enables simple and light-
weight integration of tools into a common user interface with optional support for orchestration, i.e.
the combined use of tools for the purpose of solving a specific problem. With minor adaptions we can
use the SDE as a basis for our SCE Workbench. Both the SDE and tools that are being integrated at
this point of time will be discussed in this document.

Additionally, a discussion of the work done during the first year of the ASCENS project is provided
and an outlook on the months to come is given.

ASCENS 2

D6.1: First Report on WP6 (Final) November 15, 2011

Contents

1 Introduction 5

2 Tool Integration Requirements 6

3 SDE Technology 9
3.1 High-Level Overview . 9
3.2 Design and Implementation . 11

3.2.1 SDE Core and UI . 11
3.2.2 Composing Tools . 14

3.3 Extending the Platform . 15
3.4 Use of the SDE in ASCENS and further Development 16

3.4.1 Evaluation of the SDE . 16
3.4.2 Summary . 18

4 Integration of ASCENS tools 19
4.1 Maude . 19

4.1.1 Usage Scenarios and Functionality . 20
4.1.2 Integration with other Tools . 20
4.1.3 SCE Workbench Integration . 20

4.2 SAM . 21
4.2.1 Functionality . 21
4.2.2 SCE Workbench Integration . 22

4.3 ARGoS . 22
4.3.1 Functionality . 22
4.3.2 SCE Workbench Integration . 24

4.4 D-Finder . 24
4.4.1 Functionality . 24
4.4.2 SCE Workbench Integration . 26

5 First Year Resume and Outlook 27

ASCENS 3

D6.1: First Report on WP6 (Final) November 15, 2011

ASCENS 4

D6.1: First Report on WP6 (Final) November 15, 2011

1 Introduction

We live in a connected world built on the progress that has been made in information and communi-
cations technology. This progress has enabled the development of inexpensive devices equipped with
powerful processors and connected to the Internet. We not only find them at our desks at home or at
the office as we used to, but also in our pockets in the form of smartphones that follow us through our
daily life routine, that provide us with the information we need and that allow us to stay in contact
with our colleagues, friends and loved ones. Furthermore, devices with wireless connectivity built
for special tasks or domains are present in our lives virtually everywhere: GPS navigation assistance
systems or tracking systems for the purpose of toll collection in our cars; RFID markers attached to
consumer goods for quicker check-out in stores; or weather stations that report accurate and current
data for better forecasts. These are just a few examples for the omnipresence of modern ICT devices
in our daily lives.

The development of software for such large-scale, open-ended, distributed systems poses a difficult
problem. State-of-the-art approaches to software engineering have been shown not to scale well to
these types of systems, yielding software that cannot easily adapt to changes in the environment which
are, however, important in order to have well-performing systems in the light of failing components
or new resources becoming available. Manual intervention is therefore normally necessary which,
however, provokes mistakes that can lead to temporary system outages in the worst case.

In the ASCENS project we refer to software-intensive systems with a massive number of nodes
or complex interactions between nodes that also operate in open and non-deterministic environments
as ensembles. Ensembles have to be able to dynamically adapt to new requirements, technologies or
environmental conditions without redeployment and without interruption of the system’s functional-
ity, which blurs the distinction between design-time and run-time. Systems like the ones mentioned
before will be built as ensembles of self-aware, adaptive components which will be combined so that
designers can control and engineer emergent behavior with static and dynamic support from formal
methods.

The development of a coherent, integrated set of methods and tools to build such systems is our
goal in the ASCENS project. A major pillar of our concept is based on is the development of the
Service-Component Ensemble Language (SCEL), a language for self-aware, autonomic Service Com-
ponents (SCs) and Service Component Ensembles (SCEs) that integrates behavioral description with
knowledge representation and reasoning about the environment. Around a definition of the language
and its run-time environment, not only a run-time system and a compiler will be created, but also tools
that allow the analysis of programs or the partial translation of existing code in other languages to
SCEL and vice versa. Furthermore, the development of tools which might be helpful in the engineer-
ing of software-intensive systems, their analysis, verification and visualization is a goal of the project.
All of these tools shall be integrated into a single development environment, providing users with all
the necessary tools at their fingertips, which will benefit future research efforts and industrial software
developers alike.

In this document, we will first describe requirements for the integration of a set of tools into a sin-
gle development environment. We will subsequently describe an existing development environment,
which we use as a foundation for our work in the context of the ASCENS project. Following that
we will give an overview of the tools that are being integrated into the environment, describing their
intended purpose, the stage of integration and potential interfaces to other tools. We will conclude
with a summary of the work done in the first year of the ASCENS project and also present an outlook
on the tools that we are planning to integrate in the months to come.

ASCENS 5

D6.1: First Report on WP6 (Final) November 15, 2011

2 Tool Integration Requirements

In this section, we will describe a number of requirements we deem necessary for a successful and us-
able integration of tools into a single development environment. We will revisit these requirements in
a later section to evaluate our choice of a technological basis for the ASCENS Integrated Development
Environment (IDE), the SCE Workbench.

The list of requirements as presented in Table 1 was created in fruitful discussions with our col-
leagues from the NESSoS project [BK11], another FP7 project with a focus on the engineering of
secure future Internet software services and systems, in which the integration of security-related tools
into an IDE is also a goal, just like in ASCENS.

User Interface
Req. 1: Provide an IDE with a Familiar User Interface
Req. 2: Support Good Documentation of Tools
Req. 3: Support Tool Categories

Architecture
Req. 4: Open Source Foundation
Req. 5: Enable Easy Integration of Tools
Req. 6: Support Broad Range of Tools

Tool Management
Req. 7: Support Management of Tools
Req. 8: Allow for Automatic Updates

Tool Integration

Req. 9: Aid in Development of New Tools
Req. 10: Enable Transformations between Tool Inputs and Output
Req. 11: Support Inter-Tool Dependencies
Req. 12: Enable Orchestration of Tools

Table 1: Requirements for a Tool Integration Platform

Req. 1 Provide an IDE with a Familiar User Interface

The development environment, which shall be a result of the ASCENS project, should be easy to use
for programmers and researchers in order to increase the acceptance of the IDE. A means of achieving
this is to rely on established principles for such environments, i.e. the standard layout of the IDE
controls and windows, but also the possibility to rearrange them by the users to enable customization.
This can be achieved by designing a new IDE while keeping in mind these principles or by reusing
a preferably open source IDE, such as CodeBlocks1 or Eclipse2, which can both be extended and
modified to create domain-specific development environments.

Req. 2 Support Good Documentation of Tools

The use of tools, either by themselves or as parts of composing workflows, requires an understanding
of both the interfaces of the tools and the semantics of their methods. Although desirable, program-
mers do not often invest the time to properly document their work due to time constraints. In order to
reduce the time required to document a tool, automatic mechanisms shall assist the developer in build-
ing a documentation: Interfaces with their methods and datatypes shall be automatically extracted by
the development environment, leaving only the documentation of their semantics to the programmer.
All of this information shall be readily available in the IDE, e.g. via the list of available tools.

1CodeBlocks website: http://www.codeblocks.org/
2Eclipse website: http://www.eclipse.org/

ASCENS 6

http://www.codeblocks.org/
http://www.eclipse.org/

D6.1: First Report on WP6 (Final) November 15, 2011

Req. 3 Support Tool Categories

In the ASCENS project we will have different kinds of tools, such as tools for development, for the
analysis and verification of models or programs, for simulations and for transformations. The IDE user
interface should be able to present them grouped by their category in order to allow users to quickly
find tools for their needs without having to go over a flat list of all tools.

Req. 4 Open Source Foundation

The foundation of the SCE Workbench shall be available under an open source license to allow new
versions without any restrictions. Furthermore, with open-source software we are independent from
the publisher’s support to fix bugs, but can easily do this ourselves.

Req. 5 Enable Easy Integration of Tools

The integration of tools, both newly developed and existing ones, shall be straightforward and not
require highly invasive changes to the tools’ code bases. A declarative approach in which a tool’s
interface is annotated with additional information that allows its integration into a platform could be a
way to approach this.

New tools will typically be developed in programming languages well supported by the devel-
opment environment because this reduces the effort of using its interfaces. However, programmers
should be free to select the language they feel most productive with. The IDE therefore needs to sup-
port the necessary means to establish a link and integrate such tools, which is also a requirement for
the support of legacy tools written in other programming languages.

Packaging of tools to the required format should be made simple to perform, e.g. by providing an
automation of the necessary workflows.

Req. 6 Support Broad Range of Tools

Tools can be quite different in nature: Some are computationally expensive, but only have limited
interaction with the user, if any. Others are lighter on the CPU, but require complex user interfaces.
Our development environment shall support all kinds of tools and optimize their use, e.g. by run-
ning computationally-expensive tools on dedicated remote machines, while keeping tools with high
amounts of user interaction local in order to reduce input latency and provide a pleasant experience to
the user.

Req. 7 Support Management of Tools

At any time, the user should be in control of the tools that are installed on his machine and inte-
grated into his development environment. The IDE shall therefore provide means for managing the
installation and the removal of tools in an easy and straight-forward way.

Req. 8 Allow for Automatic Updates

An automatic update mechanisms shall keep the installed tools up-to-date, which is especially impor-
tant during the early lifetime of any tools, i.e. the alpha and beta stages during its development. This
would enable early-adoption of tools developed with the ASCENS project and minimize frustration
with keeping up-to-date with the latest developments, i.e. additions of new features or bug fixes.

ASCENS 7

D6.1: First Report on WP6 (Final) November 15, 2011

Req. 9 Aid in Development of New Tools

Within the ASCENS project new tools will be developed and integrated into our development environ-
ment. This development of tools shall be supported by the development environment to enable good
integration from the start. Existing tools might also be useful in the process of developing a new tool.

Req. 10 Enable Transformations between Tool Inputs and Outputs

Tools require input and produce output in certain formats. For the orchestration of tools the output of
one tool needs to fulfill the requirements for input of the subsequent tool. In order to avoid having to
add support for a certain input format to a tool, which is sometimes simply not possible, the use of
adapters shall be made possible by the development environment. Adapters accept a certain form of
input and transform it so that it can be fed to a tool that didn’t support the original input.

Req. 11 Support Inter-Tool Dependencies

Tools can be dependent on other tools to function properly, e.g. the analysis of a web service descrip-
tion might require the presence of an XML parser and a WSDL interpreter. Our IDE shall support the
annotation of tools with regard to their external dependencies and shall verify the satisfaction of them
before any tool is made available to the user to guarantee that it is fully functional. External depen-
dencies should also preferably be solved by automatically installing required software components in
order to reduce the installation effort.

Req. 12 Enable Orchestration of Tools

Typically, a suite of tools is used to deal with a particular problem. Our development environment shall
enable the user to use integrated tools not only via manual interaction with the graphical user interface,
but also via custom workflows. A workflow is a description of a sequence of tool invocations in which
the results or the output of one tool are passed as input to another tool which further processes the
data. Preferably, such a composition of tools is easy to achieve, for example via a graphical editor that
is based on a familiar model such as UML activity diagrams or via scripting, i.e. the description of a
workflow in a textual form in a domain-specific programming language.

ASCENS 8

D6.1: First Report on WP6 (Final) November 15, 2011

3 SDE Technology

Considering the requirements discussed in the previous chapter, we will present an integrated develop-
ment environment from the SENSORIA project that can be a great basis for our work in the ASCENS
project in the following.

The SENSORIA project [WBF+08] has provided tools and techniques for many of the tasks de-
velopers are faced with during the development of systems based on the paradigm of Service-Oriented
Architectures (SOA) [Erl05]. The main consideration in SENSORIA was rigorous engineering of
service-oriented systems with a specific focus on formal verification. As our verification and valida-
tion methods are often directly based on a formal model, tool support had to be created for allowing
developers to use these methods while staying on their chosen level of abstraction, for example, UML.
For this purpose a tooling platform, the SENSORIA Development Environment (SDE) [MR10], was
developed, which integrates the various tools required in the service development process, including
modeling, analysis, code generation, and runtime functionality. In short, the SDE

• offers a extensible repository of a broad range of tools and describes their functionality and area
of application in a user-friendly way,

• allows developers to use tools in a homogeneous way, with the possibility to re-arrange and
combine tool functionality as required, and

• enables users to stay on a chosen level of abstraction, hiding formal details as much as possible.

In section 3.1, we give a high-level overview of the SDE while Section 3.2 further details the
design and implementation of the integration platform.

3.1 High-Level Overview

The SENSORIA project aimed to support developers of service-oriented software systems at various
points in the development process. Specific focus was placed on (formal) verification of service ar-
tifacts, which includes appropriate modeling support for developers as well as code generation and
runtime support. Through various tools, the project was thus able to offer functionality which covers
the complete model-driven process of service engineering, which is shown in Figure 1.D7.4.d Report on the Sensoria Development Environment (third version) (Draft) January 13, 2010

Runtime
Runtime Support for SOA,

e.g. Service Discovery

SOA Architecture
Business Requirements, e.g.

Behaviour, Policies,...

Code Generation
Creating Executable Code,

e.g. BPEL/WSDL/XSD

Transformation
Prepare formal results for

improving the models

Transformation
Translating to formal

languages for analysis

Analysis
Verifying correctness of SOA

models

Modelling
Modelling SOA applications,
e.g. UML Profiles for SOA

Sensoria Development Environment

Figure 1: Development Approach

• Model Transformation Functionality, including Code Generation. Automated model trans-
formations from UML to process calculi and back to bridge the gap between these worlds; also,
generation of executable code (for example, Web Service standards like BPEL).

• Formal Analysis Functionality. Model checking and numerical solvers for stochastic methods
based on process calculi code defined by the user or generated by model transformation.

• Runtime Functionality. Integration of runtime platforms, for example BPEL process engines or
the Java runtime as well as runtime support for services, for example dynamic service brokering.

The functionality indicated in the previous list is implemented in various tools, some of which have
been developed within SENSORIA, some developed outside of the project (for a full list of SENSORIA

tools, see section 4). The tools are not only developed at different sites, but are also vastly different with
regard to user interface, functionality, required computing power, execution platform and programming
language. However, all of the tools contribute to the development process and in many cases deliver
artefacts which may serve as input to other tools.

The SENSORIA Development Environment (SDE) provides this functionality through a carefully
designed, lightweight integration architecture. This is achieved through the following core features:

• A SOA-based platform. The SDE itself is based on a Service-Oriented Architecture, allowing
easy integration of tools and querying the platform for available functionality. The tools hosted in
the SDE are installed and handled as services.

• A Composition Infrastructure. As development of services is a highly individual process and
may require several steps and iterations, the SDE offers a composition infrastructure which allows
developers to automate commonly used workflows as an orchestration of integrated tools.

• Hidden Formal Methods. To allow developers to use formal tools without requiring them to
understand the underlying formal semantics, the SDE encourages the use of automated model
transformations which translate between high-level models and formal specifications.

As with services in a SOA, tool composition in our integration tool is a lightweight one, i.e., the
connection between tools is not a priori fixed and adding additional tools requires only minimal change to
the integrated tools. Using the tool-as-a-service metaphor, tools are services, each consisting of functions
which can be invoked by the user or other services. Contrary to Web services [WCL+05], user interaction

016004 (Sensoria) 5

Figure 1: SENSORIA Development Approach

ASCENS 9

D6.1: First Report on WP6 (Final) November 15, 2011

After starting with requirements for a SOA-based system, developers advance to the modeling
phase. From this phase, various analyses of the models may be performed, many of them carried
out with the help of automated model transformations. Finally, code is generated from the improved
models; runtime support is available for executing this code on various platforms. The figure shows
the phases which are covered by tools integrated into the SDE – Modeling, Transformation, Analysis,
Code Generation, and Runtime. The following functionality is available in each of these phases:

• Modeling: Graphical editors for familiar modeling languages such as UML, which allow in-
tuitive modeling at a high abstraction level, and also text- and tree-based editors for formal
languages like process calculi.

• Model Transformation Functionality, including Code Generation: Automated model trans-
formations from UML to process calculi and back to bridge the gap between these worlds; also,
generation of executable code (for example, web service standards like BPEL).

• Formal Analysis Functionality: Model checking and numerical solvers for stochastic methods
based on process calculi code defined by the user or generated by model transformation.

• Runtime Functionality: Integration of runtime platforms, for example BPEL process engines
or the Java runtime, as well as run-time support for services, for example dynamic service
brokering.

The functionality indicated in the previous list is implemented in various tools, some of which have
been developed within SENSORIA, some developed outside of the project. The tools are not only
developed at different sites, but are also vastly different with regard to user interface, functionality,
required computing power, execution platform and programming language. However, all of the tools
contribute to the development process and in many cases deliver artifacts which may serve as input to
other tools.

The SDE provides this functionality through a carefully designed, lightweight integration archi-
tecture. This is achieved through the following core features:

• A SOA-based Platform: The SDE itself is based on a Service-Oriented Architecture, allowing
easy integration of tools and querying the platform for available functionality. The tools hosted
in the SDE are installed and handled as services.

• A Composition Infrastructure: As development of services is a highly individual process
and may require several steps and iterations, the SDE offers a composition infrastructure which
allows developers to automate commonly used workflows as an orchestration of integrated tools.

• Hidden Formal Methods: To allow developers to use formal tools without requiring them to
understand the underlying formal semantics, the SDE encourages the use of automated model
transformations which translate between high-level models and formal specifications.

As with services in a SOA, tool composition in the integration tool is a lightweight one, i.e. the
connection between tools is not a priori fixed and adding additional tools requires only minimal change
to the integrated tools. Using the tool-as-a-service metaphor, tools are services, each consisting of
functions which can be invoked by the user or other services. Contrary to web services [WCL+05],
user interaction is very important for some software development tools. For example, a modeling tool
requires a lot of user interaction – ideally, the modeling tool runs on the computer of the user. A
model checker, on the other hand, requires a lot of computing power and thus will most likely run on

ASCENS 10

D6.1: First Report on WP6 (Final) November 15, 2011

a dedicated server to be accessed remotely with none or only a minimal, generated UI available. Both
use cases are supported in the SDE.

By using a SOA-based infrastructure, combining tools into more complex tool chains is straight-
forward, i.e. via dedicated orchestration languages. A typical scenario for tool composition can be
found in the analysis and verification of software; for example, model checkers require a certain input
format into which most source models first need to be transformed; the same applies to the output.
The SDE contains both a textual (JavaScript) and a graphical (UML-based) orchestration language,
allowing users to integrate various tools, thereby handling the data flow between these tools. Having
encapsulated the integrating steps, they can be run over and over again for performing the same steps
with different input and output data.

Finally, the SDE aims at providing formal verification tools to pragmatic developers. This requires,
as indicated above, the use of model transformations to allow developers to stay on their chosen level
of abstraction while still enjoying the results available through rigorous verification methods.

Figure 2 shows the architecture of the SDE. As discussed previously, the integration platform
hosts a number of tools as services. Through its dedicated orchestration infrastructure, the SDE allows
developers to orchestrate tools to be used in combination, which includes using model transformations
and a remote invocation functionality for invoking tools hosted on different machines.

D7.4.d Report on the Sensoria Development Environment (third version) (Draft) January 13, 2010

is very important for some software development tools. For example, a modelling tool requires a lot of
user interaction – ideally, the modelling tool runs on the computer of the user. A model checker, on the
other hand, requires a lot of computing power and thus will most likely run on a dedicated server to be
accessed remotely with none or only a minimal, generated UI available. Both use cases are supported in
the SDE.

SDE Platform

Local Tool
e.g. modelling ...

Local Tool
e.g. code generation

Orchestration Languages

Remote Tool
e.g. model checker...Transformations

SDE Platform

Figure 2: SDE Architecture

By using a SOA-based infrastructure, combining tools into more complex tool chains is straightfor-
ward, i.e. possible via dedicated orchestration languages. A typical scenario for tool composition can be
found in the analysis and verification of software; for example, model checkers require a certain input
format into which most source models first need to be transformed; the same applies to the output. The
SDE contains both a textual (JavaScript) and a graphical (UML-based) orchestration language, allowing
users to integrate various tools, thereby handling the data flow between these tools. Having encapsulated
the integrating steps, they can be run over and over again for performing the same steps with different
input and output data.

Finally, the SDE aims at providing formal verification tools to pragmatic developers. This requires,
as indicated above, the use of model transformations to allow developers to stay on their chosen level
of abstraction while still enjoying the results available through rigourous verification methods. Through
tool chaining and the ability to install verification tools remotely, the SDE enables an MDA-like approach
to the analysis of service artefacts.

Fig. 2 shows the architecture of the SDE. As discussed previously, the integration platform hosts a
number of tools as services. Through its dedicated orchestration infrastructure, the SDE allows devel-
opers to orchestrate tools to be used in combination, which includes using model transformations and a
remote invocation functionality for invoking tools hosted on different machines.

The next section will introduce the technical details of the SDE implementation.

3 Design and Implementation

The aim of SENSORIA is to support the creation of service-oriented software by augmenting existing
development processes and tools. A requirement for the SDE was therefore to integrate with existing
tools and platforms for the development of SOA systems. For this reason, the SDE is based on the
well-known Eclipse platform [Ecl09b] and its underlying, service-oriented OSGi [OSG08] framework.
OSGI is based on so-called bundles, which are components grouping a set of Java classes and meta-data
providing among other things name, description, version, exported and imported packages of the bundle.
A bundle may provide arbitrary services to the platform.

3.1 SDE Core and UI

The technical architecture of the SDE is depicted in Fig. 3, which shows the SDE Platform as an OSGi
bundle, its dependencies and dependent bundles.

016004 (Sensoria) 6

Figure 2: SDE Architecture

3.2 Design and Implementation

The aim of SENSORIA was to support the creation of service-oriented software by augmenting ex-
isting development processes and tools. A requirement for the SDE was therefore to integrate with
existing tools and platforms for the development of SOA systems. For this reason, the SDE is based
on the well-known Eclipse platform [Ecl11] and its underlying, service-oriented OSGi framework
[The07]. OSGi is based on so-called bundles, which are components grouping a set of Java classes
and meta-data providing among other things name, description, version, exported and imported pack-
ages of the bundle. A bundle may provide arbitrary services to the platform.

3.2.1 SDE Core and UI

The technical architecture of the SDE is depicted in Figure 3, which shows the SDE Platform as an
OSGi bundle, its dependencies and dependent bundles.

Fundamentally, all tools are integrated as OSGi bundles which offer certain functions for invo-
cation by the platform. As indicated above, the tools integrated into the SDE are vastly different,
ranging from user-driven graphical modeling tools to computationally intensive analysis tools with
very basic interaction mechanisms. Thus, it is not possible to define a common API for all tools. In
the SDE, this problem is solved by using (declarative) OSGi services for each tool. Furthermore, the
SDE allows tools to provide their own UI, but also provides a generic invocation mechanism which
enables users to invoke arbitrary functions, either directly or through an orchestration. Finally, tool

ASCENS 11

D6.1: First Report on WP6 (Final) November 15, 2011

integration requirements should be kept low to ensure integration of as many tools as possible. The
SDE re-uses OSGi and Eclipse technology and declarative service descriptions which are generated
from Java annotations for a fast and straightforward integration process.

As can be seen in Figure 3, the SDE platform and the integrated tools are based on (R-)OSGi only
or, more specifically, the Equinox implementation of OSGi [Fou09] (use of R-OSGi [RAR07] with
SDE allows remote execution of tools). This means that fundamentally, tools must be implemented
in Java, although they may wrap native code or remote invocations as they wish. Being only based
on OSGi, they can be invoked completely independently from Eclipse. If they additionally choose to
provide a UI, this UI is integrated into and based on the Eclipse platform, as is the UI for the SDE
platform itself.D7.4.d Report on the Sensoria Development Environment (third version) (Draft) January 13, 2010

Native (OS) Native Tool

Java

(R-)OSGi

Java Tool

Equinox Bundles

SDE Platform

SDE Tool SDE Tool SDE Tool

Eclipse UI UI UI UI

Figure 3: SDE Technical Architecture

Fundamentally, all tools are integrated as OSGi bundles which offer certain functions for invocation
by the platform. As indicated above, the tools integrated into the SDE are vastly different, ranging
from user-driven graphical modelling tools to computationally intensive analysis tools with very basic
interaction mechanisms. Thus, it is not possible to define a common API for all tools. In the SDE, this
problem is solved by using (declarative) OSGi services for each tool. Furthermore, the SDE allows tools
to provide their own UI, but also provides a generic invocation mechanism which enables users to invoke
arbitrary functions, either directly or through an orchestration. Finally, tool integration requirements
should be kept low to ensure integration of as many tools as possible. The SDE re-uses OSGi and
Eclipse technology and declarative service descriptions which are generated from Java annotations for a
fast and straightforward integration process.

As can be seen in Fig. 3, the SDE platform and the integrated tools are based on (R-)OSGi only
(or, more specifically, the Equinox implementation of OSGi [Ecl09a]). This means that fundamentally,
tools must be implemented in Java, although they may wrap native code or remote invocations as they
wish. Being only based on OSGi, they can be invoked completely independently from Eclipse. If they
additionally choose to provide a UI, this UI is integrated into and based on the Eclipse platform, as is the
UI for the SDE platform itself.

Fig. 4 shows a screenshot of the SDE UI. On the left hand side, the tool browser shows installed
tools available for invocation and automation. Tools are grouped by category, allowing quick access
by application area. Double-clicking a tool in the browser yields more information about the tool and
its functionality. This information is shown in the view in the middle: As an example, an integrated
tool for qualitative analysis (WS-Engineer) is shown in more detail. Each tool function displayed here
can be invoked by clicking the link and providing the parameters. Finally, on the right, the SENSORIA

Blackboard is shown, which is a storage area where tools may place arbitrary objects for later use.
Finally, at the bottom, the SENSORIA Shell is displayed, which is a live JavaScript execution environment
(see section 3.2).

As an example for a function invocation, clicking on the bpelToFSP() function in the WS-
Engineer tool yields the following dialogs, where the data for the single parameter (bpel) can be selected
from various sources (Fig. 5).

Finally, the SDE core integrates with R-OSGi [RAR07] to provide the ability to host tools for external
invocation, and connect to remote SDE cores. The tools in the tool view in Fig. 4 (left), for example,
are listed under the local core. Further (remote) cores may be added as required, and their tools are

016004 (Sensoria) 7

Figure 3: SDE Technical Architecture

Figure 4 shows a screenshot of the SDE UI. On the left hand side, the tool browser shows installed
tools available for invocation and automation. Tools are grouped by category, allowing quick access
by application area. Double-clicking a tool in the browser yields more information about the tool and
its functionality. This information is shown in the view in the middle: As an example, an integrated
tool for qualitative analysis (WS-Engineer) is shown in more detail. Each tool function displayed
here can be invoked by clicking the link and providing the parameters. Finally, on the right, the
SENSORIA Blackboard is shown, which is a storage area where tools may place arbitrary objects
for later use. Finally, at the bottom, the SENSORIA Shell is displayed, which is a live JavaScript
execution environment.

As an example for a function invocation, clicking on the bpelToFSP() function in the WS-
Engineer tool yields the following dialogs, where the data for the single parameter bpel can be
selected from various sources (Figure 5).

Finally, the SDE core integrates with R-OSGi to provide the ability to host tools for external
invocation, and connect to remote SDE cores. The tools in the tool view in Figure 4 (left), for example,
are listed under the local core. Further (remote) cores may be added as required, and their tools are
then listed and used in the same way as described above. Furthermore, the blackboard (right) also
distinguishes between the various cores.

ASCENS 12

D6.1: First Report on WP6 (Final) November 15, 2011

D7.4.d Report on the Sensoria Development Environment (third version) (Draft) January 13, 2010

Figure 4: SDE Screenshot

then listed and used in the same way as described above. Furthermore, the blackboard (right) also
distinguishes between the various cores.

3.2 Composing Tools

The SDE provides the ability to compose new tools out of existing ones, a process known as orchestration
in the SOA world. Creating orchestrations is possible using two mechanisms: A textual, JavaScript-based
approach, and a graphical, UML-activity-diagram-like workflow approach.

3.2.1 Orchestrating with JavaScript

The ability to use tool APIs directly within JavaScript enables developers to create a workflow by simply
invoking tool functions and passing data in-between those functions. To enable the newly created work-
flow to be usable as a tool in its own right, two things are required: Instead of simply creating a workflow,
a JavaScript function definition is required which states a function name and parameters. As each tool,
function, parameters, and return types may have descriptions and additional metadata attached, this meta-
data must be specified in some way in the JavaScript source files. Both points have been addressed in
the SDE. The first is simple; function definitions are already part of the JavaScript specification. The
second was solved by employing a JavaDoc-comment-style approach to metadata specification. Tags
like @description are used to convey metadata information.

As an example, Fig. 6 (left) shows a script for converting UML2 activity diagrams to BPEL, then
analysing them using the WS-Engineer tool, and finally converting the result back to UML2 sequence
diagrams showing the error trace. Fig. 6 (right) shows the converted tool inside the SDE tool browser.
Scripts created like this can be used on any SDE installation which has the required tools installed. No
particular deployment is necessary save copying the script and registering it with the core.

016004 (Sensoria) 8

Figure 4: SDE Screenshot
D7.4.d Report on the Sensoria Development Environment (third version) (Draft) January 13, 2010

Figure 5: SDE Wizard

For testing purposes, the SDE also contains a JavaScript live execution environment, the SDE Shell
(Fig. 4), where JavaScript commands can be executed without compiling a complete script.

3.2.2 Graphical Orchestration

Besides the ability to use JavaScript for orchestration as indicated above, the SDE also contains the
ability to orchestrate tools graphically. The syntax used is that of UML2 activity diagrams, where the
main focus is on data flow, i.e. the flow of information from pin to pin. An activity in the diagram
represents one function in the tool to be generated which has input pins (parameters) and one output
pin (return type). Inside the activity, actions represent function calls to arbitrary (installed) tools. These
actions have pins themselves; data flow edges model the data transfer.

As an example, consider the screenshot in Fig. 7, which shows the orchestration introduced in
the previous paragraph as a graphical workflow, including the editor which supports it. The function
checkActivity(uml) is modelled as an UML2 activity, and each call to a particular function of an
installed tool is modelled as an action. On the right-hand side, the palette shows all available tools and
the functions they provide. Once modelled, an orchestration such as the one above is converted to a Java
class, compiled in-memory and installed as a tool in the SDE.

3.3 Extending the Platform

The SOA-based architecture of the SDE makes it easy to add new tools – the SDE publishes a core
API and an extension point for registering tools. Basically, each tool is an OSGi bundle with some
published API and metadata XML to register the tool with the SDE core. Thus, creating a facade class
and registering the class with the SDE extension point enables tool functionality to be immediately
available within the SDE, both for manual invocation and automation. Tools within the SDE are loosely
coupled, as they are fundamentally independent from each other and interact through their published
service interfaces only. They may, of course, require other tools to be installed for them to work. This is
defined in a declarative way through the Equinox extension mechanism and checked by the platform prior
to tool installation. The SDE core also contains a set of Java 5 annotations, which enable tool developers
to define their tools and functions without writing any XML. As an example, consider Fig. 8: On the
left-hand side, a tool interface with SDE annotations is shown; on the right-hand side, the corresponding
tool view in the SDE.

016004 (Sensoria) 9

Figure 5: SDE Wizard

ASCENS 13

D6.1: First Report on WP6 (Final) November 15, 2011

3.2.2 Composing Tools

The SDE provides the ability to compose new tools out of existing ones, a process known as or-
chestration in the SOA world. Creating orchestrations is possible using two mechanisms: A textual,
JavaScript-based approach, and a graphical, UML-activity-diagram-like workflow approach.

Orchestrating with JavaScript. The ability to use tool APIs directly within JavaScript enables
developers to create a workflow by simply invoking tool functions and passing data in-between those
functions. To enable the newly created workflow to be usable as a tool in its own right, two things
are required: Instead of simply creating a workflow, a JavaScript function definition is required which
states a function name and parameters. As each tool, function, parameters, and return types may have
descriptions and additional metadata attached, this metadata must be specified in some way in the
JavaScript source files. Both points have been addressed in the SDE. The first is simple; function
definitions are already part of the JavaScript specification. The second was solved by employing a
JavaDoc-comment-style approach to metadata specification. Tags like @description are used to
convey metadata information.

As an example, Figure 6 (left) shows a script for converting UML2 activity diagrams to BPEL,
then analyzing them using the WS-Engineer tool, and finally converting the result back to UML2
sequence diagrams showing the error trace. Figure 6 (right) shows the converted tool inside the SDE
tool browser. Scripts created like this can be used on any SDE installation which has the required tools
installed. No particular deployment is necessary, copying the script and registering it with the core
suffices.

D7.4.d Report on the Sensoria Development Environment (third version) (Draft) January 13, 2010

Figure 6: Orchestration with JavaScript

The API defined within the integration tool service bundle provides access to all installed tools. A
tool may use this API to verify installation of required tools; search for tools based on meta-data, and
invoke functionality as needed. Therefore, it serves as a discovery service which moderates between the
tools. Once the connection has been made, communication between tools is done directly.

4 Integrated Tools

This chapter lists all tools which have been integrated into the SDE platform, sorted by integrated cate-
gory.

4.1 Modelling

ArgoUML ArgoUML is an open source UML modelling tool which includes support for all standard
UML 1.4 diagrams.

http://argouml.tigris.org/

Rational Software Architect Rational Software Architect is a UML modelling tool which supports
UML2.0 profiles and is built on the Eclipse platform.

http://www.ibm.com/software/awdtools/architect/swarchitect/

MagicDraw MagicDraw is a platform independent UML modeller with profile support for UML2.

http://www.magicdraw.com/

016004 (Sensoria) 10

Figure 6: Orchestration with JavaScript

For testing purposes, the SDE also contains a JavaScript live execution environment, the SDE
Shell (Figure 4), where JavaScript commands can be executed without compiling a complete script.

Graphical Orchestration. Besides the ability to use JavaScript for orchestration as indicated above,
the SDE also contains the ability to orchestrate tools graphically. The syntax used is that of UML2
activity diagrams, where the main focus is on data flow, i.e. the flow of information from pin to pin.

ASCENS 14

D6.1: First Report on WP6 (Final) November 15, 2011

An activity in the diagram represents one function in the tool to be generated which has input pins
(parameters) and one output pin (return type). Inside the activity, actions represent function calls to
arbitrary (installed) tools. These actions have pins themselves; data flow edges model the data transfer.

As an example, consider the screenshot in Figure 7, which shows the orchestration introduced in
the previous paragraph as a graphical workflow, including the editor which supports it. The function
checkActivity(uml) is modeled as an UML2 activity, and each call to a particular function of
an installed tool is modeled as an action. On the right-hand side, the palette shows all available tools
and the functions they provide. Once modeled, an orchestration such as the one above is converted to
a Java class, compiled in-memory and installed as a tool in the SDE.

D7.4.d Report on the Sensoria Development Environment (third version) (Draft) January 13, 2010

Figure 7: Graphical Orchestration

4.2 Transformation and Deployment

Hugo/RT Hugo/RT is a UML model translator for model checking, theorem proving, and code gen-
eration: A UML model containing active classes with state machines, collaborations, interactions, and
OCL constraints can be translated into the system languages of the real-time model checker UPPAAL,
the on-the-fly model checker SPIN, the system language of the theorem prover KIV, and into Java and
SystemC code.

http://www.pst.informatik.uni-muenchen.de/projekte/hugo/

VIATRA2 The main objective of the VIATRA2 (VIsual Automated model TRAnsformations) frame-
work is to provide a general-purpose support for the entire life-cycle of engineering model transforma-
tions including the specification, design, execution, validation and maintenance of transformations within
and between various modelling languages and domains.

http://wiki.eclipse.org/VIATRA2

SOA2WSDL-Transformation The SOA2WSDL transformation, written in VIATRA2, takes high level
UML models and produces WSDL (Web Services Description language) output.

http://viatra.inf.mit.bme.hu/

016004 (Sensoria) 11

Figure 7: Graphical Orchestration

3.3 Extending the Platform

The SOA-based architecture of the SDE makes it easy to add new tools – the SDE publishes a core
API and an extension point for registering tools. Basically, each tool is an OSGi bundle with some
published API and metadata XML to register the tool with the SDE core. Thus, creating a wrapper
class and registering the class with the SDE extension point enables tool functionality to be imme-
diately available within the SDE, both for manual invocation and automation. Tools within the SDE
are loosely coupled, as they are fundamentally independent from each other and interact through their
published service interfaces only. They may, of course, require other tools to be installed for them to
work. This is defined in a declarative way through the Equinox extension mechanism and checked
by the platform prior to tool installation. The SDE core also contains a set of Java 5 annotations,
which enable tool developers to define their tools and functions without writing any XML. As an ex-

ASCENS 15

D6.1: First Report on WP6 (Final) November 15, 2011

ample, consider Figure 8: On the left-hand side, a tool interface with SDE annotations is shown; on
the right-hand side, the corresponding tool view in the SDE is presented.

D7.4.d Report on the Sensoria Development Environment (third version) (Draft) January 13, 2010

Figure 8: SDE Tool Registration

SRMC/UML Bridge The SRMC/UML bridge offers facilities for meta-model transformation. It trans-
lates a subset of UML2 models (Interactions and State Machines) into an SRMC description for perfor-
mance evaluation. Results are reflected back into the UML model.

http://groups.inf.ed.ac.uk/srmc/

UML2PEPA Transformation The UML2PEPA transformation, written in VIATRA2, takes high level
UML models and produces PEPA models used for analysis in the PEPA/SRMC tool.

http://viatra.inf.mit.bme.hu/

Modes Parser and Browser The Modes Parser and Browser is a WS-Engineer plug-in to parse and
extract broker requirements from UML2 Modes Models.

http://www.doc.ic.ac.uk/ltsa/eclipse/wsengineer

4.3 Analysis

LTSA LTSA is a verification tool for concurrent systems. It checks that the specification of a concur-
rent system satisfies the properties required of its behaviour. In addition, LTSA supports specification
animation to facilitate interactive exploration of system behaviour.

http://www.doc.ic.ac.uk/ltsa/

WS-Engineer The LTSA WS-Engineer plug-in is an extension to the LTSA Eclipse Plug-in which
allows service models to be described by translation of the service process descriptions, and can be used
to perform model-based verification of Web service compositions.

http://www.doc.ic.ac.uk/ltsa/eclipse/wsengineer/

016004 (Sensoria) 12

Figure 8: SDE Tool Registration

The API defined within the integration tool service bundle provides access to all installed tools. A
tool may use this API to verify installation of required tools, search for tools based on meta-data, and
invoke functionality as needed. Therefore, it serves as a discovery service which moderates between
the tools. Once the connection has been made, communication between tools is done directly.

3.4 Use of the SDE in ASCENS and further Development

After describing the SDE in the previous section, we will now discuss how it fulfills our requirements
for a tool integration platform as laid out in Section 2.

3.4.1 Evaluation of the SDE

Req. 1: Provide an IDE with a Familiar User Interface. The SDE is based on the popular Eclipse
development environment which features a user interface that is standard in this field and can be cus-
tomized by programmers. As such the SDE is no reinvention of the wheel and can be used with little
effort by programmers familiar with software development environments and the Eclipse environment
in particular. Basing our work on the SDE and Eclipse increases the acceptance of our IDE by potential
users.

Req. 2: Support Good Documentation of Tools. The SDE automatically lists installed tools with
the interfaces they expose for orchestration (i.e. methods and data types). Programmers can also
annotate methods with information about their purpose and the semantics of their parameters which
will also be displayed in the tool information provided by the SDE.

Req. 3: Support Tool Categories The SDE has support for tool categories as envisioned by us:
Tools are displayed in groups, which allows the user to quickly find tools for a certain task like the
verification of models, just to give an example.

ASCENS 16

D6.1: First Report on WP6 (Final) November 15, 2011

Req. 4: Open Source Foundation The SDE is open source software and its code base is available
under the Common Public License (CPL). The CPL was published by IBM and has been approved by
the Free Software Foundation and the Open Source Initiative. It fits our requirements to allow us to
modify the SDE and to redistribute it as an enhanced version named the SCE Workbench. For details
of the license, we refer to the original license document [IBM09].

Req. 5: Enable Easy Integration of Tools. The SDE enables simple integration of tools, newly
developed tools and legacy tools via a declarative and minimally-invasive approach: For legacy tools,
wrapper classes must be created that wrap the tool’s functionality in an OSGi container, including an-
notations that allow the SDE to discover the tool and to integrate it into the development environment.
Newly developed tools should be written in Java and also need to be packaged in OSGi containers,
also utilizing annotations of classes for the integration into the IDE.

Req. 6: Support Broad Range of Tools. The SDE is an open and generic tool integration platform
and can thus support all kinds of tools. It also supports the execution of code on remote computers,
thereby allowing us to offload computationally intensive tasks to more powerful computers while
keeping user interaction intensive tasks on the local machine.

Req. 7: Support Management of Tools. Automatic discovery of tools is supported by the SDE,
allowing for simple and straightforward installation of new tools. Installed tools are displayed in a list
with additional information about them, also with controls that allow the removal of tools in an easy
manner.

Req. 8: Allow for Automatic Updates Automatic updates are supported by the SDE. The user is
notified about new versions of a particular tool and does not need to check manually, e.g. by going to
the tool’s website in regular intervals.

Req. 9: Aid in Development of New Tools. The SDE can be used for Java-based development of
tools just like the Eclipse environment. Tools that shall be created in the context of the ASCENS
project can therefore utilize the SDE directly, giving programmers easy access to already integrated
tools that may aid their software development efforts.

Req. 10: Enable Transformations between Tool Inputs and Outputs. The SDE supports a special
class of tools that is responsible for the translation of data from one format to another. Such tools can
be used in workflows to connect one tool to another, even if the output data from the first tool cannot
be read directly by the second tool.

Req. 11: Support Inter-Tool Dependencies. The SDE supports tools that have external dependen-
cies. The OSGi run-time SDE is based on checks whether these dependencies are satisfied. Further-
more, tools with dependencies on external binaries, e.g. dynamic-link libraries or drivers for legacy
tools, can request an automatic installation of these dependencies by implementing a Java interface
offered by the SDE extension framework.

Req. 12: Enable Orchestration of Tools. Orchestration via JavaScript is supported by the SDE,
which opens powerful opportunities to combine the use of multiple tools in a single workflow. Fur-
thermore, a graphical editor is provided, which allows users to model such workflows as UML activity
diagrams, thereby sparing the user from writing JavaScript code and letting him model a workflow in

ASCENS 17

D6.1: First Report on WP6 (Final) November 15, 2011

a more intuitive manner. Simple access to the creation of workflows yields higher acceptance of them
and we hope to see more productive use of the SDE as a result.

3.4.2 Summary

As can be seen from the evaluation of the SDE based on the requirements as laid out in Section 2, the
SDE is a great basis for tool integration in the ASCENS project. We will extend it to fulfill any new
requirements that come up during the project and rebrand it to the new name SCE Workbench. We have
already distributed the necessary information to our project partners to utilize it for the integration of
the ASCENS tools into a single development environment.

In the next section, we will describe tools whose integration is underway and give an outlook on
tools whose integration is planned in the next months.

ASCENS 18

D6.1: First Report on WP6 (Final) November 15, 2011

4 Integration of ASCENS tools

In this section of the document, we will present tools (see Table 2) that are currently being integrated
into the SCE Workbench or are planned to be integrated in the next months. We will describe their
purpose and functionality, present usage scenarios and discuss the current state of the integration.

Maude (Section 4.1) A high-performance, extensible system supporting both equa-
tional and rewriting logic specification, programming and anal-
ysis. Support for reflection and meta-programming techniques
makes it suitable for ASCENS applications.

SAM (Section 4.2) A tool supporting the stochastic analysis of mobile and distributed
systems specified in STOKLAIM.

ARGoS (Section 4.3) A high-performance and extensible simulator for large swarms of
heterogeneous robots.

D-Finder (Section 4.4) A tool for verifying safety properties of component-based sys-
tems described in the BIP language.

Table 2: Tools that are being integrated or are planned to be integrated into the SCE Workbench

4.1 Maude

Maude [CDE+07] is a project developed mainly at of Computer Science Laboratory at SRI Interna-
tional and at the Department of Computer Science of the University of Illinois at Urbana-Champaign
in collaboration with other academic institutes. It consists of a high-level, declarative language that
supports both equational and rewriting logic computation and several tools for analyzing, transforming
and executing Maude specifications.

The Maude framework3 enjoys a couple of features which make it very suitable for the purpose of
our project. We mention among others its rule-based language typical of the types of systems under
study, the availability of tools for the analysis of Maude specifications, and the flexibility of the Maude
language as a semantic framework where to implement other languages. Most notably, Maude comes
with an efficient implementation of reflection which enables advanced meta-programming capabilities
useful both, for programming autonomic systems and for tool development.

The success of Maude is witnessed by its many applications which includes models of concurrent
computation (equational programming, lambda calculi, Petri nets, process algebras, actors), opera-
tional semantics of languages (Java, C, Python, Haskell, agent languages, active networks languages,
hardware description languages), use as logical framework and metatool (linear logic, translations be-
tween theorem provers, type systems, open calculus of constructions, tile logic), models of distributed
architectures and components (UML, OCL, MOF, Service architectures and middlewares, open dis-
tributed processing), specification and analysis of communication protocols (active networks, wireless
sensor networks, firewire leader election protocol), modeling and analysis of security protocols (cryp-
tographic protocol specification language CAPSL, MSR, security specification formalism, Maude-
NPA), and specification of real-time, biological and probabilistic systems (real-time Maude, pathway
logic, PMaude). Most of these applications exploit Maude support tools for automatic analysis that
address aspects such as confluence, termination, sufficient completeness, coherence, reachability, in-
variants, and temporal logic properties.

3Maude website: http://maude.cs.uiuc.edu/

ASCENS 19

http://maude.cs.uiuc.edu/

D6.1: First Report on WP6 (Final) November 15, 2011

Our own experience includes the use of Maude to model and analyze software architectures and
their reconfigurations [BLM09, BBGL08], encoding process algebras in graphs [BGL10], model-
ing the semantics of long-running transactions [BKLSar], verifying systems with evolving topologies
with modal logics for graphs [LV11], and implementing and evaluating structured model transforma-
tions [BLM11, BLar].

4.1.1 Usage Scenarios and Functionality

We envision various applications of Maude within the ASCENS project. First of all, it can be used to
prototype semantic models and be able to execute or check them. Second, Maude can be used as a
semantic framework for SCEL dialects, for instance to develop interpreters or analysis tools for SCEL
specifications. More trivially, implementing a SCEL semantics can help to spot ambiguities in the
formal semantics. Finally, Maude can also be used to model interesting scenarios of the case studies.
Indeed, Maude has been promoted as a semantic model for adaptive distributed systems in the last
years [MT02], basically due to the suitability of declarative languages for such systems and to the
meta-programming features of Maude supported by reflection. A preliminary step in this regard has
also been started and consists of a simple model of a morphogenesis scenario of the robot case study.

4.1.2 Integration with other Tools

The Maude framework comes with a couple of built-in tools like a debugger, a reachability analyzer
and an LTL model checker. Other tools4 have been developed which enrich the Maude framework with
useful analysis capabilities like theorem proving or linguistic features like real-time and quantitative
aspects.

Another interesting tool integration effort is offered by the MOMENT project5 which provides the
so called Maude Development Tools, a set of plug-ins to embed the Maude system into the Eclipse
environment. These tools comprise two main plug-ins. The first one (Maude Daemon) encapsulates a
Maude process into a set of Java classes. It provides two APIs to control the Maude process in batch or
interactive mode. It also configures the Maude process according to the user preferences. The second
plug-in, called Maude Simple GUI, is a simple IDE to develop Maude programs with a user friendly
graphical interface.

A couple of tools use Maude as a back-end for different purposes, for instance to analyze and
execute model transformations (MOMENT2, MOMENT-MT), specifications given in architectural
languages (MOMENT-AADL), or biological systems (Pathway Logic).

Our own contribution in this regard is a prototypical graphical editor based on Eclipse’s EMF
technology which allows for a visual specification of Maude modules [Gue11].

4.1.3 SCE Workbench Integration

The integration of Maude into the SCE Workbench is under development. We are investigating various
options. On the one hand, we could integrate the Maude Development Tools mentioned above in
order to let other tools launch and control Maude process at will. Another option is to integrate our
prototypical Maude editor. By the end of the project, we aim to have a Maude-based toolset for the
analysis of SCEL applications, whose integration in the SCE Workbench could facilitate its use.

4For other tools see http://maude.cs.uiuc.edu/maude-tools.html and http://maude.cs.uiuc.
edu/other-tools.html.

5MOMENT website: http://moment.dsic.upv.es/

ASCENS 20

http://maude.cs.uiuc.edu/maude-tools.html
http://maude.cs.uiuc.edu/other-tools.html
http://maude.cs.uiuc.edu/other-tools.html
http://moment.dsic.upv.es/

D6.1: First Report on WP6 (Final) November 15, 2011

4.2 SAM

SAM (Stochastic Analyser for Mobility)6 is a command-line tool, developed in OCAML, that sup-
ports the stochastic analysis of STOKLAIM specifications. STOKLAIM [DKL+06] is the stochastic
extension of KLAIM, an experimental language that is aimed at modeling and programming mobile
code applications.

Properties of STOKLAIM systems can be specified by means of MOSL [DKL+07] (Mobile Sto-
chastic Logic). This is a stochastic logic (inspired by CSL [ASSB00, BKH]) that, together with
qualitative properties, permits specifying time-bounded probabilistic reachability properties, such as
“the likelihood to reach a goal state within t time units while visiting only legal states is at least 0.92”.
MOSL is also equipped with operators that permit describing properties resulting from resource pro-
duction and consumption. In particular, state properties incorporate features for resource management
and context verification. Context verification allows the verification of assumptions on resources and
processes in a system at the logical level, i.e. without having to change the model to investigate the
effect of each assumption on the system behavior.

In [LPT11] SAM has been used to support the analysis of a scenario of the WP7 robotics case
study in which three marXbots are in charge of collectively transporting an object to a goal area.

4.2.1 Functionality

SAM can be used for:

• executing interactively specifications;

• simulating stochastic behaviors;

• model checking MOSL formulae.

Running a specification SAM provides an environment for the interactive execution of a STOK-
LAIM specification. When a specification is executed, a user can select interactively possible compu-
tations.

Simulating a specification To analyze the behavior of distributed systems specified in STOKLAIM,
SAM provides a simulator. This module randomly generates possible computations. A simulation
continues until in the considered computation either a time limit or a deadlock configuration is reached.

Given a sampling time, each computation is described in the term of the number of resources
available in the system during the computation. At the end of a simulation, the average amount of
resources available in the system at specified time intervals is provided.

Model checking SAM permits verifying whether a given STOKLAIM specification satisfies a MOSL
formula or not. This module relies on an existing state-based stochastic model checker, the Markov
Reward Model Checker (MRMC) [KKZ05], that is wrapped in the MOSL model-checking algorithm.
After loading a STOKLAIM specification and a MOSL formula, SAM verifies, by means of one or
more calls to MRMC, the satisfaction of the formula by the specification.

Unfortunately, even simple STOKLAIM specifications can generate a very large number of states.
For this reason, numerical model checking cannot always be applied. To overcome the state explosion
problem, a statistical model checker has also been implemented in SAM. The statistical approach has
been successfully used in existing model checkers [HYP06, QS10].

6SAM website: http://rap.dsi.unifi.it/SAM/

ASCENS 21

http://rap.dsi.unifi.it/SAM/

D6.1: First Report on WP6 (Final) November 15, 2011

While in a numerical model checker the exact probability to satisfy a path-formula is computed
up to a precision ε, in a statistical model checker the probability associated to a path-formula is de-
termined after a set of independent observations. This algorithm is parameterized with respect to a
given tolerance ε and error probability p. The algorithm guarantees that the difference between the
computed values and the exact ones is greater than ε with a probability that is less than p.

4.2.2 SCE Workbench Integration

The integration of SAM into the SCE Workbench is currently under development. The integration
procedure has been organized in two phases. The first phase consists in the development of a Java
porting of SAM, named JSAM (that is currently under test). As soon as this phase will be completed,
the second step, consisting of the concrete integration into the SCE Workbench, will be performed.

4.3 ARGoS

ARGoS is a novel simulator designed by IRIDIA-ULB laboratory within the EU-funded Swarmanoid
project7. Its design focus is to simulate large heterogeneous swarms of robots and to enable fast
prototyping and testing of robot controllers.

4.3.1 Functionality

A simulator is a fundamental tool to support the development of robot behaviors for swarms of robots.
A simulator allows for cheaper and faster collection of experimental data, without the risk of damaging
the (often expensive) real hardware platforms. In addition, simulated experiments can potentially
involve a quantity of robots that would be impossible to manufacture for reasons of cost.

In traditional simulator designs, such as those of Webots [Mic04], USARSim [CLW+07] and
Gazebo [KH04], accuracy is the main driver, at the cost of limited scalability. Simulators designed
for scalability, such as Stage [Vau08], are focused on very specific application scenarios, thus lacking
flexibility. To achieve both scalability and flexibility, in the design of ARGoS we made a number of
innovative choices.

ARGoS’ architecture is depicted in Figure 9. Its core is the simulated space, that contains all
the data about the current state of the simulation. Such data is organized into sets of entities of
different types. Each entity type stores a certain aspect of the simulation. For instance, positional
entities contain the position and orientation of each object in the space. Entities are also organized
into hierarchies. For example, the embodied entity is an extension of the positional entity that includes
a bounding box. Robots are represented as composable entities, that is, entities that can contain other
entities. Each individual robot feature is stored into dedicated entity types. For instance, each robot
possesses an embodied entity and a controllable entity, that stores a pointer to that robot’s sensors,
actuators and control code.

Organizing data in the simulated space in this way provides both scalability and flexibility. Scala-
bility is achieved by organizing entities into type-specific indexes, optimized for speed. For instance,
all positional entities are organized into space hashes, a simple and state-of-art technique to store and
retrieve spatial data. Flexibility is ensured because entities are implemented as modules. In addition
to the entities offered natively by ARGoS, the user can add custom modules, thus enriching ARGoS’
capabilities with novel features.

Analogously, the code accessing the simulated space is organized into several modules. Each
individual module can be overridden by the user whenever necessary, thus ensuring a high level of
flexibility. The modules are implemented as plug-ins that are loaded at run-time.

7Swarmanoid website: http://www.swarmanoid.org/

ASCENS 22

http://www.swarmanoid.org/

D6.1: First Report on WP6 (Final) November 15, 2011

Controller

Sensors Actuators

Entities

Simulated 3D Space

Physics
Engines

Visualizations

Control Interface

Figure 9: The architecture of the ARGoS simulator.

Controllers are modules that contain control code developed by the user. Controllers interact
with a robot’s devices through an API called the common interface. The common interface API is
an abstraction layer that can make underlying calls to either a simulated or a real-world robot. In
this way, controllers can be seamlessly ported from simulation to reality and back, making behavior
development and its experimental validation more efficient.

Sensors and actuators are modules that implement the common interface to mediate between
controllers and the simulated space. Sensors read from the simulated space and actuators write on
it. The optimized entity indexes ensure fast data access. For each sensor/actuator type, multiple
implementations are possible, corresponding to models that differ in computational cost, accuracy and
realism. In addition, sensors and actuators are tightly coupled with robot component entities. For
instance, the foot-bot wheel actuator writes into the wheeled equipped entity component of the foot-
bot. Such coupling greatly enhances code reuse. New robots can be inserted by combining existing
entities, and the sensors/actuators depending on them work without modification.

Visualizations read the simulated space to output a representation of it. Currently, ARGoS offers
three types of visualization: (i) an interactive GUI based on Qt and OpenGL, (ii) a high quality off-line
3D renderer based on POV-Ray, and (iii) a textual renderer designed to interact with data analysis and
plotting software such as Matlab and GNUPlot. Figure 10 shows some exemplary outputs of the first
two visualization engines.

(a) (b)

Figure 10: Screen-shots from different visualizations. (a) Qt-OpenGL; (b) POV-Ray.

ASCENS 23

D6.1: First Report on WP6 (Final) November 15, 2011

One of the most distinctive features of ARGoS is that the simulated space and the physics engine
are separate concepts. The link between them is the embodied entity, which is stored in the simulated
space and updated by a physics engine. In ARGoS, multiple physics engines can be used simultane-
ously. In practice, this is obtained by assigning sets of embodied entities to different physics engines.
The assignment can be done in two complementary ways: (i) manually, by binding directly an entity
to an engine, or (ii) automatically, by assigning a portion of space to the physics engine, so that every
entity entering that portion is updated by the corresponding engine. Physics engines are a further type
of module. Currently, three physics engines are available: (i) a 3D dynamics engine based on the
ODE library, (ii) a 2D dynamics engine based on the Chipmunk library, and (iii) a custom-made 2D
kinematic engine.

To further enhance scalability, the architecture of ARGoS is multi-threaded. The simulation loop
is designed in such a way that race conditions are avoided and that CPU usage is optimized. The
parallelization of the calculations of sensors/actuators and of the physics engines provides high levels
of scalability. Results reported in [PTO+] show that ARGoS can simulate 10 000 simple robots 40%
faster than real time.

ARGoS has been released as open source software8 and currently runs on Linux and MacOSX.

4.3.2 SCE Workbench Integration

The integration of ARGoS into the SCE Workbench is currently under development. ARGoS is a
native tool and, in principle, different integration strategies are possible. However, those strategies
that involve interfacing the ARGoS API to Java directly are not viable. In fact, porting the common
control interface to Java would force us to include the Java virtual machine into the robots, with
negative effects on performance and memory usage.

Therefore, we will make ARGoS into a remotely controllable service in the style of a web service,
but with ad-hoc, optimized communication mechanisms that are currently under study.

4.4 D-Finder

On exploring the current state of the art in formal verification, it becomes clear that a formal verifica-
tion method needs to address the following problems:

• Scalability that avoids the state space explosion problem and therefore allows increasing the
size of systems to be verified.

• Effectiveness that permits to detect errors of systems’ models in the design phase as early as
possible.

• Incrementality that integrates verification into the design process.

• Compositionality that allows inferring global properties of a system from the known local
properties of its sub-systems.

We have implemented the compositional and incremental methods in D-Finder.

4.4.1 Functionality

D-Finder is a tool for verifying safety properties, especially for checking deadlock-freedom of compo-
nent-based systems described in the BIP language encompassing multi-party interaction. For deadlock

8ARGoS website: http://iridia.ulb.ac.be/argos/

ASCENS 24

http://iridia.ulb.ac.be/argos/

D6.1: First Report on WP6 (Final) November 15, 2011

detection, D-Finder applies proof strategies to eliminate potential deadlocks by computing increas-
ingly stronger invariants.

Expression Analysis

satisfiability
Φ ∧Ψ ∧ DIS

Model

Abstraction
Φi

generation
DIS

generation

Ψ
generation

BIP

DIS
�

ΦiΨ

Predicate-
abstraction

DL free
false DL

suspects

CEX
generation

feasibility
check

predicates

true

CEX

Omega

Yices

BDD

Figure 11: Structure of the D-Finder tool

D-Finder is written in Java and uses external tools and native code via the Java Native Interface
(JNI) for computations. Figure 11 gives an overview of the main modules of the tool. The Model
block handles the parsing of the BIP code into an internal model and provides the means to compute
component invariants Φ, interaction invariants Ψ, and a set of deadlock states DIS. The results from
Model are used from various implementations of the Analysis block, which perform further steps
like the generation of possible deadlocks and, most recently, the generation of counter examples for
Boolean systems (CEX). The Expression block is used by both Model and Analysis. Its main purpose is
to provide a uniform interface for different back-ends that store the actual expressions. For algorithms
on Boolean variables, like computation of interaction invariants Ψ, a more succinct implementation
with BDDs as back-end is used, while large systems that incorporate non-Boolean data require to
directly create and maintain input files for an SMT solver on disk. The main features of D-Finder are
as follows:

• Compositional verification: For a given safety property, D-Finder iteratively conjoins the pred-
icate characterizing violations of the property (set of bad states) with an over-approximation of
the set of reachable states. If the conjunction is false, then the property is guaranteed. Otherwise,
there is a (bad) state within the approximation that violates the property.

• Efficient computation of invariants: The over-approximation is the conjunction of two kinds
of invariants, component invariants (Φi) and interaction invariants (Ψ). We provide efficient
methods implemented in D-Finder for computing the two kinds of invariants. Φi express local
constraints of atomic components. Ψ characterize constraints on the global state space induced
by synchronizations between components.

• Checking reachability: To eliminate remaining false positives, a compositional abstraction
refinement approach is developed. It is based on an abstraction of the components to Boolean
systems and subsequent generation of inductive invariants and pre-image computation. Result
of this final step of verification is an error trace that proves and demonstrates the reachability of
a found bad state.

ASCENS 25

D6.1: First Report on WP6 (Final) November 15, 2011

• Incremental verification: an incremental verification method has also been implemented in
D-Finder. We study rules which allow preserving established invariants during the incremental
construction. For the general case where a system might not satisfy these rules, we propose
methods for computing incrementally invariants of the entire system from the established in-
variants of its constituents.

The experimental results on large-scale and complex systems show the efficiency of D-Finder.
More details can be found at http://www-verimag.imag.fr/dfinder.

4.4.2 SCE Workbench Integration

D-Finder is developed in Java using the Eclipse IDE. Consequently, its integration into the SCE Work-
bench will be straightforward.

ASCENS 26

http://www-verimag.imag.fr/dfinder

D6.1: First Report on WP6 (Final) November 15, 2011

5 First Year Resume and Outlook

In the first year, we have focused on selecting a foundation for our work of integrating ASCENS tools
into an IDE and providing the partners in the project with information about how they can perform
the integration. We based our selection of the SDE from the SENSORIA project on a collection of
requirements we assembled in internal discussions about the features expected from an IDE and the
associated integration processes. In Section 3.4.1 we described how the SDE fulfills them and argued
that it will serve as a good foundation for the SCE Workbench, our ASCENS tool integration platform.

In the course of the first year, we provided project partners with the necessary information for
the integration of their tools into the SCE Workbench, e.g. in the form of written documentation,
screencasts, but also live-demos and talks at the kick-off meeting held in Munich and the general
meetings held in Pisa and Grenoble.

As of now, the project partners, which are actively working on an integration of their tools or
are looking at the SCE Workbench for tool integration in the next months, have not requested any
additional functionality. For the time being, we will therefore continue to focus on disseminating the
necessary information about tool integration and use of the SCE Workbench and providing support for
tool integration projects that are underway.

Once the integration of tools reaches a level where orchestration of tools and the building of tool
chains is feasible, we will shift our focus towards tighter integration of the tools.

ASCENS 27

D6.1: First Report on WP6 (Final) November 15, 2011

References

[ASSB00] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model checking continuous time Markov
chains. Transations on Computational Logic, 1(1):162–170, 2000.

[BBGL08] Antonio Bucchiarone, Roberto Bruni, Stefania Gnesi, and Alberto Lluch Lafuente.
Graph-based design and analysis of dynamic software architectures. In Concurrency,
Graph and Models. Festschrift in honor of Ugo Montanari, volume 5065 of LNCS, pages
37–56. Springer Verlag, 2008.

[BGL10] Roberto Bruni, Fabio Gadducci, and Alberto Lluch Lafuente. An algebra of hierarchical
graphs and its application to structural encoding. Sci. Ann. Comp. Sci., 20:53–96, 2010.

[BK11] Marianne Busch and Nora Koch. NESSoS deliverable D2.2: First release of the SDE for
security-related tools, 2011.

[BKH] C. Baier, J.-P. Katoen, and H. Hermanns. Approximate symbolic model checking of
continuous-time Markov chains. pages 146–162.

[BKLSar] Roberto Bruni, Anne Kersten, Ivan Lanese, and Giorgio Spagnolo. A new strategy for
distributed compensations with interruption in long-running transactions. In Proceedings
of the 20th International Workshop on Algebraic Development Techniques (WADT 2010),
LNCS. Springer Verlag, to appear.

[BLM09] Roberto Bruni, Alberto Lluch Lafuente, and Ugo Montanari. Hierarchical design rewrit-
ing with Maude. In Grigore Rosu, editor, Proceedings of the 7th International Workshop
on Rewriting Logic and its Applications (WRLA’08), volume 238 (3) of Electronic Notes
in Theoretical Computer Science, pages 45–62. Elsevier, 2009.

[BLM11] Roberto Bruni, Alberto Lluch Lafuente, and Ugo Montanari. On structured model-driven
transformations. International Journal of Software and Informatics, 5(1-2):185–206,
2011.

[BLar] Roberto Bruni and Alberto Lluch Lafuente. Evaluating the performance of model-
transformation styles with Maude. In Proceedings of the 8th Symposium on Formal As-
pects of Component Software (FACS’11), LNCS. Springer Verlag, to appear.

[CDE+07] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı́-Oliet, José
Meseguer, and Carolyn L. Talcott. All About Maude, volume 4350 of LNCS. Springer,
2007.

[CLW+07] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper. USARSim: a robot simu-
lator for research and education. In Proceedings of the IEEE Conference on Robotics and
Automation (ICRA), pages 1400–1405. IEEE Press, Piscataway, NJ, 2007.

[DKL+06] R. De Nicola, J.-P. Katoen, D. Latella, M. Loreti, and M. Massink. Klaim and its sto-
chastic semantics. Technical report, Dipartimento di Sistemi e Informatica, Università di
Firenze, 2006.

[DKL+07] Rocco De Nicola, Joost-Pieter Katoen, Diego Latella, Michele Loreti, and Mieke
Massink. Model checking mobile stochastic logic. Theoretical Computer Science,
382(1):42–70, 2007.

ASCENS 28

D6.1: First Report on WP6 (Final) November 15, 2011

[Ecl11] Eclipse Foundation. The Eclipse open source community and Java IDE, 2011.

[Erl05] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2005.

[Fou09] Eclipse Foundation. Eclipse Equinox - Implementation of the OSGi R4 core framework
specification, 2009.

[Gue11] Irena Gueorguieva. Sviluppo di un’interfaccia grafica per modelli gerarchici in maude.
Bachelor Thesis, Computer Science Department, University of Pisa, 2011. In Italian.

[HYP06] G. Norman H. Younes, M. Kwiatkowska and D. Parker. Numerical vs. statistical proba-
bilistic model checking. International Journal on Software Tools for Technology Transfer,
8(3):216–228, June 2006.

[IBM09] IBM. Common Public License (CPL) version 1.0, 2009.

[KH04] Nathan Koenig and Andrew Howard. Design and use paradigms for Gazebo, an open-
source multi-robot simulator. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2149–2154. IEEE Press, Piscataway, NJ,
2004.

[KKZ05] J.-P. Katoen, M. Khattri, and I. S. Zapreev. A Markov reward model checker. In Quanti-
tative Evaluation of Systems (QEST), pages 243–244. IEEE CS Press, 2005.

[LPT11] Michele Loreti, Rosario Pugliese, and Francesco Tiezzi. A WP7 robotics scenario in
Klaim. Avaiable in the ASCENS Wiki, 2011.

[LV11] Alberto Lluch Lafuente and Andrea Vandin. Towards a Maude tool for model checking
temporal graph properties. In Fabio Gadducci and Leonardo Mariani, editors, Proceed-
ings of the 10th International Workshop on Graph Transformation and Visual Modelling
Languages (GT-VMT’11). ECEAAST, 2011. To appear.

[Mic04] Olivier Michel. Cyberbotics Ltd. – Webots: Professional mobile robot simulation. Inter-
national Journal of Advanced Robotic Systems, 1(1):39–42, March 2004.

[MR10] Philip Mayer and Istvan Rath. D7.4d: Report on the Sensoria Development Environ-
ment (SDE), third version. Deliverable for the EU project SENSORIA, reporting period
October 2008 - February 2010, SENSORIA Project 016004. 2010.

[MT02] Jos Meseguer and Carolyn Talcott. Semantic models for distributed object reflection. In
Boris Magnusson, editor, 16th European Conference on Object-Oriented Programming
(ECOOP’02), volume 2374 of LNCS, pages 1–36. Springer Verlag, 2002.

[PTO+] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne Brutschy, Manuele
Brambilla, Nithin Mathews, Eliseo Ferrante, Gianni Di Caro, Frederick Ducatelle, Tim-
othy Stirling, Álvaro Gutiérrez, Luca Maria Gambardella, and Marco Dorigo. ARGoS:
a modular, multi-engine simulator for heterogeneous swarm robotics. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011).
In press.

[QS10] Paola Quaglia and Stefano Schivo. Approximate model checking of stochastic COWS. In
Proc. of TGC 2010. To appear., 2010.

ASCENS 29

D6.1: First Report on WP6 (Final) November 15, 2011

[RAR07] Jan S. Rellermeyer, Gustavo Alonso, and Timothy Roscoe. R-OSGi: distributed applica-
tions through software modularization. In Proceedings of the ACM/IFIP/USENIX 2007
International Conference on Middleware, Middleware ’07, pages 1–20, New York, NY,
USA, 2007. Springer-Verlag New York, Inc.

[The07] The OSGi Alliance. OSGi service platform core specification, release 4.1, 2007.

[Vau08] Richard Vaughan. Massively multi-robot simulation in Stage. Swarm Intelligence,
2(2):189–208, 2008.

[WBF+08] Martin Wirsing, Laura Bocchi, Jose Luiz Fiadeiro, Stephen Gilmore, Matthias Hoelzl,
Nora Koch, Philip Mayer, Rosario Pugliese, and Andreas Schroeder. Sensoria: Engineer-
ing for Service-Oriented Overlay Computers. MIT Press 2008, 2008.

[WCL+05] Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony Storey, and Donald Fer-
guson. Web Services Platform Architecture : SOAP, WSDL, WS-Policy, WS-Addressing,
WS-BPEL, WS-Reliable Messaging, and more. Prentice Hall PTR, march 2005.

ASCENS 30

	Introduction
	Tool Integration Requirements
	Provide an IDE with a Familiar User Interface
	Support Good Documentation of Tools
	Support Tool Categories
	Open Source Foundation
	Enable Easy Integration of Tools
	Support Broad Range of Tools
	Support Management of Tools
	Allow for Automatic Updates
	Aid in Development of New Tools
	Enable Transformations between Tool Inputs and Outputs
	Support Inter-Tool Dependencies
	Enable Orchestration of Tools

	SDE Technology
	High-Level Overview
	Design and Implementation
	SDE Core and UI
	Composing Tools

	Extending the Platform
	Use of the SDE in ASCENS and further Development
	Evaluation of the SDE
	Summary

	Integration of ASCENS tools
	Maude
	Usage Scenarios and Functionality
	Integration with other Tools
	SCE Workbench Integration

	SAM
	Functionality
	SCE Workbench Integration

	ARGoS
	Functionality
	SCE Workbench Integration

	D-Finder
	Functionality
	SCE Workbench Integration

	First Year Resume and Outlook

