
www.ascens-ist.eu

ASCENS
Autonomic Service-Component Ensembles

D1.2: Second Report on WP1
Languages for Coordinating Ensemble Components

Grant agreement number: 257414
Funding Scheme: FET Proactive
Project Type: Integrated Project
Latest version of Annex I: Version 2.2 (30.7.2011)

Lead contractor for deliverable: UDF
Author(s): Rosario Pugliese (UDF) - editor, Tomáš Bureš (CUNI),
Rocco De Nicola (IMT), Jaroslav Keznikl (CUNI), Michele Loreti
(UDF), František Plášil (CUNI), Francesco Tiezzi (IMT)

Reporting Period: 2
Period covered: October 1, 2011 to September 30, 2012
Submission date: November 12, 2012
Revision: Final
Classification: PU

Project coordinator: Martin Wirsing (LMU)
Tel: +49 89 2180 9154
Fax: +49 89 2180 9175
E-mail: wirsing@lmu.de

Partners: LMU, UNIPI, UDF, Fraunhofer, UJF-Verimag, UNIMORE,
ULB, EPFL, VW, Zimory, UL, IMT, Mobsya, CUNI

D1.2: Second Report on WP1 (Final) November 12, 2012

Executive Summary

SCEL (Service Component Ensemble Language) is a new language specifically designed to pro-
gram autonomic components and their interaction, while supporting formal reasoning on their behav-
iors. SCEL brings together various programming abstractions that allow one to directly represent
behaviors, knowledge and aggregations according to specific policies. It also supports naturally pro-
gramming self- and context-awareness, and adaptation of components often operating in open, highly
dynamic, distributed environments. The solid semantic grounds of the language lay the basis for devel-
oping logics, tools and methodologies for formal reasoning on systems behavior in order to establish
qualitative and quantitative properties of both the individual components and the overall systems.

This deliverable contains a short summary of our work on:

• SCEL: a refined version of the language;

• jRESP: a Runtime Environment for SCEL Programs;

• SACPL: a SCEL Access Control Policy Language;

• CCSCEL: a SCEL Dialect for Concurrent Constraint Programming;

• Towards High-level Design of SCEL-based Applications.

ASCENS 2

D1.2: Second Report on WP1 (Final) November 12, 2012

Contents

1 Introduction 5
1.1 Relations with other WPs . 7
1.2 Structure of the Document . 8

2 SCEL: a refined version of the language 8

3 jRESP: a Runtime Environment for SCEL Programs 14

4 SACPL: a SCEL Access Control Policy Language 16

5 CCSCEL: a SCEL Dialect for Concurrent Constraint Programming 18

6 Towards High-level Design of SCEL-based Applications 22

7 Related work 25

8 Concluding Remarks and Work Plan for Year Three 26

ASCENS 3

D1.2: Second Report on WP1 (Final) November 12, 2012

ASCENS 4

D1.2: Second Report on WP1 (Final) November 12, 2012

1 Introduction

Ensembles represent the future generation of software-intensive systems dealing with massive num-
bers of components, featuring complex interactions among components and with humans and other
systems, operating in open and non-deterministic environments, and dynamically adapting to new
requirements, technologies and environmental conditions. This definition has been proposed by the
Interlink WG on software intensive systems and new computing paradigms [Int07].

The challenge for language designers is to devise appropriate abstractions and linguistic primitives
to deal with:

• the large dimension of the systems,

• the need to adapt to (possibly unpredicted) changes of the working environment and to evolving
requirements,

• the emergent behaviors resulting from complex interactions.

We are thus looking for methodologies and linguistic constructs that can be used to build en-
sembles while combining traditional software engineering approaches, techniques from autonomic,
adaptive, knowledge-based and self-aware systems, and formal methods, in order to guarantee com-
positionality, expressiveness and verifiability.

To tame the complexity of ensemble-based computer systems, the notions of service components
(SCs) and service-component ensembles (SCEs) have been put forward as a means to structure a sys-
tem into well-understood, independent and distributed building blocks that interact in specified ways.
SCs are autonomic entities with dedicated knowledge units and resources that can cooperate, with
different roles, in open and non-deterministic environments. SCEs are instead sets of SCs featuring
goal-oriented execution.

Most of the basic properties of SCs and SCEs are already featured by current service-oriented
architectures; the novelty consists in the notions of goal-oriented evolution and of self-awareness and
context-awareness. Indeed, self-management is a key challenge of modern distributed IT infrastruc-
tures spanning almost all levels of computing. Self-managing systems are designed to continuously
monitor their behaviors and working environment in order to select the best meaningful operations to
match the current status of affairs. After [IBM05], the term autonomic computing has been used to
identify the self-managing features of computing systems. A variety of inter-disciplinary proposals
has been launched to deal with autonomic computing. We refer to [ST09] for a detailed survey.

A possible way to achieve awareness is to equip SCs with information about their own state and
behavior, to enable them to collect and store information about their working environment, and to use
it for redirecting and adapting their behavior. SCs can then dynamically organize themselves through
SCEs by conveniently exploiting the information provided by the attributes that they expose in their
interfaces. This fosters a notion of ensembles that are not curbed by rigid structures, but rather are
highly dynamic and flexible. A typical scenario involving SCEs is reported in Figure 1. It evidences
that ensembles can be thought of as logical layers, superimposed on top of the physical component
networks, that identify dynamic (overlay) subnetworks of components.

Similar issues to those outlined above do arise also for so called systems of systems or systems
coalitions. The key characteristic of these systems is that they are assembled from other systems that
are independently controlled and managed. Their interfaces are not always well defined and structured,
and might be changing, while their interaction “mood” might be cooperative or competitive. Due to
their inherent complexity, today’s engineering methods and tools do not scale well with such systems.
Therefore, new engineering techniques are needed to address the challenges of developing, integrating,
and deploying these large-scale complex IT systems [SCC+12].

ASCENS 5

D1.2: Second Report on WP1 (Final) November 12, 2012

Figure 1: Service Component Ensembles

In this deliverable we present some of the results of the work done to develop linguistic supports
for modelling and programming service components and their ensembles, their interactions, their sen-
sitivity and adaptivity to the environment. More specifically, we introduce a revised version of SCEL
(Service Component Ensemble Language), a language with programming abstractions for directly
representing Knowledge, Behaviors and Aggregations according to Policies in order to naturally pro-
gram SCEs, while dealing with interaction, self-awareness, context-awareness and adaptation. SCEL
is equipped with a small set of basic constructs with solid semantic grounds so that logics, tools and
methodologies can be developed for formal reasoning on systems behavior in order to establish quali-
tative and quantitative properties of both the individual components and the ensembles.

The main difference with the previous version of the language presented in [DFLP11, DFLP12]
consists in the way sets of partners are selected for interaction. In the original version of SCEL, an en-
semble is explicitly defined by a single component, acting as the coordinator of the ensemble, through
an interface attribute bound to a predicate over components’ attributes. In this way, the coordinating
component could be a single point of centralization and, potentially, of failure. Instead, in the ver-
sion of the language considered here (we refer the interested reader to [DLPT12] for a full account of
the language), ensembles can be modeled by exploiting the notion of attribute-based communication.
Ensemble members are still selected according to predicates over interfaces’ attributes, representing
specific properties, like spatial coordinates or group memberships, and properties that they can guar-
antee like security, trust level or response time. However, such predicates can now be used as targets
of communication actions. In this way, ensembles are dynamically characterized by relying on inter-
faces’ attributes to select the (set of components which are the) target of an action. The language thus
provides primitives both for point-to-point and group-oriented communication.

Another difference between the two versions concerns the management of the policies in force
at the system components. Indeed, the new version offers also the possibility to dynamically modify
these policies during system evolution in order to properly fit new requirements and adapt the system’s
behavior to changing environmental conditions.

ASCENS 6

D1.2: Second Report on WP1 (Final) November 12, 2012

1.1 Relations with other WPs

The SCEL’s refined version presented in Section 2 is the result of discussion and interaction carried
out last year with many other researchers involved in the project. Several collaborations have started
regarding issues considered in other work packages. They can be summarized as follows:

• The collaboration with WP2 is mainly focussed on the integration in SCEL of soft constraints
as a form of knowledge. Soft constraints are particularly useful to represent partial knowledge,
to deal with multi-criteria optimization, to express preferences, fuzziness, and uncertainty. We
are thus defining a SCEL dialect (CCSCEL, Section 5) for concurrent constraint programming
(CCP) where the SCEL primitives can be thought as a meta-programming layer on top of CCP.

• Preliminary collaborations with WP3 have started and will be intensified during the next year
with the aim of investigating the possibility of integrating KnowLang with SCEL. Indeed, lan-
guages for self-aware, self-adaptive and self-expressive autonomic components and ensembles
need to include: (i) procedural components; (ii) declarative knowledge representation compo-
nents and their bookkeeping primitives; and (iii) primitives for the interaction of the two kinds
of components. The latter part requires innovative ideas, since adaptivity and autonomicity rely
mostly on an intelligent cooperation between procedural and declarative aspects of system be-
havior. SCEL provides the procedural components and is instead parametric wrt the declarative
ones; there is however an obvious correspondence between the KnowLang operators ASK and
TELL and the SCEL actions for retrieving information from shared knowledge repositories
(qry) and for adding information to them (put). We have first defined a dialect of the SCEL
language that relies on a simple notion of knowledge structured as a set of data tuples, then,
with CCSCEL, we have performed an initial step in the direction of a “more active” knowledge
handler. The next step will be the investigation of the possibility of delegating all decisions to a
knowledge handler, e.g. modelled in the style of KnowLang.

• The cooperation with WP4 that started in the first year to study the possibility of expressing
self-adaptation patterns in SCEL has continued over the second year. It is now focussing on
how to take advantage of the novel features of the language, in particular attribute-based com-
munication and dynamic changing policies, as a mean to facilitate self-expression (see also
D4.2).

• One collaboration with WP5 is aimed at investigating how properties of SCEL systems can be
guaranteed by exploiting the several BIP-based verification tools that are heavily used in WP5.
To this aim we will rely on the SCEL’s operational semantics and on maps from the transition
system associated to a SCEL term into the internal representation of verification tools. Another
collaboration aims at the design of a simple, yet expressive, language (SACPL Section 4) for
defining access control policies and access requests, and its integration with SCEL.

• The cooperation with WP6 has started and will be intensified next year with the aim of develop-
ing a runtime environment providing an API for programming in Java autonomic and adaptive
applications based on the SCEL paradigm. Other features, such as a library supporting spec-
ification and evaluation of SACPL policies and authorization requests, will be integrated next
year. We intend also to experiment with the integration of existing constraint solvers to provide
an implementation of the CCSCEL primitives.

• All activities of WP1 have paid and will pay special attention to the case studies investigated
in WP7. For instance, the revised version of SCEL has been validated over the robotics case
study, while the development of the SACPL policy language has been validated over the cloud
case study.

ASCENS 7

D1.2: Second Report on WP1 (Final) November 12, 2012

S ::= C
∣∣ S1 ‖ S2

∣∣ (νn)S (SYSTEMS)

C ::= I[K,Π, P] (COMPONENTS)

P ::= nil
∣∣ a.P ∣∣ P1 + P2

∣∣ P1[P2]
∣∣ X ∣∣ A(p̄) (PROCESSES)

a ::= get(T)@c
∣∣ qry(T)@c

∣∣ put(t)@c
∣∣ fresh(n)

∣∣ new(I,K,Π, P) (ACTIONS)

c ::= n
∣∣ x ∣∣ self

∣∣ P
∣∣ I.p (TARGETS)

Table 1: SCEL syntax (KNOWLEDGE K, POLICIES Π, TEMPLATES T , and ITEMS t are parameters)

1.2 Structure of the Document

The rest of this document is organized as follows. In Section 2 we introduce syntax and semantics of
the new version of the language. In Section 3 we outline jRESP, a runtime environment for developing
autonomic and adaptive systems according to the SCEL paradigm. In Section 4 we introduce SACPL,
a language for defining access control policies, and show its integration with SCEL. In Section 5 we
describe different knowledge management primitives at the basis of CCSCEL, a SCEL dialect for
concurrent constraint programming. In Section 6 we illustrate the high-level design of SCEL-based
applications using the DEECo component model. We conclude by comparing more strictly related
work in Section 7 and by sketching the work plan for the next years in Section 8.

2 SCEL: a refined version of the language

The syntax of SCEL is presented in Table 1. The basic category of the syntax is the one relative
to PROCESSES that are used to build up COMPONENTS that in turn are used to define SYSTEMS.
PROCESSES specify the flow of the ACTIONS that can be performed. ACTIONS can have a TARGET

to characterize the other components that are involved in that action.
It has to be said that our aim is to identify linguistic constructs for uniformly modeling the control

of computation, the interaction among possibly heterogeneous components, and the architecture of
systems and ensembles. Therefore, we have left open some syntactic categories, namely KNOWL-
EDGE, POLICIES, TEMPLATES and ITEMS (the last two ones determine the part of KNOWLEDGE to
be retrieved/removed or added, respectively). These represent additional language features that need
to be introduced, e.g. to represent and store knowledge of different forms (e.g. clauses, constraints,
records, tuples) or to express a variety of policies (e.g. to regulate knowledge handling, resource usage,
process execution, process interaction, actions priority, security, trust, reputation). We do not want to
take a definite standing about these categories and prefer they be fixed from time to time according
to the specific application domain or to the taste of the language user. In the rest of this section, we
consider one by one the explicitly defined categories and describe them in detail.

PROCESSES are the active computational units. Each process is built up from the inert process
nil via action prefixing (a.P), nondeterministic choice (P1 + P2), controlled composition (P1[P2]),
process variable (X), and parameterized process invocation (A(p̄)). The construct P1[P2] abstracts
the various forms of parallel composition commonly used in process calculi. Process variables can
support higher-order communication, namely the capability to exchange (the code of) a process, and
possibly execute it, by first adding an item containing the process to a knowledge repository and then
retrieving/withdrawing this item while binding the process to a process variable. We assume that A
ranges over a set of parameterized process identifiers that are used in recursive process definitions. We
also assume that each process identifier A has a single definition of the form A(f̄) , P where all free

ASCENS 8

D1.2: Second Report on WP1 (Final) November 12, 2012

variables in P are contained in f̄ and all occurrences of process identifiers in P are within the scope
of an action prefixing. p̄ and f̄ denote lists of actual and formal parameters, respectively.

Processes can perform five different kinds of ACTIONS. Actions get(T)@c, qry(T)@c and
put(t)@c are used to manage shared knowledge repositories by withdrawing/retrieving/adding in-
formation items from/to the knowledge repository c. These actions exploit templates T as patterns to
select knowledge items t in the repositories. They rely heavily on the used knowledge repository and
are implemented by invoking the handling operations it provides. Action fresh(n) introduces a scope
restriction for the name n so that this name is ensured to be different from any other name previously
used. Action new(I,K,Π, P) creates a new component I[K,Π, P].

Different entities may be used as the target c of an action. Component names are denoted by n,
n′, . . . , while variables for names are denoted by x, x′, The distinguished variable self can be
used by processes to refer to the name of their hosting component. The target can also be a predicate
P or an attribute p associated to a predicate in the interface I of the component (thus the association
may dynamically change). A predicate could be, for example, a boolean-valued expression obtained
by applying standard boolean operators to the results returned by the evaluation of relations between
attributes and expressions.

In actions using a predicate P to indicate the target, this predicate P acts as a ‘guard’ specifying
all the components that may be affected by the execution of the action, i.e. a component must satisfy
P in order for it to be the target of the action. Thus, e.g., actions put(t)@n and put(t)@P give rise
to two different primitive communication forms: the former is a point-to-point communication, while
the latter is a sort of group-oriented communication (see also Remark 2.2).

The set of components satisfying a given predicate P used as the target of a communication action
can be considered as the ensemble which the process performing the action is willing to interact with.
For example, the names of the components that can be members of an ensemble can be fixed via the

predicate P(I)
def
= I.id ∈ {n,m, o}. If this is the target, then the action will act on those components

whose names are n, m and o, if any. As another example, to dynamically characterize the members
of an ensemble that are active and have a battery charge level greater than 30%, by assuming that
attributes active and battery level belong to the interface of each component willing to be part of the

ensemble, the predicate P(I)
def
= I.active = yes ∧ I.battery level > 30% could be used.

Remark 2.1 (On dynamically determined communication partners) Differently from the original
version of SCEL [DFLP11, DFLP12], attribute ensemble is no longer part of components’ interface.
The choice of dynamically determining an ensemble as a target of an action, rather than having
it necessarily characterized by an interface attribute, has many important consequences. Firstly,
it avoids to have a single component acting as the coordinator of the ensemble (the coordinating
component would be a single point of centralization and, potentially, of failure). Secondly, it permits a
more dynamic characterization of ensembles, since the target ensemble can potentially differ from one
action to the next one. Finally, it simplifies the operational semantics, since an interaction between two
components does not require a third party, i.e. the ensemble coordinator. Also attribute membership
is no longer part of components’ interface; its role can indeed be held by the authorization predicate
(see the operational semantics rules for systems).

An autonomic component I[K,Π, P], graphically depicted in Figure 2, consists of:

1. An interface I publishing and making available structural and behavioral information about the
component itself in the form of attributes. Among them, attribute id is mandatory and is bound
to the name of the component. Notably, component names are not required to be unique; this
would allow us to easily model replicated service components.

ASCENS 9

D1.2: Second Report on WP1 (Final) November 12, 2012

Knowledge
K

Processes

P

I Interface

Π
Policies

Figure 2: SCEL component

2. A knowledge repository K managing both application data and awareness data, together with
the specific handling mechanism. The knowledge repository of a component stores also the
whole information provided by its interface, which therefore can be dynamically manipulated
by means of the operations provided by the knowledge repositories’ handling mechanisms.

3. A tuple of policies Π regulating the interaction between the different internal parts of the com-
ponent and the interaction of the component with the others.

4. A process P together with a set of process definitions that can be dynamically activated. Some
of the processes in P perform local computation, while others may coordinate processes inter-
action with the knowledge repository and deal with the issues related to adaptation.

Finally, SYSTEMS aggregate COMPONENTS through the composition operator ‖ . It is also
possible to restrict the scope of a name, say n, by using the name restriction operator (νn) . Thus, in a
system of the form S1 ‖ (νn)S2, the effect of the operator is to make name n invisible from within S1.
Essentially, this operator plays a role similar to that of a begin . . . end block in sequential programming
and limits visibility of specific names. Additionally, it allows components to communicate restricted
names thus enabling the receiving components to use those names.

The operational semantics of SCEL is defined in two steps. First, the semantics of processes
specifies process commitments, namely the actions that processes can initially perform and the con-
tinuation process obtained after each such action, while ignoring process allocation, available data,
regulating policies, etc. Then, by taking process commitments and system configuration into account,
the semantics of systems provides a full description of systems behavior. For space limitation, here we
only sketch the main ingredients and refer the reader to [DLPT12] for a full account of the semantics.

Process commitments are generated by the following production rule

α, β ::= a
∣∣ ◦ ∣∣ α[β]

meaning that a commitment is either an action as defined in Table 1, or the symbol ◦, denoting inaction,
or the composition α[β] of two commitments α and β. We use P and Q, possibly indexed, to range
over processes and write P ↓α Q to mean that “P can immediately perform the commitment α and
became Q in doing so”. The relation ↓ is induced by a set of inference rules like those shown below:

−
a.P ↓a P

−
P ↓◦ P

P ↓α P ′ Q ↓β Q′

P [Q] ↓α[β] P
′[Q′]

The meaning of the rules is straightforward. The first one says that a process of the form a.P
first executes the commitment a, then continues as process P . The second rule allows any process

ASCENS 10

D1.2: Second Report on WP1 (Final) November 12, 2012

to perform a commitment ◦ while remaining unchanged. The third rule1, defining the semantics of
P [Q], states that a commitment α[β] is performed when Q makes the commitment β and P makes
the commitment α. However, P and Q are not forced to actually perform a meaningful action: thanks
to the second rule, α and/or β may always be ◦.

The operational semantics of systems is defined in two steps. First, by means of a labeled transition
relation indicating the actions performed by system’s components, we derive the possible behaviors
of systems without occurrences of the name restriction operator. Then, by exploiting this relation, we
provide the semantics of generic systems by means of a (unlabelled) transition relation only accounting
for systems’ computation steps.

We write S
λ- S′ to mean that “S can perform a transition labeled λ and became S′ in doing

so”. The labeled transition relation is induced by a set of inference rules, an excerpt of which is
reported in Table 3. The relation is parameterised with respect to the following two predicates:

• The interaction predicate, Π, I : α � λ, σ,Π′, means that under policy Π and interface I, pro-
cess commitment α yields system label λ, substitution σ and policy Π′. Intuitively, λ identifies
the effect of α at the level of components, while σ associates values to the variables occurring in
α and is used to capture the changes induced by communication. Π′ is the policy in force after
the transition; in principle it may differ from that in force before the transition. This predicate is
used to determine the effect of the simultaneous execution of actions by processes concurrently
running within a component that, e.g., exhibit commitments of the form α[β].

• The authorization predicate, Π ` λ,Π′, means that under policy Π, (the action generating) the
authorization request λ is allowed and the policy Π′ is produced. This predicate is used to de-
termine the actions allowed by specific policies, and the (possibly new) policy to be enforced.
The authorization to perform an action is checked when a computation step can potentially take
place, i.e. when it becomes known which is the component target of the action. By resort-
ing to different policies, components can protect themselves against different threats, such as
unauthorised access or denial-of-service attacks, hence behaving in a self-protecting way.

Many different interaction predicates can be defined to capture well-known process computation and
interaction patterns such as interleaving, asynchronous communication, synchronous communication,
full synchrony, broadcasting, etc. We present here a possible instance, that we call interleaving, and
refer the interested reader to [DLPT12] for other two instances of interaction predicate.

The interaction predicate interleaving is obtained by interpreting controlled composition as the in-
terleaved parallel composition of the two involved processes. The predicate is defined by the inference
rules reported in Table 2, where the following notations are used:

• E [[t]]I (resp. E [[T]]I) denotes the evaluation of item t (resp. template T) with respect to inter-
face I: attributes occurring in t (resp. T) are replaced by the corresponding value in I;

• N [[c]]I denotes the evaluation of target c according to interface I, thus variables (resp. predicate
names) are replaced by the corresponding component names (resp. predicates);

• P[[P]]I denotes the evaluation of P according to interface I: functionalities in P are replaced
by the corresponding code in I;

• match(T ′, t) = σ means that the evaluated template T ′ and the item t do match and yield
substitution σ for associating values to the variables occurring in T ′.

1In the actual rule (see [DLPT12]), there is also a side condition ensuring that the variables used by the two processes P
and Q are different in order to avoid improper captures.

ASCENS 11

D1.2: Second Report on WP1 (Final) November 12, 2012

Π, I : fresh(n) � fresh(n), {},Π
E [[T]]I = T ′ N [[c]]I = γ match(T ′, t) = σ

Π, I : get(T)@c � I : t / γ, σ,Π

E [[T]]I = T ′ N [[c]]I = γ match(T ′, t) = σ

Π, I : qry(T)@c � I : t J γ, σ,Π

E [[t]]I = t′ N [[c]]I = γ

Π, I : put(t)@c � I : t′ . γ, {},Π

Π, I : new(J ,K,Π, P) � new(J ,K,Π,P[[P]]I), {},Π

Π, I : α � λ, σ,Π
Π, I : α[◦] � λ, σ,Π

Π, I : α � λ, σ,Π
Π, I : ◦[α] � λ, σ,Π

Table 2: The interleaving interaction predicate

Basically, we have a rule for each different kind of process action, plus two additional rules (the
last ones) ensuring that in case of controlled composition of multiple processes only one process can
perform an action (the other stays still). The (five) rules for process actions state that, at the level of
the operational semantics of systems, all process actions correspond to properly labeled transitions.

Likewise the interaction predicate, many different reasonable authorization predicates can be de-
fined (some examples are shown in Section4, a few more are presented in [PT12]).

The labeled transition relation also relies on the following three operations that each knowledge
repository’s handling mechanism must provide:

• K 	 t = K′: the withdrawal of item t from the repository K returns K′;

• K ` t: the retrieval of item t from the repository K is possible;

• K ⊕ t = K′: the addition of item t to the repository K returns K′.

Now, some comments about the rules in Table 3 follow. Rule (pr-sys) transforms process commit-
ments into system labels by exploiting the interaction predicate. As a consequence of this transfor-
mation, a substitution σ is generated and applied to the continuation of the process that has exhibited
the commitment α. This is necessary when α contains a get or a qry, because, due to the way the
semantics of processes is defined, the continuation P ′ may contain free variables even if P is closed.

Action qry can retrieve an item either from the local repository (lqry) or from a specific repository
(ptpqry), or from one of a set of repositories satisfying a given target predicate (grqry). The label
I : t J̄J , generated by rule (accqry), denotes the willingness of component J to provide the item t
to component I. Notably, the label is generated only if such willingness is authorized by the policy
in force at the component J . Thus, when the target of the action denotes a specific remote repository
(ptpqry), the action is only allowed if n is the name of the component J simultaneously willing to
provide the wanted item and if the request to perform the action at J is authorized by the local policy.
As a matter of notation, we use I.π to denote the policy in force at the component I and S[I.π := Π′]
to denote the replacement of the policy in force at the component I with policy Π′. When the target
of the action denotes a set of repositories satisfying a given target predicate (grqry), the action is only
allowed if one of these repositories, say that of component J , is willing to provide the wanted item
and if the request to perform the action at J is authorized by the policy in force at the component
performing the action. Relation J |= P states that (the attributes of) the component J satisfy the
predicate P; the definition of such relation depends on which kind of predicates is used. In any
case, if the action succeeds, this transition corresponds to an internal computation step that leave all
repositories unchanged.

ASCENS 12

D1.2: Second Report on WP1 (Final) November 12, 2012

P ↓α P ′ Π, I : α � λ, σ,Π′

I[K,Π, P]
λ- I[K,Π′, P ′σ]

(pr-sys)

I[K,Π, P]
I:tJn- I[K,Π, P ′] n = I.id Π ` I : t J̄ I,Π′ K ` t

I[K,Π, P]
τ- I[K,Π′, P ′]

(lqry)

Π ` I : t J̄J ,Π′ K ` t

J [K,Π, P]
I:t J̄J- J [K,Π′, P]

(accqry)

S1
I:tJn- S′1 S2

I:t J̄J- S′2 J .id = n I.π ` I : t J̄J ,Π′

S1 ‖ S2
τ- S′1[I.π := Π′] ‖ S′2

(ptpqry)

S1
I:tJP- S′1 S2

I:t J̄J- S′2 J |= P I.π ` I : t J̄J ,Π′

S1 ‖ S2
τ- S′1[I.π := Π′] ‖ S′2

(grqry)

I[K,Π, P]
I:t.n- I[K,Π, P ′] n = I.id Π ` I : t .̄ I,Π′ K ⊕ t = K′

I[K,Π, P]
τ- I[K′,Π′, P ′]

(lput)

Π ` I : t .̄J ,Π′ K ⊕ t = K′

J [K,Π, P]
I:t .̄J- J [K′,Π′, P]

(accput)

S1
I:t.n- S′1 S2

I:t .̄J- S′2 J .id = n I.π ` I : t .̄J ,Π′

S1 ‖ S2
τ- S′1[I.π := Π′] ‖ S′2

(ptpput)

S1
I:t.P- S′1 S2

I:t .̄J- S′2 J |= P I.π ` I : t .̄J ,Π′

S1 ‖ S2
I:t.P- S′1[I.π := Π′] ‖ S′2

(grput)

S
I:t.P- S′ (J 6|= P ∨ Π,J 6` I : t .̄J ,Π′)

S ‖ J [K,Π, P]
I:t.P- S′ ‖ J [K,Π, P]

(engrput)

S1
λ- S′1 λ /∈ {I : t . P, I : t .̄J }

S1 ‖ S2
λ- S′1 ‖ S2

(async)

Table 3: Labeled transition relation (Excerpt of rules)

Action put adds item t to one or more repositories. Rules (lput), (accput) and (ptpput) are similar
to the corresponding ones for action qry, the major difference being that the addition operation of
the repository’s handling mechanism is invoked. Differently from action qry that only interacts with
one target component arbitrarily chosen among those satisfying the target predicate P and willing to
provide the wanted item, put(t)@P can interact with all components satisfying P and willing to accept
the item t. In fact, rule (grput) permits the execution of a put for group-oriented communication when
there is a parallel component, say J , satisfying the target of the action and whose policy authorizes
this remote access. Of course, the action must be authorized to use J as a target also by the policy
in force at the component performing the action. Notably, the resulting transition maintains the same

ASCENS 13

D1.2: Second Report on WP1 (Final) November 12, 2012

label, thus further authorization actions performed by other parallel components satisfying the target
of the action can be simultaneously executed. Instead, rule (engrput) enables a component to perform
a put(t)@P also when there is a parallel component which is not affected by execution of the action,
because either it does not satisfy the target predicate or it does not authorize the action.

Finally, rule (async) requires that, while a put for group-oriented communication or an authoriza-
tion for a put can only be performed by involving all the components of a system, all the other actions
can be performed by only involving some of the system’s components.

Remark 2.2 (On different forms of put) The two actions put(t)@n and put(t)@(I.id ∈ {n})
have not the same meaning. Indeed, the former is a point-to-point communication and succeeds
only whenever there is a component named n willing to receive the item t. The latter is a sort of
group-oriented communication over a channel without message loss and can also succeed whenever
a component named n does not exist or exists but does not authorise the action (i.e. is not willing to
receive t). In the second case above, put(t)@n would get stuck, while put(t)@(I.id ∈ {n}) would
terminate successfully (but t would not be added to the repository at n). Another way of writing the
above group-oriented communication action is put(t)@target, where target is an attribute associ-

ated to the predicate P(I)
def
= I.id ∈ {n}. While the former two put actions will try to interact

always with the component named n, the latter action put(t)@target may also interact with other
components, because the association for the attribute target may dynamically change and refer to a

different predicate (e.g. Q(I)
def
= I.id ∈ {m, o}).

The (unlabeled) transition relation providing the semantics of generic systems is defined on top of
the labeled one by the following inference rules2.

S
τ- S′

(νn̄)S �−→ (νn̄)S′

S
I:t.P- S′

(νn̄)S �−→ (νn̄)S′

(νn̄, n′′)(S1 ‖ S2{n′′/n′}) �−→ S′ n′′ fresh

(νn̄)(S1 ‖ (νn′)S2) �−→ S′

(νn̄)(S2 ‖ S1) �−→ S′

(νn̄)(S1 ‖ S2) �−→ S′

(νn̄)((S1 ‖ S2) ‖ S3) �−→ S′

(νn̄)(S1 ‖ (S2 ‖ S3)) �−→ S′

Basically the rules state that computation steps correspond to transitions labeled either by τ or by
I : t . P, that name restrictions can be moved at top level by possibly renaming restricted names
with freshly chosen ones for avoiding improper name captures, and that systems’ composition is a
commutative and associative operator.

3 jRESP: a Runtime Environment for SCEL Programs

In this section we briefly present jRESP3, a runtime environment, developed in Java, providing
an API that permits developing autonomic and adaptive applications in Java based on the SCEL
paradigm. A more detailed description of jRESP can be found in [Lor12, BGH+12].

In the definition of SCEL, some aspects, such as knowledge representation, are not fixed but can
be identified from time to time according to the specific application domain or to the taste of the lan-
guage user. Other aspects, like for instance the underlying communication infrastructure, are instead
abstracted away from the SCEL’s operational semantics. For this reason, jRESP is parameterized

2As a matter of notation, n̄ denotes a (possibly empty) sequence of names, n̄, n′′ is the sequence obtained by composing
n̄ and n′′ and S2{n′′/n′} is the substitution of n′ with n′′ in S2.

3http://code.google.com/p/jresp/

ASCENS 14

http://code.google.com/p/jresp/

D1.2: Second Report on WP1 (Final) November 12, 2012

Hardware/Virtual Machine

N
etw

ork
s

Input devices/Sensors

(GPS, Temperature, Battery level,CPU load. . .)

Output devices/Actuators

SCEL Processes (Threads)

Policies

Knowledge

A
tt

r.

P
or

ts

Figure 1: Node architecture

cooperate.

Components The central element of RESP is the class Node. This class
provides the implementation for a generic SCEL component1. The overall
infrastructure of a generic node is reported in Figure 1.

We assume that each node is executed over a virtual machine or a phys-
ical device that provides the access to: input and output devices and net-
work connections. Each node contains: a knowledge; a set of running pro-
cesses/threads; and a policy.

Like for a SCEL components, structural and behavioural information
about a node can be collected into an interface. This is rendered in RESP
via a set of attribute collectors that, reading values from the knowledge,
publish and and make available attribute values in the interface.

Nodes interact with each other via ports. These provide mechanism for
supporting both one-to-one and gruop communications.

1From now on we will use node to refer to instances of class Node, while component
will indicate a SCEL component.

4

Figure 3: Node architecture

with respect to specific implementations of the above mentioned features. Besides, to simplify the
integration of new features, it largely uses recurrent patterns.

jRESP communication infrastructure has been designed so to avoid any centralized control. In-
deed, a SCEL program typically consists of a set of (possibly heterogeneous) components, each of
which is equipped with its own knowledge repository. These components concur and cooperate in an
highly dynamic environment to achieve a set of goals. The underlying communication infrastructure
is not fixed, but can change dynamically during the computation. Hence, components can interact
with each other by simply relying on the available communication media.

Aggregations. SCEL components are implemented via the class Node. The architecture of a generic
node is shown in Figure 3. We assume that each node is executed over a virtual machine or a physical
device that provides the access to input/output devices and to network connections. Each node aggre-
gates a knowledge repository, a set of running processes/threads, and a set of policies. Structural and
behavioral information about a node can be collected into an interface via a set of attribute collectors.
Nodes interact through ports supporting both point-to-point and group-oriented communications.

Knowledge. The interface Knowledge identifies a generic knowledge repository and indicates the
high-level primitives to manage pieces of relevant information coming from different sources. This
interface contains the methods for withdrawing/retrieving/adding piece of knowledge from/to a repos-
itory. External data can be collected into the knowledge via sensors. Each sensor can be associated to
a logical or physical device providing data that can be used by processes and that can be the subject of
adaptation. Similarly, actuators can be used to collect data from knowledge repositories and forward
them to external components. This approach allows SCEL processes to control exogenous devices
that identify logical/physical actuators. Attribute values are published on component interfaces via at-
tribute collectors. When a request for an attribute is received, the corresponding collector is selected.
The latter interacts with the node’s knowledge to compute the actual attribute value.

Behaviors. SCEL processes are implemented as threads via the abstract class Agent which provides
the methods for withdrawing/retrieving/adding information items from/to shared knowledge reposi-
tories. These methods extend the ones considered in Knowledge with another parameter identifying
the, possibly remote, node where the target knowledge repository is located.

Policies. Policies are organized in a stack. The policy at one level relies on the one at the level below.
The policy at the lowest level allows any operation. When an agent invokes a method, its execution is
delegated to the policy associated to the node where the agent is running.

ASCENS 15

D1.2: Second Report on WP1 (Final) November 12, 2012

Π ::= 〈Decision ; target:{ Targets } 〉 (ATOMIC POLICIES)
| Π p-o Π

∣∣ Π d-o Π (COMPOSED POLICIES)

Decision ::= permit
∣∣ deny (DECISIONS)

Targets ::= MatchF (Designator ,Expr) (ATOMIC TARGETS)
| Targets or Targets

∣∣ Targets and Targets (COMPOSED TARGETS)

MatchF ::= equal
∣∣ pattern-match

∣∣ greater-than
∣∣ . . . (MATCHING FUNCTIONS)

Designator ::= action
∣∣ pattern

∣∣ subject.attr
∣∣ object.attr (DESIGNATORS)

Expr ::= get
∣∣ qry

∣∣ put
∣∣ fresh

∣∣ new (EXPRESSIONS)
| T

∣∣ value ∣∣ subject.attr
∣∣ object.attr

| not Expr
∣∣ Expr or Expr

∣∣ Expr and Expr
| Expr + Expr

∣∣ Expr × Expr
∣∣ Expr < Expr

∣∣ Expr = Expr
∣∣ . . .

Table 4: SACPL policy syntax

4 SACPL: a SCEL Access Control Policy Language

In this section we present SACPL (SCEL Access Control Policy Language), a simple, yet expressive,
language for defining access control policies and access requests, and its integration with SCEL.
SACPL is inspired to, but much simpler than, the OASIS standard for policy-based access control
XACML [OAS05]. Due to space limitation, here we only sketch the main ingredients and refer the
interested reader to [PT12] for a full account of the language.

Access control is a fundamental mechanism for restricting what operations users can perform on
protected resources. Many models of access control have been defined in the literature. Here, we focus
on the Policy Based Access Control model [NIS09], that is by now the de-facto standard model for
enforcing access control policies in service-oriented architectures. In this model, a request to access
a protected resource is evaluated with respect to one or more policies that define which requests are
authorized. An authorization decision is based on attribute values required to allow access to a resource
according to policies stored in system’s components. Component attributes are here used to describe
the entities that must be considered for authorization purposes; they might concern:

• the subject who is demanding access: e.g. identity, role, age, zip code, IP address, group
memberships, citizenships, company, management level, certifications;

• the action that the user wants to perform: e.g. read and/or write, patterns of argument data;

• the object (or resource) impacted by the action: e.g. identity, location, size, value, EHR;

• the environment identifying the context in which access is requested: e.g. time of day, date,
location, system load, available memory, battery level, type of communication channel.

SACPL syntax is presented in Table 4. Policies are hierarchically structured as trees. Indeed, a
policy is either an atomic policy or a pair of simpler policies combined through one of the decision-
combining operators p-o (permit override) and d-o (deny override). An atomic policy is a pair made
of a decision and a target. The target defines the set of access requests to which the policy applies.
The decision, i.e. permit or deny, is the effect returned when the policy is ‘applicable’, namely the
access request belongs to the target. Otherwise, i.e. when a request does not belong to the policy’s
target, the policy is ‘not-applicable’, which in our simplified setting has the same effect as deny.

ASCENS 16

D1.2: Second Report on WP1 (Final) November 12, 2012

Π1 ` ρ ∨ Π2 ` ρ
(Π1 p-o Π2) ` ρ

Π1 ` ρ Π2 ` ρ
(Π1 d-o Π2) ` ρ

〈permit ; target:{ }〉 ` ρ
Targets ` ρ

〈permit ; target:{Targets }〉 ` ρ

Targets1 ` ρ ∨ Targets2 ` ρ
(Targets1 or Targets2) ` ρ

Targets1 ` ρ Targets2 ` ρ
(Targets1 and Targets2) ` ρ

ρ(action) = Act

equal(action,Act) ` ρ
match(T, ρ(item))

pattern-match(pattern,T) ` ρ

MatchF (ρ(subject).attr, E [[Expr]]ρ)

MatchF (subject.attr,Expr) ` ρ
MatchF (ρ(object).attr, E [[Expr]]ρ)

MatchF (object.attr,Expr) ` ρ

Table 5: SACPL semantics (where Act is any of get, qry, put, fresh, and new)

A target is either an atomic target or a pair of simpler targets combined using the standard
logic operators and and or. An atomic target is a triple denoting the application of a matching
function to values from the request and the policy, like e.g. greater-than(subject.skill, threshold −
object.dependability). To base an authorization decision on some characteristics of the request, e.g.
subjects’ or objects’ identity, atomic targets use designators (i.e. attribute names) to point to specific
values contained in the request. Specifically, the designator action refers to the action to be performed
(such as get, qry, put, etc.), pattern permits referring to the item exchanged in the considered in-
teraction via function pattern-match and template T , while subject.attr and object.attr refer to the
specific attribute attr provided, respectively, by the request’s subject or object (like, e.g., subject.id,
subject.skill, object.trust level).

Finally, Expressions are built from values and attr ibutes through various operators.
SACPL requests, ranged over by ρ, are functions mapping names to elements and are written as

collections of pairs of the form (name, element). A request’s element can be a knowledge item, a
component’s interface, the type of an action, etc. In its turn, an interface provides a set of attributes
characterizing the corresponding component, which can be either the subject or the object of the
request. A typical example of request is as follows:

ρ = {(subject, I), (item, t), (action, get), (object,J)}

Here, the subject identified by the interface I requires the authorization to withdraw the item t from
component J . For example, the request’s subject is obtained by calling ρ(subject), which returns I.

The semantics of SACPL is given in terms of a judgement Π ` ρ meaning that the authorization
decision returned by a policy Π in response to a request ρ is permit, i.e. access to the resource requested
in ρ is granted by Π. In practice, the judgement Π ` ρ, inferred through the rules in Table 5, means
that the request is allowed.

The meaning of the rules is straightforward. To match a composed policy (Π1 p-o Π2), a request is
only required to match one of Π1 and Π2, while it must match both Π1 and Π2, for it to match the pol-
icy (Π1 d-oΠ2). As for atomic policies, if the target is empty, the request matches the policy, otherwise
the request is required to match the target. To match the composed target (Targets1 or Targets2), a
request is only required to match one of Targets1 and Targets2, while it must match both Targets1

and Targets2, for it to match the target (Targets1 and Targets2). A request matches an atomic
target of the form equal(action,Act) if the request’s action corresponds to the action Act identified by

ASCENS 17

D1.2: Second Report on WP1 (Final) November 12, 2012

the target. An atomic target of the form pattern-match(pattern,T) is matched by all requests whose
item matches the template T ; this is checked by means of a pattern-matching function match whose
definition is left unspecified, because it depends on the considered notion of items and templates.
Finally, when an atomic target contains a subject’s (resp. object’s) attribute as designator, the evalu-
ation consists in obtaining the subject (resp. object) interface from the request, retrieving the value
of the attribute from the interface, evaluating the expression by possibly retrieving other attribute val-
ues from the request elements and, finally, calling the corresponding match function. This evaluation
relies on a few auxiliary functions. First, we use the function E [[Expr]]ρ to evaluate the expression
Expr after replacing the attributes occurring in Expr by the corresponding values in the subject/ob-
ject interfaces in ρ. Then, we exploit the definition of the matching functions specified in the target;
e.g. equal(n,m) is true if n = m. Thus, for example, the atomic target equal(subject.status,“on”)
matches all authorization requests issued by a component whose status attribute is set to on.

We conclude this section by discussing how SACPL policies and requests, as well as the re-
lated evaluation mechanism, integrate with SCEL. SCEL is indeed parametric with respect to the
language used to specify the policies regulating the behavior of system components, as it is shown
by the definition of its operational semantics. Orthogonal aspects of components’ behavior can be
regulated by means of different kinds of policies, which should be enforced together but evaluated
separately. Hence, the policy Π specified within a component I[K,Π, P] can be better thought of
as a tuple of policies. For example, Π can be of the form (Πi,Πac), where Πi is one of the policies
shown in [DLPT12] for regulating the interaction among processes inside a component, while Πac is
a SACPL policy for regulating the access to the knowledge and resources of a component.

The policy tuple is used as a whole in the definition of SCEL’s operational semantics, while it
is decomposed in its constituent elements, which are then used in different ways, in the definition
of the interaction and the authorization predicates. In particular, the interaction predicate over the
policy tuple (Πi,Πac) can be simply defined as the interaction predicate over the interaction policy
Πi. Similarly, the authorization predicate over the policy tuple (Πi,Πac) can be defined in terms of a
judgement Πac ` ρ by means of the following rule

Πac ` λ2ρ(λ)

(Πi,Πac) ` λ, (Πi,Πac)

which also implies that the policy in force does never change owing to evaluation of a request. The
authorization predicate definition relies on the function λ2ρ(·) that maps (a subset of) the SCEL
labels to SACPL requests. For example, the label I : t /̄J is converted into the authorization request
{(subject, I), (item, t), (action, get), (object,J)}. We refer to [PT12] for the complete definition of
function λ2ρ(·). Hence, the authorization of a SCEL request λ over the policy Πac corresponds to
establishing the authorization decision returned by the policy Πac in response to the corresponding
SACPL request ρ = λ2ρ(λ), which is exactly the judgement Πac ` ρ defined by the rules in Table 5.

We refer the interested reader to [PT12] for an account of dynamically changing policies, and for
an application to the ASCENS Cloud Case Study [SMB+12] showing that SACPL permits to control
not only access to resources, but also adaptation of components and systems.

5 CCSCEL: a SCEL Dialect for Concurrent Constraint Programming

As shown in Section 2, to fit different paradigms and application domains, some ingredients of the
SCEL language have been intentionally left unspecified. By instantiating such parameters, different
SCEL dialects can be derived. We present in this section a dialect of SCEL, called CCSCEL, specifi-
cally devised for concurrent constraint programming [SR90]. The motivations underlying the addition

ASCENS 18

D1.2: Second Report on WP1 (Final) November 12, 2012

K ::= ∅
∣∣ t ‖ K (KNOWLEDGE)

t ::= χ
∣∣ 〈f〉 (ITEMS)

f ::= e
∣∣ c ∣∣ P ∣∣ f1, f2 (TUPLE FIELDS)

T ::= χ
∣∣ 〈F 〉 (TEMPLATES)

F ::= e
∣∣ c ∣∣ ?x

∣∣ ?X
∣∣ F1, F2 (TEMPLATE FIELDS)

Π ::= Π1store

∣∣ Π2store (POLICIES)

Table 6: CCSCEL syntax (SYSTEMS S, COMPONENTS C, PROCESSES P , ACTIONS a and
TARGETS c are defined in Table 1)

of constraints to SCEL are twofold. From the ASCENS’s perspective, this work permitted experi-
menting with the definition of a SCEL dialect through the specification of (some of) the language
parameters, i.e. knowledge items and templates, knowledge repository’s operations, policies, and the
interaction and authorization predicates. This activity also permitted gaining a deeper understanding
of the issues underlying knowledge representation and manipulation. From a more general perspec-
tive, using constraints as a form of knowledge can bring benefits to address issues related to service
component ensembles. Constraints are indeed suitable to represent partial knowledge, to deal with
multi-criteria optimization, to express preferences, fuzziness, and uncertainty.

The syntax of CCSCEL is illustrated in Table 6, which only reports the new grammar definitions
specifying the considered notion of knowledge, since the other definitions are directly borrowed by
SCEL without any change. In particular, in this dialect, a knowledge repository K can contain two
kinds of items: constraints χ and data tuples 〈f〉. Thus, a repository can play the role of both a con-
straint store and a tuple space. Hence, when the argument of actions put, qry and get is a constraint,
they play the role of actions tell, ask and retract, respectively, commonly used in languages for con-
current constraint programming to add a constraint to a store, to check entailment of a constraint by a
store and to remove a constraint from a store. Instead, when the argument of actions put, qry and get
is a tuple, they play the role of actions out, read and in, respectively, commonly used in tuple-based
languages to insert, read and withdraw tuples to/from a tuple space. CCSCEL relies on this specific
model of knowledge, based on both constraints and data tuples, in order to deal at once with such is-
sues as SLA achievement, constraint-driven decision making, coordinated asynchronous interactions,
concurrent activities, resource usage, self-awareness and adaptation, in a distributed, open-ended set-
ting.

It is worth noticing that we do not take a definite standing on which of the many notions of
constraints to use. We just assume to rely on (soft) constraints based on c-semiring [BMR97]. Thus,
constraints are functions of the form χ : (N → D)→ S, whereN is a set of names, D is the domain
of values that the names may assume, and 〈S,+,×, 0, 1〉 is a c-semiring, i.e. a partially ordered set of
‘preference’ values equipped with two suitable operations for combination (×) and comparison (+)
of values and constraints. Operation + induces a partial order ≤ on S defined by a ≤ b iff a+ b = b.
From time to time, the appropriate kind of constraints to work with, and the corresponding constraint
system, should be chosen depending on what one intends to model. Similarly, we intentionally leave
unspecified the syntax of expressions e used in tuples and templates. Notably, a tuple is a sequence of
actual fields, while a template is a sequence of actual and formal fields; the latter, written as ?x or ?X ,
are used to bind variables to values or to processes, respectively.

The proposed dialect relies on two policies regulating the combination of constraints in case of
remote insertion: when a constraint is required to be added to a remote store, Π1store prescribes to

ASCENS 19

D1.2: Second Report on WP1 (Final) November 12, 2012

K 	 〈f〉 = K′ if K ≡ K′ ‖ 〈f〉 K ` 〈f〉 if K ≡ K′ ‖ 〈f〉 K ⊕ 〈f〉 = K ‖ 〈f〉

K 	 χ =

{
K′ if K ≡ K′ ‖ χ
K otherwise

K ` χ if K ≡ (Ktuples ‖ χ1 ‖ . . . ‖ χm) and (χ1 × . . .× χm) ≤ χ

K ⊕ χ = K ‖ χ if K ≡ (Ktuples ‖ χ1 ‖ . . . ‖ χm) and (χ1 × . . .× χm × χ) 6= 0

Table 7: Knowledge repository operations

combine (by means of operation ×) only the constraints within the remote store, while Π2store pre-
scribes to combine the constraints within the remote store and the ones local to the process performing
the action. Of course, when a constraint is added to the local store, no matter what is the local policy,
only the local constraints are combined. Notably, when a remote put action is performed, if the policy
is Π2store and the store resulting from the combination of the constraint to be added and the two stores
is consistent, the effect of the action is the same as that in case of policy Π1store, i.e. the constraint
argument of the put action is added to the remote store (and not to the local one). Notice also that, if
Π2store is used in case of group-oriented communication, the set of constraints within the store of the
sender is pairwise combined with the sets of constraints stored in the receiving components.

Since CCSCEL is a dialect of SCEL, its semantics is defined by simply instantiating the SCEL’s
parameters without modifying or adding operational rules. We show below how such parameters have
been instantiated to define CCSCEL.

Knowledge repositories’ operations. In CCSCEL, the three operations provided by a knowledge
repository are defined in two different ways, depending on whether the item t is a data tuple (rules in
the upper part of Table 7) or a constraint (rules in the lower part of Table 7). Given a repository K, we
use Ktuples to denote the knowledge corresponding to all tuples within K. We use K1 ≡ K2 to denote
that K1 and K2 are equal up to commutation of items and addition/removal of the identity element ∅.
Notably, in the definition of K ` χ and K ⊕ χ, if the constraint store is empty (i.e. m = 0), then it is
sufficient to verify that χ is a tautology (i.e. it returns the c-semiring value 1 for any assignment) and
that χ has at least a solution (i.e. it differs from value 0), respectively.

Interaction predicate. The interaction predicate used in CCSCEL is a variant of the interleaving
interaction predicate defined in [DLPT12]. Indeed, a controlled composition P [Q] is interpreted as
the interleaved parallel composition of the two involved processes, i.e. only one process can perform
an action (the other stays still). Moreover, as expected, this predicate associates to each process action
α the corresponding system label λ. Depending on the argument of the action, different controls are
performed: in case of a data template, the pattern-matching with a tuple is checked and a substitution
is generated (by means of the function match), while, in case of a tuple or a constraint, no pattern-
matching evaluation is performed and, hence, it is returned the empty substitution. As an example, we
report below the rules dealing with the get action.

E [[〈F 〉]]I = 〈F ′〉 N [[c]]I = γ match(F ′, f) = σ

Π, I : get(〈F 〉)@c � I : 〈f〉 / γ, σ,Π
E [[χ]]I = χ′ N [[c]]I = γ

Π, I : get(χ)@c � I : χ′ / γ, {},Π

where E [[·]]I denotes the evaluation function for items and templates w.r.t. an interface I, while
N [[·]]I denotes the evaluation function for targets.

Authorization predicate. The CCSCEL’s authorization predicate is defined by the following rules

ASCENS 20

D1.2: Second Report on WP1 (Final) November 12, 2012

enforcing policies Π1store and Π2store:

Π1store ` λ Π2store ` J : χ .̄J
λ 6= I : χ .̄J
Π2store ` λ

KI ⊕KJ ⊕ χ
Π2store ` I : χ .̄J

where KI and KJ are the knowledge repositories of the components I and J , respectively. The first
rule states that policy Π1store allows to execute any kind of action, since this policy does not require
combining remote constraints with local ones4. Similarly, the second rule always allows the local
insertion of a constraint (indeed, the target component J coincides with the component executing the
action), and the third rule authorizes any system label that does not correspond to the acceptance of
a put action having a constraint as argument. The last rule deals with the remaining case: it always
checks the consistency5 of the combination of the constraint to be added with the remote and local
stores when the policy is Π2store.

We refer the interested reader to [BMPT12] for a full account of CCSCEL. Currently, in order to
conveniently model case studies where other forms of knowledge or logical reasoning are required, we
are considering to revise CCSCEL in order to deal with (soft) constraint logic programming [BMR01]
(SCLP), an extension of constraint logic programming where logic predicates are extended to func-
tions which, rather than returning booleans, yield more informative values such as preference values,
fuzzy values, probabilities or costs, which form a c-semiring. One direction that we are exploring
along this line of research focusses on the use of soft constraints for supporting Service-Oriented
Computing. Service-oriented applications are indeed in the scope of ASCENS, but they should be
studied with the particular focus of autonomicity and adaptivity. In particular, these requirements
impose as little centralization as possible, open endedness and heterogeneity of components.

In this setting, each service component can represent knowledge as a set of constraints about itself
and the surrounding world: (K1, C1), (K2, C2), . . . , where Ci are the constraints, and Ki are the keys
that explain the meaning of the constraints (e.g. distance, temperature, danger level). Constraints are
a generic way to represent knowledge, and constraint operations correspond to knowledge operations.

According to some preliminary work [PM12], apparently it is feasible to encapsulate a variety
of knowledge representation styles in different sites, and to carry on deduction steps and consistency
checks in terms of distributed constraint handling, where the local, specific knowledge interacts with
the constraint representation via suitable interfaces. The general approach is as follows. Only variables
are distributed, while every SCLP subgoal and every constraint is considered a service call, and thus is
under the responsibility of a particular site. When a subgoal is reduced, new subgoals are usually gen-
erated. Those owned by the present site are handled locally, while those, possibly sharing variables,
owned by other sites, are shipped there. The third possibility is a subgoal to be a constraint. Then it
is passed through the interface and it is handled by the “hardware” of the site. Global consistency of
local constraints is checked via constraint propagation. In [PM12], a simple ontology representation
and a relational database are introduced. Furthermore in the implementation it is shown how a mix of
logic programming (employing the PROVA framework) and a general-purpose programming language
such as Java can be used to integrate different knowledge representation formalisms. Constraints can
be used as interfaces between heterogenous knowledge, using Java calls for accessing their imple-
mentation, but still keeping the code clean, and benefitting from the declarative aspects of the (soft)
constraint logic programming paradigm.

4Notably, the premise K ⊕ t = K′ (where K is the receiver’s repository) of rule (accput) in Table 3 precisely enforces
policy Π1store, which hence does not need to be considered again by the authorization predicate.

5The premise in the fourth rule is satisfied if the store resulting from the composition KI ⊕KJ ⊕ χ is consistent, i.e. if
there exists K such that KI ⊕KJ ⊕ χ = K.

ASCENS 21

D1.2: Second Report on WP1 (Final) November 12, 2012

6 Towards High-level Design of SCEL-based Applications

In the previous sections various low-level aspects of the SCEL language have been described. Never-
theless, in order to be able to model a complex system in SCEL, a design method elaborating system
requirements down to the level of system architecture and reflecting this in SCEL implementation is
needed. A key goal is to provide a comprehensive method that supports all the phases of software
development process, from early requirements to an implementation based on the SCEL concepts
(Knowledge, Behaviors, Aggregations, and Policies). Therefore, in this section we describe an initial
proposal that gives directions for such a method for building systems of SCs and SCEs.

Specifically, the method operates with abstractions introduced by DEECo [KBPK12, BGH+12],
which is a reification of SCEL language for design of large-scale systems. To address the software
engineering issues, DEECo features a more structured system design by making both components and
ensembles explicit first-class architectural concepts. It also introduces the explicit concepts of mem-
bers and coordinator of an ensemble, which serve for high-level modeling and simplify the communi-
cation and synchronization semantics for an application developer by assuming one-to-many interac-
tion instead of general peer-to-peer interaction. It is worth noticing that the semantics and purpose of
member and coordinator concepts is different from the original version of SCEL [DFLP11, DFLP12].

Following the idea of the top-down design paradigm, in this method design is based on a sys-
tematic decomposition and refinement of system requirements specification. It consists of three
phases: system level design, ensemble level design, and component level design. Providing enough
detail, the component level design can be directly followed by implementation either in SCEL, or
a programming language for which a SCEL runtime environment is available (jRESP – Section 3,
jDEECo [KBPK12, BGH+12]). These three levels cover all the phases of software design, starting
from early and late requirements phases addressed at the system level, followed by architecture design
phase addressed at the system and ensemble levels, ending up with the detailed design phase addressed
at the component level.

System level. A starting point of our method is obtaining the system’s stakeholders and system
invariants.

A stakeholder is a participant of the system that arises from the early phases of requirements
analysis. In general, a stakeholder comprises knowledge, being essentially a (multi)set of knowledge
items. Typically, knowledge items are attributes, obtained by domain analysis, that characterize the
stakeholder. In general, in compliance with SCEL, we do not refer to any particular knowledge rep-
resentation in our method. Formally, a stakeholder S is a tuple S〈N,K〉 where N is the stakeholder’s
name and K its knowledge.

An invariant is a system property that does not vary over time. Specifically, an invariant is a
predicate over the knowledge of a set of stakeholders. These stakeholders are associated with the
invariant by taking a role in it. A stakeholder takes a role in an invariant when a subset of its knowledge
items is involved in the associated predicate. More precisely, an invariant I is a tuple I〈N,F,R〉,
where N is its name, F the predicate (formula), and R is a set of stakeholder roles referenced in F .
Each role R, i.e., an element of R, is a tuple of the form R〈NR, NS ,KS→I , A〉, where NR is the
role name, NS the name of the associated stakeholder S, KS→I the set of knowledge items of the
stakeholder S that are involved in the associated invariant I , and A the cardinality of the role (with the
domain {1, ∗}). Thus, a single stakeholder can take multiple roles in the same invariant. A role with
cardinality 1 refers to exactly one stakeholder, while a role with cardinality ∗ refers to an unbounded
set of stakeholders.

The system-level design process starts by identifying all top-level invariants, together with the
stakeholders taking a role in them. Next, the process continues by iterative decomposition of the top-

ASCENS 22

D1.2: Second Report on WP1 (Final) November 12, 2012

level invariants into sets of (sub-)invariants6. The decomposition terminates once each leaf invariant in
the decomposition tree is either of type single-stakeholder or inter-stakeholder. A single-stakeholder
invariant is an invariant that references a single role only, i.e., its validity is determined by the knowl-
edge of a single stakeholder. On the other hand, an inter-stakeholder invariant is an invariant that
references more than one role, i.e., its validity is determined by the knowledge of several stakeholders,
and it has the form of a conjunction of equalities among the involved knowledge items.

With such decomposition, we strive to reach the level of abstraction, at which the invariants can
be easily represented in the SCEL component communication (for inter-stakeholder invariants) and
computation semantics (for single-stakeholder invariants).

For the description of a graphical and textual representation of invariants, invariant decompo-
sition, stakeholders and stakeholder roles, as well as for examples, we refer the interested reader
to [BGH+12].

Ensemble level. Upon the basic SCEL notions, we introduce ensemble as a first-class concept in
order to explicitly capture the architecture of a system. An ensemble is a group of components, created
dynamically, where both the membership in the group and the communication in the group in the
form of knowledge exchange are expressed declaratively. Specifically, as an extension to SCEL, one
component of the group is the coordinator of the group, while the other components are members;
knowledge exchange takes place between the coordinator and members when triggered by a specific
condition. An ensemble is derived by refinement of an inter-stakeholder invariant (multiple invariants
can be refined by the same ensemble).

Note, that the use of coordinator and member concepts is not in contradiction with Remark 2.1.
This is because their semantics is different from the original SCEL language specification. In particu-
lar, their use does not create a single point of failure, mainly because of the dynamic selection of the
coordinator and replication of the knowledge via knowledge exchange.

In an ensemble, the coordinator, resp., the members are represented by a dedicated coordinator,
resp., member abstract interface. An abstract interface is derived from a stakeholder in the following
way: it entails the stakeholder’s knowledge items that are involved in the inter-stakeholder invariant
refined by the ensemble. Thus an abstract interface refines a stakeholder’s role in this invariant.

In summary, an abstract interface is a refinement of a stakeholder, while an ensemble is a refine-
ment of an inter-stakeholder invariant, and the relationship stakeholder–invariant is paralleled by the
relationship interface–ensemble.

Formally, an abstract interface AI refining a role R〈NR, NS ,KS→I , A〉 is a tuple AI〈NAI ,K〉,
where NAI is the name of the interface and K = KS→I the set of the entailed knowledge items.
An ensemble E is a tuple E〈NE ,AIC ,AIM ,M,X〉, where NE is the name of the ensemble, AIC ,
resp., AIM the coordinator, resp., member abstract interface, M the membership predicate, and X
the knowledge exchange. Here, M is a function KAIC ×KAIM → {true, false}, where KAIC and
KAIM are the sets of knowledge items of the coordinator and member abstract interface, respectively,
while X is a function KAIC ×K∗AIM → KAIC ×K

∗
AIM , where ∗ refers to an unbounded number of

members of the ensemble.
The membership M and knowledge exchange X of an ensemble are to be inferred from the pred-

icate of the invariant.

Component level. During the component level design, the goal is to refine a stakeholder by means
of a (SCEL) component, the component knowledge in particular. In general, a stakeholder is to be

6 Currently, such decomposition is always an AND-decomposition; i.e., for a parent invariant I〈Np, Fp,Rp〉 and its
sub-invariants I〈Nsi , Fsi ,Rsi〉, for i = 1 . . . n, the following holds: Fs1 ∧ · · · ∧ Fsn =⇒ Fp.

ASCENS 23

D1.2: Second Report on WP1 (Final) November 12, 2012

refined by one or more components, while a single component can refine several stakeholders. The
main goal of such stakeholder refinement into a component is to entail all the knowledge items relevant
to all the roles the stakeholder takes in single-stakeholder invariants (knowledge relevant to the roles
of inter-stakeholder invariants is discussed separately). Thus, for any stakeholder S = S〈NS ,KS〉
which is refined by the component I[K,Π, P] and any single-stakeholder invariant the stakeholder S
takes a role R〈NR, NS ,KS→I , A〉 in, the following holds: KS→I ⊆ K.

Further, any single-stakeholder invariant I is to be refined by means of a process Ploc(I). In
particular, the refinement is a local process, i.e., a process actions of which target only self (Table 1).
This is because a single-stakeholder invariant refers only to the knowledge local to the component
refining the stakeholder. In general, the goal of a local process is to maintain the validity of the refined
invariant by manipulating the component’s knowledge accordingly.

Finally, the abstract interfaces defined at the ensemble level are to be reified by components accord-
ing to the anticipated participation of the components in the ensembles associated with the abstract
interfaces. A reification of an abstract interface implies including all the knowledge items speci-
fied in the abstract interface into the (SCEL) interface of the component. Thus, for any abstract
interface AI = AI〈NAI ,KAI〉 which is reified by the component I[K,Π, P] the following holds:
KAI ⊆ I ⊆ K.

Furthermore, it is necessary to explicitly represent ensembles by SCEL means, the knowledge
exchange in particular, since SCEL does not provide any directly applicable concepts. In general,
the knowledge exchange is to be refined by a process of the coordinator of the ensemble. Thus, any
component I[K,Π, P] that reifies the coordinator abstract interface AIC = AI〈NAIC ,KAIC 〉 of an
ensemble E = E〈NE ,AIC ,AIM ,M,X〉 has to include a dedicated process Pkex(E) responsible for
performing the knowledge exchange of the ensemble. In general, the goal of such a process is to
maintain the validity of the invariant refined by the ensemble by exchanging the knowledge among the
coordinator and members. For example, the process Pkex(E) can have the following form:

Pkex(E) , qry(TAIC)@self. (load coordinator knowledge)

qry(TAIM)@PM(tAIC
,I). (load members’ knowledge)

put(X(tAIC , tAIM) �AIC)@self. (store outcome of X for coordinator)

foreach(tAIMi
in tAIM) { (for each member)

put(X(tAIC , tAIM) �AIMi
)@(I.id = tAIMi

.id). (store outcome of X for the member)

}
Pkex(E) (repeat the whole process)

Here, TAIC and TAIM is a template corresponding to the coordinator and member abstract inter-
face, respectively. Further, M(tAIC , I) is the membership predicate that for the coordinator-specific
knowledge item variables contains the current values stored in the coordinator’s knowledge repository
(tAIC). Further, X(tAIC , tAIM) �AIC is the outcome of the knowledge exchange X applied to the
values queried via TAIC and TAIM , restricted to AIC – the knowledge relevant to the coordinator.
Similarly, X(tAIC , tAIM) �AIMi

is the outcome of the knowledge exchange restricted to AIMi –
the knowledge relevant to the member number i. In summary, Pkex(E) recursively loads the current
values of the knowledge items relevant to the ensemble from the coordinator and member knowledge
repositories and stores back the outcome of the knowledge exchange function.

To summarize, a component C = I[K,Π, P] will consist of (i) an interface I aggregating all the
reified abstract interfaces

I def
=

⋃
AI,

C reifiesAI

KAI

(ii) knowledge K reflecting the component’s interface (i.e., I ⊆ K), (iii) a policy Π including the in-

ASCENS 24

D1.2: Second Report on WP1 (Final) November 12, 2012

terleaving interaction predicate defined by the inference rules reported in Table 2, and (iv) a controlled
composition P of the processes refining both relevant single-stakeholder invariants and knowledge
exchange

P , nil
[
Ploc(I)

]
I is a single-stakeholder invariant relevant to C

[
Pkex(E)

]
C reifies the coordinator abstract interface of E

For details on how ensembles are reflected in DEECo, we refer the interested reader to [BGH+12].

7 Related work

The term “ensemble” has been recently introduced in the literature (see, e.g., [Int07, HRW08,
WSJ+10]) to denote a category of systems characterized by heterogeneous collections of computing
resources, huge number of potential interactions, context-awareness, dynamically changing network
topologies, and unreliable communications. A mathematical model of ensembles and their composi-
tion has been introduced in [HW11]. Ensembles and their constituent parts are abstractly described
as relations on sets of inputs and outputs. The “black-box” view of adaptivity is then formally de-
fined. This leads to a preorder relation on ensembles which captures the ability of ensembles to satisfy
goals or maximize a performance measure in different environments. Differently from this denota-
tional model, we introduce an operational model of ensembles and a formal language that permits the
description of ensembles in a compact and formal way.

Declarative programming has been proposed as an approach to program ensembles. For exam-
ple, in [ARLG+09] the declarative language Meld [ARGL+07], originally designed for programming
overlay networks, is used. Meld allows ensembles to be programmed as a unified whole from a global
perspective and then to be compiled automatically into fully distributed local behaviors. This ap-
proach is somehow reminiscent of Declarative Networking [LCG+09], a programming methodology
that supports the high level specification of network protocols and services, that are then compiled
into a dataflow framework and executed. SCEL, instead, is a formal language that could be used as
the core of a programming language for ensembles.

Context-Oriented Programming (COP) [HCN08] has also been advocated to program autonomic
systems [SGP11]. It exploits ad-hoc explicit language-level abstractions to express context-dependent
behavioral variations and their run-time activation. So far, most efforts have been directed towards
the design and implementation of concrete languages. Only few works provide a foundational ac-
count of programming languages extended with COP facilities, as e.g. the object-oriented ones
of [IPW01, CCT09, HIM11] and the functional one of [DFGM12]. All these approaches are how-
ever quite different from ours, that instead focusses on distribution and attribute-based aggregations
and supports a highly dynamic notion of adaptation.

In the area of concurrency theory, calculi such as [BRF04, AK09], relying on the (bio)chemical
programming paradigm, have been proposed for the specification of autonomic systems. Some other
formalisms, like e.g. CWS [MS06] and ω-calculus [SRS10], aiming at modelling dynamically chang-
ing network topologies, a feature common to many types of distributed systems and to ensembles,
can also be source of inspiration for linguistic primitives for specifying autonomic systems. Com-
pared to these proposals, SCEL allows one to provide high-level abstract descriptions of systems that
nevertheless have a direct correspondence with their implementation.

An extensive effort has been put into investigating software design methods based on require-
ments analysis, such as goal-oriented requirements engineering [vL01]. Although similarities to goal-
oriented approaches like Tropos [BGG+03] can be found, the design method presented here focuses
on an integrated view on the system’s requirements and architecture.

ASCENS 25

D1.2: Second Report on WP1 (Final) November 12, 2012

8 Concluding Remarks and Work Plan for Year Three

We have introduced SCEL, a new language that brings together various programming abstractions that
permit directly representing knowledge, behaviors and aggregations according to specific policies,
and naturally programming interaction, adaptation and self- and context-awareness. We have then
introduced a language for defining access control policies and shown its integration with SCEL, and
described how different knowledge management primitives can live together well in a SCEL dialect
for concurrent constraint programming. We have also outlined a runtime environment for developing
autonomic and adaptive systems according to the SCEL paradigm, as well as the high-level design of
SCEL-based applications using the DEECo component model.

Our language-based approach permits to govern the complexity of the systems under considera-
tion by providing flexible abstractions, enabling transparent monitoring of the involved entities and
supporting adaptation with different granularity. Besides, SCEL is based on solid semantic grounds
which lay the basis for developing logics, tools and methodologies for formal reasoning about systems
behavior in order to establish qualitative and quantitative properties of both the individual components
and their ensembles.

Our proposal combines notions from different research fields. This will permit the cross fertil-
ization of concepts and techniques. For instance, in the long run, we expect that analytical methods
typical of the so called big data science can be fruitfully adopted to discover aggregation patterns and,
consequently, predict behavior of highly complex SCEs. Understanding how aggregations of SCs may
evolve is a key issue for developing optimization techniques.

During the third year we plan to do further work along the lines described above.

SCEL at Work. We will assess the extent to which SCEL achieves its goals. As testbeds we
will use different scenarios defined in the ASCENS project for three case studies: Robotics (col-
lective transport), Cloud-computing (transiently available computers), and e-Mobility (cooperative
e-vehicles). This process might require further tuning the language features and, hence, the related
jRESP implementation. Thus we will try to check whether it would be useful to have non block-
ing variants of get and query, or variants of group-oriented communication with a limited number of
recipients, or a language for predicates, like, e.g., a decidable subset of first order logic.

Extensions of jRESP. We plan to integrate in the runtime environment jRESP a Java library sup-
porting the specification and evaluation of SACPL policies and authorization requests. The implemen-
tation of such library would rely on the formal semantics of SACPL. We intend as well to experiment
with the integration in jRESP of some constraint solvers in order to provide an implementation of the
CCSCEL primitives.

High Level Languages. By building on our experience with jRESP and DEECo, we plan to define
a high-level programming language that, by enriching SCEL with standard programming constructs
(e.g. control flow constructs such as while or if-the-else) and architectural constructs, simplifies the
programming task. We intend to implement an integrated environment for supporting the development
of adaptive systems at different levels of abstraction: from a high-level perspective, based on SCEL,
to a more concrete one, based on jRESP and Java. Automatic analysis tools, based on the SCEL’s
formal semantics, will be integrated in this toolchain.

Stochastic extensions of SCEL. We plan to develop formal tools that permit supporting quantita-
tive analysis of self-adaptive systems specified in SCEL. To this purpose, we plan to define a timed/s-
tochastic extension of SCEL where time is explicitly considered and described by means of random

ASCENS 26

D1.2: Second Report on WP1 (Final) November 12, 2012

variables. Moreover, we plan to define a logic to express quantitative properties of SCEL systems.
Finally, we will consider model-checking algorithms that permit verifying whether a specification
satisfies a given logical property.

From SCEL to BIP. We plan also to consider the possibility of using the operational semantics of
SCEL as a starting point to generate systems’ descriptions that can be provided as input to the BIP
toolset. The challenge here is understanding how the dynamic part of SCEL specifications can be
“constrained” to provide a full model to be analyzed in BIP.

Model Checking for Decision Making. We want to develop a methodology that enables compo-
nents to take decisions about possible alternative behaviors by choosing among the best possibilities
while being aware of the consequences. By relying on an abstract description of the evolving environ-
ment, each component will be able to verify locally the possibility (or the probability) of guaranteeing
the wanted properties or of achieving the wanted goals by analyzing the possible outcome of its inter-
actions with the abstract model. This kind of information will then be used to take decisions about the
choices that a component has to face.

Alternative Knowledge Managers. We would like to experiment with the management of different
forms of knowledge representation, such as those based on concurrent constraints, logic programming,
and KnowLang. This would require to integrate such alternative knowledge managers, at formal level,
into SCEL and then, at implementation level, in jRESP. Moreover, to improve interoperability among
heterogenous knowledge repositories, we plan to consider an ontology-based approach.

Adaptation Patterns. We intend to experiment with modelling the various adaptation patterns stud-
ied in WP4 using SCEL. Specifically, we would start by modelling the static architecture of differ-
ent adaptation patterns, and then we would move on to investigate the use of the SCEL’s attribute-
based approach for expressing dynamic adaptation patterns, where not only the pattern participants
but also the pattern itself may dynamically change (the latter could be considered as a sort of meta-
adaptation).

ASCENS 27

D1.2: Second Report on WP1 (Final) November 12, 2012

References

[AK09] Oana Andrei and Hélène Kirchner. A Higher-Order Graph Calculus for Autonomic
Computing. In Graph Theory, Computational Intelligence and Thought, pages 15–26.
Springer, 2009.

[ARGL+07] Michael P. Ashley-Rollman, Seth Copen Goldstein, Peter Lee, Todd C. Mowry, and
Padmanabhan Pillai. Meld: A declarative approach to programming ensembles. In
IROS, pages 2794–2800. IEEE, 2007.

[ARLG+09] Michael P. Ashley-Rollman, Peter Lee, Seth Copen Goldstein, Padmanabhan Pillai, and
Jason Campbell. A language for large ensembles of independently executing nodes. In
Patricia M. Hill and David Scott Warren, editors, ICLP, volume 5649 of LNCS, pages
265–280. Springer, 2009.

[BGG+03] Paolo Bresciani, Paolo Giorgini, Fausto Giunchiglia, John Mylopoulos, and Anna Perini.
Tropos: An agent-oriented software development methodology, 2003.

[BGH+12] Tomas Bures, Ilias Gerostathopoulos, Vojtech Horky, Jaroslav Keznikl, Jan Kofron,
Michele Loreti, and Frantisek Plasil. Language Extensions for Implementation-Level
Conformance Checking. ASCENS Deliverable D1.5, 2012.

[BMPT12] Michele Boreale, Ugo Montanari, Rosario Pugliese, and Francesco Tiezzi. Constraint
programming with SCEL. Technical Report, September 2012. http://rap.dsi.
unifi.it/scel/.

[BMR97] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based constraint sat-
isfaction and optimization. J. ACM, 44(2):201–236, 1997.

[BMR01] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based contstraint
logic programming: syntax and semantics. ACM Trans. Program. Lang. Syst., 23(1):1–
29, 2001.

[BRF04] Jean-Pierre Banâtre, Yann Radenac, and Pascal Fradet. Chemical Specification of Au-
tonomic Systems. In IASSE, pages 72–79. ISCA, 2004.

[CCT09] Dave Clarke, Pascal Costanza, and Éric Tanter. How should context-escaping closures
proceed? In Proc. of COP’09, pages 1:1–1:6, New York, NY, USA, 2009. ACM.

[DFGM12] Pierpaolo Degano, Gian-Luigi Ferrari, Letterio Galletta, and Gianluca Mezzetti. Typing
for coordinating secure behavioural variations. In Coordination Models and Languages,
volume 7274 of LNCS. Springer, 2012.

[DFLP11] Rocco De Nicola, Gianluigi Ferrari, Michele Loreti, and Rosario Pugliese. Languages
primitives for coordination, resource negotiation, and task description. ASCENS Deliv-
erable D1.1, September 2011. http://rap.dsi.unifi.it/scel/.

[DFLP12] Rocco De Nicola, Gianluigi Ferrari, Michele Loreti, and Rosario Pugliese. A language-
based approach to autonomic computing. In Proc. of the 10th International Symposium
on Software Technologies Concertation on Formal Methods for Components and Objects
(FMCO 2011), Lecture Notes in Computer Science. Springer, 2012. To appear.

ASCENS 28

http://rap.dsi.unifi.it/scel/
http://rap.dsi.unifi.it/scel/
http://rap.dsi.unifi.it/scel/

D1.2: Second Report on WP1 (Final) November 12, 2012

[DLPT12] Rocco De Nicola, Michele Loreti, Rosario Pugliese, and Francesco Tiezzi. SCEL: a
Language for Autonomic Computing. Technical Report, September 2012. http://
rap.dsi.unifi.it/scel/.

[HCN08] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented program-
ming. Journal of Object Technology, 7(3):125–151, 2008.

[HIM11] Robert Hirschfeld, Atsushi Igarashi, and Hidehiko Masuhara. ContextFJ: a minimal core
calculus for context-oriented programming. In Proceedings of the 10th international
workshop on Foundations of aspect-oriented languages, FOAL ’11, pages 19–23, New
York, NY, USA, 2011. ACM.

[HRW08] Matthias M. Hölzl, Axel Rauschmayer, and Martin Wirsing. Engineering of software-
intensive systems: State of the art and research challenges. In Martin Wirsing, Jean-
Pierre Banâtre, Matthias M. Hölzl, and Axel Rauschmayer, editors, Software-Intensive
Systems and New Computing Paradigms, volume 5380 of LNCS, pages 1–44. Springer,
2008.

[HW11] Matthias M. Hölzl and Martin Wirsing. Towards a system model for ensembles. In
Gul Agha, Olivier Danvy, and José Meseguer, editors, Formal Modeling: Actors, Open
Systems, Biological Systems, volume 7000 of LNCS, pages 241–261. Springer, 2011.

[IBM05] IBM. An architectural blueprint for autonomic computing. Technical report, June 2005.
Third edition.

[Int07] Project InterLink. http://interlink.ics.forth.gr/central.aspx,
2007. Last accessed: 2011-11-28.

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight java: a minimal
core calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.

[KBPK12] Jaroslav Keznikl, Tomas Bures, Frantisek Plasil, and Michal Kit. Towards Dependable
Emergent Ensembles of Components: The DEECo Component Model. In Proceedings
of WICSA/ECSA 2012. IEEE, August 2012.

[LCG+09] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M. Heller-
stein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica. Declar-
ative networking. Commun. ACM, 52(11):87–95, November 2009.

[Lor12] Michele Loreti. jRESP: a Run-time Environment for SCEL Programs. Technical Report,
September 2012. http://rap.dsi.unifi.it/scel/.

[MS06] Nicola Mezzetti and Davide Sangiorgi. Towards a calculus for wireless systems. Electr.
Notes Theor. Comput. Sci., 158:331–353, 2006.

[NIS09] NIST. A survey of access control models, 2009. http://csrc.
nist.gov/news_events/privilege-management-workshop/
PvM-Model-Survey-Aug26-2009.pdf.

[OAS05] OASIS XACML TC. eXtensible Access Control Markup Language (XACML) ver-
sion 2.0, 2005. http://docs.oasis-open.org/xacml/2.0/XACML-2.
0-OS-NORMATIVE.zip.

ASCENS 29

http://rap.dsi.unifi.it/scel/
http://rap.dsi.unifi.it/scel/
http://interlink.ics.forth.gr/central.aspx
http://rap.dsi.unifi.it/scel/
http://csrc.nist.gov/news_events/privilege-management-workshop/PvM-Model-Survey-Aug26-2009.pdf
http://csrc.nist.gov/news_events/privilege-management-workshop/PvM-Model-Survey-Aug26-2009.pdf
http://csrc.nist.gov/news_events/privilege-management-workshop/PvM-Model-Survey-Aug26-2009.pdf
http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip
http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip

D1.2: Second Report on WP1 (Final) November 12, 2012

[PM12] Olga Pustovalova and Ugo Montanari. Constraint Logic Programming for Service-
Oriented Computing: A Case Study in Prova. Technical report, IMT Institute for
Advanced Studies Lucca, 2012. Available online at http://www.imtlucca.it/
olga.pustovalova.

[PT12] Rosario Pugliese and Francesco Tiezzi. SACPL: a Simple Access Control Policy Lan-
guage. Technical Report, September 2012. http://rap.dsi.unifi.it/scel/.

[SCC+12] Ian Sommerville, Dave Cliff, Radu Calinescu, Justin Keen, Tim Kelly, Marta Z.
Kwiatkowska, John A. McDermid, and Richard F. Paige. Large-scale complex it sys-
tems. Commun. ACM, 55(7):71–77, 2012.

[SGP11] Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. Context-oriented programming:
A programming paradigm for autonomic systems. CoRR, abs/1105.0069, 2011.

[SMB+12] Nikola Serbedzija, Mieke Massink, Manuele Brambilla, Diego Latella, Marco Dorigo,
and Mauro Birattari. Ensemble Model Syntheses with Robot, Cloud Computing and
e-Mobility. ASCENS Deliverable D7.2, October 2012.

[SR90] Vijay A. Saraswat and Martin Rinard. Concurrent constraint programming. In POPL,
page 232245. ACM Press, 1990.

[SRS10] Anu Singh, C. R. Ramakrishnan, and Scott A. Smolka. A process calculus for mobile
ad hoc networks. Sci. Comput. Program., 75(6):440–469, 2010.

[ST09] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and research
challenges. TAAS, 4(2), 2009.

[vL01] Axel van Lamsweerde. Goal-oriented requirements engineering: A guided tour, 2001.

[WSJ+10] Roy Want, Eve Schooler, Lenka Jelinek, Jaeyeon Jung, Dan Dahle, and Uttam Sen-
gupta. Ensemble computing: Opportunities and challenges. Intel Technology Journal,
14(1):118–141, 2010.

ASCENS 30

http://www.imtlucca.it/olga.pustovalova
http://www.imtlucca.it/olga.pustovalova
http://rap.dsi.unifi.it/scel/

	Introduction
	Relations with other WPs
	Structure of the Document

	SCEL: a refined version of the language
	jRESP: a Runtime Environment for SCEL Programs
	SACPL: a SCEL Access Control Policy Language
	ccSCEL: a SCEL Dialect for Concurrent Constraint Programming
	Towards High-level Design of SCEL-based Applications
	Related work
	Concluding Remarks and Work Plan for Year Three

