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Executive Summary

One of the main scientific contributions that we expect to achieve with ASCENS is related to Knowl-
edge Representation and Reasoning. Within the WP3’s mandate of the project, we are currently de-
veloping the KnowLang Framework that implies a notion for modeling knowledge and self-adaptive
behavior of ASCENS-like systems. In this second year of WP3, to maximize the impact of our work,
we focused on the research and development of KnowLang and a proper awareness mechanism. The
KnowLang specification model has gradually evolved over the last year to take a more mature shape.
This helped us to specify initial knowledge models for all three ASCENS case studies. In addition,
we started working on the KnowLang Reasoner and started implementing the KnowLang Toolset. An
important break-through is the KnowLang mechanism for self-adaptive behavior where knowledge
representation and reasoning help to establish the vital connection between knowledge, perception
and actions realizing self-adaptive behavior. To support this approach, we developed a KR mechanism
for self-adaptive behavior and started working on special ASK and TELL operators used by the system
to talk to the KnowLang Reasoner. Moreover, we developed a conceptual reference model for aware-
ness called ”Pyramid of Awareness” and outlined how this model can be realized with the KnowLang
Framework. Finally, to allow for knowledge representation of liveness properties, we started working
on a possible integration of soft constraints in KnowLang. Note that our work on KnowLang required
intensive collaboration with WP1, WP2, WP4 and WP7 and gradual integration of KnowLang with
SCEL and SOTA tackled by WP1 and WP4 respectively.
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1 Introduction

Contemporary computerized systems like autonomous robots may boast intrinsic intelligence that
helps them reason about situations where autonomous decision making is required. Robotic intelli-
gence mainly excels at formal logic, which allows it, for example, to find the right move from hundreds
of previous moves or by applying probability algorithms. The basic compound in this reasoning pro-
cess is appropriately structured knowledge used by embedded inference engines. The knowledge is
integrated in a system via knowledge representation techniques to build a computational model of the
operational domain in which symbols serve as knowledge surrogates for real world artefacts, such as
system’s components and functions, task details, environment objects, etc. The domain of interest
can cover any part of the real world or any hypothetical system about which one desires to represent
knowledge for computational purposes. Knowledge representation primitives such as rules, frames,
semantic networks, concept maps, ontologies, and logic expressions might be used to represent dis-
tinct pieces of knowledge that are worth being differently represented. Moreover, these primitives
might be combined into more complex knowledge elements. Whatever elements they use, engineers
must structure the knowledge so that the system can effectively process it and eventually derive its
own behavior.

1.1 Research Focus

One of the main scientific contributions that we expect to achieve with ASCENS is related to Knowl-
edge Representation and Reasoning (KR&R). Within the WP3’s mandate of the project, we are cur-
rently developing the KnowLang Framework that offers a notion for modeling knowledge and self-
adaptive behavior of ASCENS-like systems.

In this second year of WP3, without changing the overall goals of WP3, we reorganized the tasks
to maximize the impact of our work. Thus, we focused our Research and Development (R&D) on the
development of KnowLang and a proper awareness mechanism. Although still under development,
the KnowLang Specification Model has gradually evolved over the last year of the project by taking
a more mature shape. We used KnowLang to specify some initial knowledge models for all three
ASCENS case studies.

In addition, along with further development of the language theory and knowledge-specification
structures, we started working on the KnowLang Reasoner and started implementing the KnowLang
Toolset. An important break-through is the KnowLang mechanism for self-adaptive behavior where
knowledge representation and reasoning help to establish the vital connection between knowledge,
perception and actions realizing self-adaptive behavior. The knowledge is used against the perception
of the world to generate appropriate actions in compliance to some goals and beliefs.

To support this approach, we developed a KR mechanism for self-adaptive behavior and started
working on special ASK and TELL operators used by the system to talk to the KnowLang Reasoner.
We developed an initial operational semantics for these operators. Moreover, we developed a concep-
tual reference model for awareness called ”Pyramid of Awareness” and outlined how this model can
be realized with the KnowLang Framework.

In collaboration with WP2, to allow for knowledge representation of liveness properties, we started
working on a possible integration of soft constraints with KnowLang. Moreover, we started a gradual
integration of KnowLang with SCEL and SOTA, tackled by WP1 and WP4 respectively, and continued
working on the KR models for all three case studies supported by WP7.
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1.2 Tasks Shifting

As originally reported, there are four tasks to be completed in WP3. In the course of this second year,
by following the KnowLang’s trend of R&D, we had to focus the first three tasks more on KnowLang
as following:

• Task 1. This task is entirely dedicated to KnowLang now. So far, this task has been consuming
most of the R&D time of WP3 and is mainly focussed on KnowLang. As initially described,
the task also had to carry the development of knowledge models. This required focus shifting
and to avoid that we moved this development to Task 2.

• Task 2. Following the change in Task 1, Task 2 has been shifted towards creating basic KR Mod-
els for the ASCEN’s Case Studies. Along with the implementation of the language, we started
specifying basic KR models for all the three ASCENS case studies. The complexity of the prob-
lem stemming from the large diversity of the case studies and the R&D of KnowLang helped us
to realize that we need extra effort on that. Moreover, the so-called Generic Knowledge Models,
which were initially intended to be developed first, appeared to be better developed by merging
knowledge models of the ASCENS case studies.

• Task 3. This task is now dedicated to awareness and reasoning. The original task was more
general and was supposed to carry research and investigation on techniques for knowledge pro-
cessing and update. However, the narrowed R&D on KnowLang helped us to make this task
more focused and driven by Task 1. This task is currently tackling the problem of developing
the KnowLang Reasoner, capable of deducting self-adaptive behavior, along with the reference
model for self-awareness. A major part of the activities in the task shall be consolidated around
the special ASK and TELL operators introduced by KnowLang for communication with the
KnowLang Reasoner.

Note that, currently, Task 4 has no changes to carry out, and as shaped, all the tasks shall help us
better achieve the ultimate goals of WP3, i.e., to develop a KR method and reasoning mechanism for
self-awareness in ASCENS systems.

1.3 Relations with Other WPs

In this second year of the project, we started collaborating more intensively with WP1, WP2, WP4
and WP7. Note that our work on the KnowLang KR&R mechanism and awareness required strong
collaboration with WP1 and WP4 (see Section 6). Note that KnowLang provides a KR model of the
SCEL (tackled by WP1) knowledge base and the Knowlang Reasoner should be properly integrated
with SCEL (via the ASK and TELL operators). Considering WP4, KnowLang will be used to model
situations and self-adaptation policies determined with SOTA, the State Of The Affairs framework
tackled by WP4. Moreover, WP4 has compiled an extensive catalogue of adaptation patterns, which
we used to derive some self-adaptation scenarios for the marXbot case study.

In collaboration with WP2, we developed a theoretical model for integrating the so-called soft
constraints with KnowLang (see Section 5). The soft constraints for KnowLang are used as a KR
technique that will help designers impose constraining requirements for special liveness properties,
an approximation to our understanding of good-to-have properties. The approach associates tuples of
possible values held by special KnowLang variables with possible preferences.

WP7 provides vital experimental platforms for both the notation and toolset of KnowLang. Thus,
in collaboration with WP7, we used KnowLang to specify some initial knowledge models for all
three ASCENS case studies (see Section 3). The most explored case study from our side was the
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one of marXbot robotics platform. For this case study, along with the intensive specification of initial
knowledge models (ontologies, facts, rules and constraints), we also specified behavior models (al-
though still theoretical) and played scenarios with the same (see Section 2.4.2). For the other two case
studies, we specified initial knowledge models based on their case studies, which however, still need
further refinement at the level of detailed knowledge. For example, for the Science Cloud case study,
we developed an initial model for the SC ontology by specifying basic concept trees such as Science
Cloud Thing, Property, Quality and Information Structure. These concept trees represent the basic
concepts in the domain outlined by the Science Cloud SC terminology. For example, the Information
Structure concept tree hierarchically relates the basic concepts used to classify information-structuring
mechanisms such as File, Query, DB Table, List, Stack, Queue, etc. The main challenge with all these
knowledge models is to identify the right level of abstraction at which reasoning can provide for adap-
tation and self-awareness. Hence, our initial idea to construct ”generic knowledge models” first and
then derive from those the case-study-specific knowledge models turned around to take a shape where
the specific models will be developed first and the generic models will be derived by overlapping the
models for all three case studies.

1.4 Document Organization

The rest of this document is organized as follows. Section 2 covers in detail the current state of
the KnowLang Framework in terms of specification model, challenges, syntax, reasoner and toolset.
Section 3 presents KR models created with KnowLang for the ASCENS case studies. In Section 4,
we present our research on the Pyramid of Awareness and in Section 5, we discuss the integration of
soft constraints with KnowLang. Finally, to conclude the topic, in Section 6, we discuss the relation
of KnowLang with SCEL and SOTA and present a brief summary and future goals in Section 7.

2 KnowLang

KnowLang [VHng, VH12c, VHG12, VH12d, VH11, VH12a] is a framework for KR&R that aims
at efficient and comprehensive knowledge structuring and awareness based on logical and statistical
reasoning. It helps us to tackle 1) explicit representation of domain concepts and relationships; 2)
explicit representation of particular and general factual knowledge, in terms of predicates, names,
connectives, quantifiers and identity; and 3) uncertain knowledge in which additive probabilities are
used to represent degrees of belief. Other remarkable features are related to knowledge cleaning
(allowing for efficient reasoning) and knowledge representation for autonomic self-adaptive behavior.
Knowledge specified with KnowLang takes the form of a Knowledge Base (KB) that outlines a KR
context. A special KnowLang Reasoner operates in this context to allow for knowledge querying and
update. In addition, the reasoner can infer special self-adaptive behavior.

2.1 Specification Model

At its very core, KnowLang is a formal specification language providing a comprehensive specifica-
tion model aiming at addressing the knowledge representation problem for ASCENS-like systems.
The complexity of the problem necessitated the use of a specification model (inspired by the ASSL’s
specification model [Vas09]) where knowledge can be presented at different levels of abstraction and
grouped by following both hierarchical and functional patterns. KnowLang imposes a multi-tier spec-
ification model (see Figure 1), where we specify a KB composed of layers dedicated to knowledge
corpuses, KB (knowledge base) operators and inference primitives.
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Figure 1: KnowLang Specification Model

Definitions 1 through 58 outline a BNF-like [Knu64] formal representation of the KnowLang
Specification Model. As shown in Definition 1, a Knowledge Base is a tuple of three main knowl-
edge components - knowledge corpus (Kc), KB operators (Op) and inference primitives (Ip). A
Kc is a tuple of three knowledge components - ontologies (O), contexts (Cx) and logical framework
(Lf ) (see Definition 2). Further, a domain ontology is composed of hierarchically organized sets
of meta-concepts (Cm), concept trees (Ct), object trees (Ot), relations (R) and predicates (V ) (see
Definition 4). Note that the trees in our model (e.g., concept trees, object trees, etc.) can be direct
acyclic graphs. Moreover, note that in the definitions below we denote a finite set of elements El
with {el1, el2, ...., eln}, n ≥ 0 where by omitting el0 we allow an empty set, e.g., see the definition of
meta-concepts (Cm) 5.

Meta-concepts (Cm) provide a context-oriented interpretation (i) (see Definition 6) of concepts
and might be optionally associated with specific contexts (the square brackets ”[]” mean ”optional”).
Meta-concepts help ontologies to be viewed from different context perspectives by establishing differ-
ent meanings for some of the key concepts. This is a powerful construct providing for interpretations
of a concept and its derived concept tree depending on the current context. Concept trees (Ct) con-
sist of semantically related concepts (C) and/or explicit concepts (Ce). Every concept tree (ct) has a
root concept (tr) because the architecture ultimately must reference a single concept that is the con-
nection point to concepts that are outside the concept tree. A root concept may optionally inherit a
meta-concept, which is denoted [tr � cm] (see Definition 8) where ”�” is the inherits relation. Every
concept has a set of properties (P ) and optional sets of functionalities (F ), parent concepts (Pr) and
children concepts (Ch) (see Definition 10). Explicit concepts are concepts that must be presented in
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the KB of the system. Explicit concepts are mainly intended to support 1) the autonomic behavior of
the SCs; and 2) distributed reasoning and knowledge sharing among the SC of a SCE systems. These
concepts might be goals (G), errors (Er), metrics (M ), policies (Π), events (E), actions (A), situa-
tions (Si) and groups (Gr) (see Definition 13), i.e., they allow for quantification over such concepts.

FORMAL REPRESENTATION OF KNOWLANG

Def. 1 Kb :=< Kc,Op, Ip > (Knowledge Base)

Def. 2 Kc :=< O,Cx,Lf > (Knowledge Corpus)

DOMAIN ONTOLOGIES

Def. 3 O := {osc, osce, oenv, osi} (Domain Ontologies)

Def. 4 o :=< Cm,Ct,Ot,R,D >, o ∈ O (Domain Ontology)

Def. 5 Cm := {cm1, cm2, ...., cmn}, n ≥ 0 (Meta-concepts)

Def. 6 cm :=< [cx], i >, i ∈ Icx (Meta-concept, cx - Context, i - Interpretation)

Def. 7 Ct := {ct1, ct2, ...., ctn}, n ≥ 0 (Concept Trees)

Def. 8 ct :=< tr, C, [Ce] > (Concept Tree)
tr ∈ (C ∪ Ce), [tr � cm] (tr - Tree Root)

Def. 9 C := {c1, c2, ...., cn}, n ≥ 0 (Concepts)

Def. 10 c :=< P, [F ], [S], [Pr], [Ch] > (Concept)
Pr ⊂ (C ∪ Ce), c � Pr (Pr - Parents)
Ch ⊂ (C ∪ Ce), Ch � c (Ch - Children)

Def. 11 P := {p1, p2, ...., pn}, n ≥ 0 (Properties)

Def. 12 F := {f1, f2, ...., fn}, n ≥ 0 (Functionalities)

Def. 13 Ce := G
⋃
Er

⋃
M

⋃
Π
⋃
E
⋃
A
⋃
Si

⋃
Gr (Explicit Concepts)

Errors (Er) are explicit concepts representing the space of errors that can occur in the system. An
error (er) is specified with error information (ier) and an optional set of erroneous actions (Aer) that
could be considered as eventual sources of error (see Definition 15). Error occurrence can cause a
state transition (see Definition 22). Metrics (M ) are explicit concepts providing a prognostic space of
valuable information that can be gathered from the environment or from the system itself. A metric
(m) is specified with a metric source (srm) and data (dm)(see Definition 17). The metric source may
eventually represent a system sensor used to monitor the environment.

Def. 14 Er := {er1, er2, ...., ern}, n ≥ 0 (Errors)

Def. 15 er :=< ier, [Aer] > (Error)
Aer ⊂ A (Aer - Erroneous Actions)
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Def. 16 M := {m1,m2, ....,mn}, n ≥ 0 (Metrics)

Def. 17 m :=< srm, dm > (Metric)(srm - Metric Source, dm - Metric Data)

The KnowLang policies (Π) drive the autonomic behavior of the system. A policy π has a goal (g),
policy situations (Siπ), policy-situation relations (Rπ), and policy conditions (Nπ) mapped to policy
actions (Aπ) where the evaluation of Nπ may eventually (with some degree of probability) imply the

evaluation of actions (denoted with Nπ
[Z]→ Aπ) (see Definition 19).

A condition is a Boolean expression over ontology (see Definition 21), e.g., the occurrence of
a certain event. Policy situations Siπ are situations (see Definition 25) that may trigger (or imply)

a policy π, in compliance with the policy-situations relations Rπ(denoted with Siπ
[Rπ ]→ π), thus

implying the evaluation of the policy conditions Nπ(denoted with π → Nπ)(see Definition 19). A
policy may comprise optional policy-situation relations (Rπ) justifying the relationships between a
policy and the associated situations. The presence of probabilistic beliefs in both mappings and policy
relations justifies the probability of policy execution, which may vary with time. Note that Section
2.4.2 discusses in detail how the KR of policies, situations and relations provides for self-adaptive
behavior.

A goal g is a desirable transition (⇒) to a state or a transition from a specific state to another
state (denoted with s ⇒ s′) (see Definition 22). The system may transit (⇒) to a state (s) when the
properties (P ) of an object (ob) are updated (denoted TELL�ob.P ), the properties of a set of objects
are updated, or some errors or events have occurred or actions have been realized in the system or in
the environment (denoted with TELL � Ers, TELL � Es and TELL � As) (see Definition 22).
Note that TELL is a KB Operator involving knowledge inference (see Section 2.4.1). In KnowLang,
a state s is a Boolean expression over ontology (be(O))(see Definition 23), e.g., ”a specific property
of an object must hold a specific value”.

A situation is expressed with a state (s), a history of actions (A ←
si) (actions executed to get to

state s), actions Asi that can be performed from state s and an optional history of events E ←
si that

eventually occurred to get to state s (see Definition 25).

Def. 18 Π := {π1, π2, ...., πn}, n ≥ 0 (Policies)

Def. 19 π :=< g, Siπ, [Rπ], Nπ, Aπ,map(Nπ, Aπ, [Z]) > (Policy)

Aπ ⊂ A,Nπ
[Z]→ Aπ (Aπ - Policy Actions)

Siπ ⊂ Si, Siπ := {siπ1 , siπ2 , ...., siπn}, n ≥ 0 (Siπ - Policy Situations)
Rπ ⊂ R,Rπ := {rπ1 , rπ2 , ...., rπn}, n ≥ 0 (Rπ-Policy-Situation Relations)
∀rπ ∈ Rπ • (rπ :=< siπ, [rn], [Z], π >) , siπ ∈ Siπ
Siπ

[Rπ ]→ π → Nπ (Policy situations may imply the policy they are related to)

Def. 20 Nπ := {n1, n2, ...., nk}, k ≥ 0 (Policy Conditions)

Def. 21 n := be(O) (Condition - Boolean Expression over Ontology)

Def. 22 g := 〈⇒ s′〉|〈s⇒ s′〉 (Goal)
⇒ s := 〈TELL� ob.P 〉|〈TELL� {ob0.P, ob1.P, ...., obn.P}〉|〈TELL� Ers〉|

〈TELL� Es〉|〈TELL�As〉 (State Transition)
Ers ⊂ Er, Es ⊂ E, As ⊂ A (Ers - State Errors, Es - State Events, As - State Actions)

Def. 23 s := be(O) (State - Boolean Expression over Ontology)
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Def. 24 Si := {si1, si2, ...., sin}, n ≥ 0 (Situations)

Def. 25 si :=< s,A
←
si , [E

←
si ], Asi > (Situation)

A
←
si⊂ A (A ←si - Executed Actions)

Asi ⊂ A (Asi - Possible Actions)
E
←
si⊂ E (E ←si - Situation Events)

KnowLang events (E) are a means of high-priority monitoring and messaging. In general, an event
(see Definition 27) can be activated (raised) by a variety of factors such as time (te), goals (Ge), metrics
(Me), errors (Ere), actions (Ae) and even other events (Ee). A special guard (gde), represented as a
Boolean expression over ontology (see Definition 28), may restrict the event activation. Events may
participate in Boolean expressions or be used to specify event-driven policies, goals, situations, etc.

In KnowLang, actions are activities (routines) that can be performed by the system. Actions
must be implemented by the system and with KR we represent an abstraction (counterparts) of the
routines and classes used to implement these actions. Therefore, an action concept must refer to real
implementation. From KR perspective, an action a is a tuple of optional pre- (rca), and post-conditions
(pca), a set of parameters (Pma), output (rna) and errors (Era) that can be raised by the action (see
Definition 30).

Def. 26 E := {e1, e2, ...., en}, n ≥ 0 (Events)

Def. 27 e :=< [gde], activ > (Event)
activ := te|Ge|Me|Ere|Ae|Ee (Activation Factor)
Ge ⊂ G,Me ⊂M,Ere ⊂ Er,Ae ⊂ A,Ee ⊂ E

Def. 28 gde := be(O) (Event Guard)

Def. 29 A := {a1, a2, ...., an}, n ≥ 0 (Actions)

Def. 30 a :=< [rca], [pca], [Pma], [rna], [Era] > (Action)

A group (gr) involves objects (Obgr) related to each other through a distinct set of relations (Rgr)(see
Definition 32). Note that groups (G) are explicit concepts intended to (but not restricted to) represent
knowledge about the structure of the system.

Object trees (Ot) are conceptualization of how objects existing in the world of interest are related
to each other. The relationships are based on the principle that objects have properties, where some-
times the value of a property is another object, which in turn also has properties. Such properties are
termed object properties (Pb). An object tree (ot) consists of a root object (ob) and an optional set of
object properties (Pb) - sub-trees of objects (see Definitions 34 and 36). An object (ob) is an instance
of a concept (denoted as instof(c) - see Definition 35) and inherits that concept’s properties.

Def. 31 Gr := {gr1, gr2, ...., grn}, n ≥ 0 (Groups)

Def. 32 gr :=< Obgr, Rgr > (Group)
Obgr ⊂ Ob,Rgr ⊂ R (Obgr-Group Objects, Ob - Objects, Rgr-Group Relations)

Def. 33 Ot := {ot1, ot2, ...., otn}, n ≥ 0 (Object Trees)

Def. 34 ot :=< ob, [Pb] > (Object Tree)

Def. 35 ob := instof(c), ob ∈ Ob, c ∈ C (Object)
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Def. 36 Pb := {ot1, ot2, ...., otn}, n ≥ 0 (Object Properties - sub-trees of objects)

Relations (R) connect two concepts (including predicates V ), two objects, or an object with a concept
and may have probability distribution Z (e.g., over time, over situations, over concepts’ properties,
etc.) (see Definition 38). A relation has an optional name, i.e., when the name is missing we have
the implication relation. Probability distribution is provided to support probabilistic reasoning. By
specifying relations with probability distributions we actually specify Bayesian Networks [Nea03]
connecting the concepts and objects of an ontology. Note that KnowLang considers binary relations
only, but there could be multiple relations relating the same concepts/objects.

Def. 37 R := {r1, r2, ...., rn}, n ≥ 0 (Relations)

Def. 38 r :=< rek, [rn], [Z], ren > (Relation, re - Relation Entity, Z - Probability Distribution)
re ∈ C

⋃
Ob

⋃
V (C - Concepts, Ob - Objects, V - Predicates)

Def. 39 V := {v1, v2, ...., vn}, n ≥ 0 (Predicates)

Def. 40 v :=< Cv, Sv, be(O) > (Predicate)
Cv ⊂ C, Sv ⊂ S (Cv - Predicate’s Concepts, Sv - Predicate’s States)

Predicates (V ) are special KR structures that specify distinct inter-state relations or schemes for eval-
uation of complex states. For example, we can specify a predicate that verifies if the Motion System
of a robot is operational. A predicate might be used by the KnowLang Reasoner to check whether an
object (or the entire system) is in a specific state. Thus, a predicate (v) formally can be presented as
tuple of predicate concepts (Cv), predicate states (Sv) and a Boolean expression over ontology (be(O))
that determines what conditions must hold to conclude that the predicate states are ”active” (occupied)
(see Definition 40.

KNOWLANG CONTEXTS

Def. 41 Cx := {cx1, cx2, ...., cxn}, n ≥ 0 (Contexts)

Def. 42 cx :=< At, [Icx] > (Context)

Def. 43 At := {at1, at2, ...., atn}, n ≥ 0 (Ambient Trees)

Def. 44 at :=< ct, Ca, [i] > (Ambient Tree)
ct ∈ Ct (Concept Tree hosted by an ontology)
Ca ⊂ C (Ca - Ambient Concepts)
i ⊂ Icx (i-Ambient Tree Interpretation)

Def. 45 Icx := {i1, i2, ...., in}, n ≥ 0 (Context Interpretations)

Contexts Cx are intended to extract the relevant knowledge from an ontology. Moreover, contexts
carry interpretation for some of the meta-concepts (see Definition 42), which may lead to new inter-
pretation of the descendant concepts (derived from a meta-concept - see Definition 8). We consider a
very broad notion of context, e.g., the environment in a fraction of time or a generic situation such as
currently-ongoing system action (e.g., observing or listening). Thus, a context must emphasize the key
concepts in an ontology, which helps the inference mechanism narrow the domain knowledge (domain
ontology) by exploring the concept trees down only to the emphasized key concepts.
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Depending on the context, some low-level concepts might be subsumed by their upper-level parent
concepts, just because the former are not relevant for that very context. For example, a robot wheel can
be considered as a thing or as an important part of the robot’s motion system. As a result, the context
interpretation of knowledge will help the system deal with ”clean” knowledge and the reasoning will
be more efficient. A context (cx) consists of ambient trees (At) and optional context interpretations
(Icx) (see Definition 42). An ambient tree (at) refers to a concept tree (ct) described by an ontology
(o) and carries ambient concepts (Ca), part of the concept tree, and optional context interpretation (i).

The ambient concepts (see Definition 44) explicitly determine new level of deepness for their orig-
inal concept tree, i.e., ambient concepts subsume all of their child concepts (if any). As result, when
the system reasons about a particular context (expressed with ambient trees), the reasoning process
does not consider those child concepts, but their ambient parents, which are far more generic, and thus
less detailed. This technique reduces the size of the relevant knowledge, by temporarily removing
from the concept trees all the ambient concepts’ children (descendant concepts). We may think about
ambient trees as filters the system applies at runtime to reduce the visibility of concepts of a concept
tree. Note that this technique has been further developed in [VH12b].

KNOWLANG LOGICAL FRAMEWORK

Def. 46 Lf :=< Fa,Rl, Ct > (Logical Framework)

Def. 47 Fa := {fa1, fa2, ...., fan}, n ≥ 0 (Facts)

Def. 48 fa := be(O)→ T (Fact - True statement over ontology)

Def. 49 Rl := {rl1, rl2, ...., rln}, n ≥ 0 (Rules)

Def. 50 rl :=< be(O), do(Arl) > | < be(O), do(Vrl) > (Rule)
Arl ⊂ A, Vrl ⊂ V (Arl - Rule’s Actions, Vrl - Rule’s Predicates)

Def. 51 Ct := {ct1, ct2, ...., ctn}, n ≥ 0 (Constraints)

Def. 52 ct := be(O) (Constraint)

The KnowLang Logical Framework helps developers realize the explicit representation of particu-
lar and general factual knowledge, in terms of additional rule-based predicates, names, connectives,
quantifiers and identity. The Logical Framework (Lf ) is composed of facts (Fa), rules (Rl) and con-
straints (Ct) (see Definition 46). Note that Lf’s KR structures must be specified with ontology terms,
i.e., predefined concepts, objects, predicates and relations. Facts define true statements in the ontolo-
gies (O) by applying Boolean expressions over ontology (see Definition 48). Rules relate hypotheses
to conclusions where the former are expressed as Boolean expressions over ontology and the latter
decide what actions to be performed or predicates to be enforced (see Definitions 50). A constraint is
a Boolean expressions over ontology (see Definitions 52), e.g., constraints might negate the execution
of particular actions or forbid the application of particular predicates. Constraints might be used to
enforce knowledge consistency.

ASCENS KNOWLEDGE BASE OPERATORS

Def. 53 Op :=< Ask, Tell, Oop > (Knowledge Base Operators)

Def. 54 Ask := retrieve(Kc)→ Ip�Kc (query knowledge base)
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Def. 55 Tell := update(Kc)→ Ip�Kc (update knowledge base)

Def. 56 Oop := fo(Oi)→ Ip�Kc, Oi ⊂ O (Inter-ontology Operators )

ASCENS INFERENCE PRIMITIVES

Def. 57 Ip := {ip1, ip2, ...., ipn}, n ≥ 0 (Inference Primitives)

Def. 58 ip := impl(FOL)|impl(FOPL)|impl(DL) (Inference Primitive)

The Knowledge Base Operators (Op) can be grouped into three groups: ASK Operators (retrieve
knowledge from KBs), TELL Operators (update KB) and Inter-Ontology Operators (Oop) are in-
tended to work on one or more ontologies (specified as a function fo(Oi) over ontologies (Oi)) (see
Definitions 53 through 56). The Inter-Ontology Operators are still under development, but overall they
can be related to operations like merging, mapping, alignment, etc. Note that all the Knowledge Base
Operators (Op) may imply the use of inference primitives (Ip).

The Inference Primitives (Ip) (see Definition 58) are algorithms for reasoning and knowledge
inference needed by the KnowLang Reasoner. These primitives are implementation (denoted with
impl in Definition 58) of reasoning algorithms based on First Order Logic (FOL) [BL04] (and its
extensions), First Order Probabilistic Logic (FOPL) [Hal90] and Description Logics (DL)[BN03].
FOPL increases the power of FOL by allowing us to assert in a natural way ”likely” features of objects
and concepts via a probability distribution over the possibilities that we envision. Having logics with
semantics gives us a notion of deductive entailment. Note that these algorithms together with the
appropriate reasoning engines shall help the KnowLang Reasoner to query and update KB.

2.2 Meeting the Challenges

Both the KnowLang Specification Model and KnowLang Reasoner have been developed by taking
into consideration some explicit challenges comprehensively described in our publications [VH12c,
VHG12, VHG+11].

2.2.1 Encoded versus Represented Knowledge

Developers may encode a large part of the ”a priori” knowledge (knowledge given to the system
before the latter actually runs) in the implemented classes and routines. In such a case, the knowledge-
represented pieces of knowledge (e.g., concepts, relations, rules, etc.) may complement the knowledge
codified into implemented program classes and routines. For example, KnowLang actions could be
based on classes and methods and a substantial concern about the KR of such actions is how to relate
the knowledge expressed with actions to implemented methods and functions. A possible solution is
to map KR concepts and objects to program classes and objects respectively.

To properly represent the program implementation (classes, methods, etc.) in the KB, all the
concepts and objects have an IMPL Property that relates a KnowLang structure to its program coun-
terpart, if any. For example, a KnowLang concept might be specified with an IMPL property to link
the concept to a program class or method. The following is the grammar definition supporting that
[Vas12c].

Concept-Impl := IMPL { Impl-Reference }
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2.2.2 States, Situations, Goals and Policies

A big challenge is ”how to express situations and reason about the same”. Situations trigger self-
adaptive behavior (see Section 2.4.2) and it is very important to allow the reasoner to recognize them.
To support this approach, KnowLang has introduced the STATE explicit concepts (see Definiton 23
in Section 2.1). This helps each KnowLang concept to be specified with a set of important states the
concept instances can be in. Thus, we explicitly specify a variety of states for important concepts (e.g.,
states ”operational” and ”non-operational” for the robot’s Motion System). A KnowLang state is spec-
ified as a Boolean expression over ontology where we can use activation of events, execution of actions
or changes in properties to build a state’s Boolean expression [Vas12c]. Further, to facilitate the eval-
uation of complex states, we specify PREDICATES (see Definition 40 in Section 2.1). Complex states
(e.g., system states) are the product of other states (e.g., the states of the system’s components). States
(usually system states) are also used to specify GOALS, another class of KnowLang explicit concepts
(see Definition 22 in Section 2.1). Goals participate in the specification of KnowLang policies. A goal
can be specified as a transition from a state to another. Recall that policies and situations participate in
KnowLang relations (see Definition 19 in Section 2.1) that drive the self-adaptive behavior (see Sec-
tion 2.4.2). Therefore, because every situation is explicitly related to a state (a situation is determined
by a state), it is relatively easy to check for the feasibility of a policy triggered by a specific situation,
i.e., the policy’s goal must have the same departing state as the situation’s state.

2.2.3 Converting Sensory Data to KR Symbols

One of the biggest challenges is ”how to map sensory raw data to KR symbols”. Our approach to
this problem is to specify special explicit concepts called METRICS (see Definition 17 in Section 2.1).
In general, a SCE system has sensors that connect it to the world and eventually help it to listen to
its internal components. These sensors generate raw data that represent the physical characteristics
of the world. The problem is that these low-level data streams must be: 1) converted to program-
ming variables or more complex data structures that represent collections of sensory data; 2) those
programing data structures must be labeled with KR Symbols. Hence, it is required to relate encoded
data structures with KR concepts and objects used for reasoning purposes. In our approach, we as-
sume that each sensor is controlled by a software driver (e.g., specified in SCEL and implemented in
Java) where appropriate methods are used to control the sensor and read data from it. Both the sensory
data and sensors should be represented in the KB by using METRIC explicit concepts and instantiate
objects of these concepts. By specifying a METRIC concept we introduce a class of sensors to the KB
and by specifying objects, instances of that class, we give the actual KR of a real sensor. KnowLang
allows the specification of four different types of metrics [Vas12c]:

• RESOURCE - measure SC resources like capacity;

• QUALITY - measure SC qualities like performance, response time, etc.;

• ENVIRONMENT - measure environment qualities and resources;

• ENSEMBLE - measure SCE qualities and resource; might be a function of multiple SC metrics
both of RESOURCE and QUALITY type.

2.3 KnowLang Syntax

We used the Backus-Naur Form (BNF) notation [Knu64] to describe the syntax of the language and
formally specify the KnowLang Grammar [Vas12c]. This helps the KnowLang framework to process
sentences written in the KnowLang language. BNF [Knu64] is a powerful meta-language that allows
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a context-free grammar specification. A partial presentation of the KnowLang Grammar in BNF is the
following [Vas12c]:
KL-Spec := bof Knowledge-Spec eof
Knowledge-Spec := Spec-References KL-Spec-Units
Knowledge-Spec := KL-Spec-Units
KL-Spec-Units := KL-Corpuses KL-Operators Inference-Primitives
....
KL-Spec-Units := KL-Corpuses
KL-Spec-Units := KL-Operators
KL-Spec-Units := Inference-Primitives

As shown, the full KnowLang context-free grammar specification is obtained by the reduction of the
(KL-Spec -> bof Knowledge-Spec eof ) rule, which determines that a KB specified with KnowLang
consists of specification units, each formed by a combination of knowledge corpuses, KB operators
and inference primitives. Due to the complex structure of the KnowLang specification model (see
Section 2.1) where each tier has its own structure, the complete KnowLang Grammar’s specification
cannot be presented here (please refer to [Vas12c] for the full KnowLang Grammar in BNF). Instead,
we present an abstraction of the KnowLang Grammar, i.e., a meta-grammar. The following is a generic
meta-grammar in Extended BNF [Knu64] presenting the syntax rules for specifying KnowLang tiers.
GroupTier := FINAL? GroupTierId { Tier+ }
Tier := FINAL? TierId TierName? { TierClause+ }
TierClause := FINAL? ClauseId ClauseName? { Data* }
Data := PredefType | ConceptNames | BlnExpr | Reference | Number
ConceptNames := ConceptName [,ConceptName]*

As shown, in general a KnowLang tier is syntactically specified with a tier identifier (predefined
KnowLang name), an optional name and a content block bordered by curly braces. Moreover, we
distinguish two syntactical tier types: single tiers (Tier) and group tiers (GroupT ier) where the
latter comprise a set of single tiers. Each single tier has an optional name (TierName) and comprises
a set of tier clauses (TierClause), which are composed of a clause identifier, an optional clause name
and optional data (Data). The latter presents a predefined KnowLang type (e.g., METRIC type), a
collection of names (e.g., concept names or objects names), a Boolean expression over ontology, an
implementation reference (e.g., IMPL{Sensors.LightSensor.getSourceAngle()}) or a number.
Note that identifiers participating in KnowLang expressions are either simple, consisting of a single
identifier, or qualified, consisting of a sequence of identifiers separated by ”.” tokens. Identifiers could
be concept names, object names, relation names, predicate names, property names or function names,
and it is important to specify them with their qualified name, e.g., pointing where a concept resides in
a concept tree. When we use ”..” token, we let the KnowLang Reasoner find the specified identifier
presuming it is unique in the current tree.

2.4 KnowLang Reasoner

A very challenging task in WP3 is the R&D of the inference mechanism providing for knowledge
reasoning and awareness. As described in the first deliverable of WP3 [VHG+11], the initial strategy
was to use high-order inference engines based on FOL and DLs and driven by the inference primitives
defined by KnowLang (see Definition 58 in Section 2.1). However, in order to support reasoning
about self-adaptive behavior and to provide a KR gateway for the ASK and TELL Operators (see
Definitions 53 through 56 in Section 2.1), in this second year of the project, we started working on
a distinct KnowLang Reasoner. The reasoner communicates with the system via ASK and TELL
Operators (forming a communication interface) and operates in the KR Context, a context formed by
the represented knowledge (See Figure 2).

The KnowLang Reasoner will be supplied as a component hosted by the ASCENS system and
thus, it will run in the system’s Operational Context as any other system’s component. However, it
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Figure 2: KnowLang Reasoner

operates in the KR Context and on the KR symbols (represented knowledge). The system talks to the
reasoner via the ASK and TELL Operators allowing for knowledge queries and knowledge updates
(See Figure 2). Upon demand, the KnowLang Reasoner can also build up and return a self-adaptive
behavior model consisting of a chain of actions to be realized in the environment or within the system.

2.4.1 ASK and TELL Operators

In this second year of the project, we started working on a predefined set of ASK and TELL Operators
for KnowLang. TELL Operators feed the KR Context with important information driven by errors,
executed actions, new sensory data, etc., thus helping the KnowLang Reasoner to update the KR with
recent changes in both the system and execution environment. The system uses ASK Operators to re-
ceive recommended behavior where knowledge is used against the perception of the world to generate
appropriate actions in compliance to some goals and beliefs. In addition, ASK Operators may provide
the system with awareness-based conclusions about the current state of the system or the environment
and ideally with behavior models for self-adaptation. The following presents generic algorithms of
how both classes of KB Operators operate with knowledge.

TELL Algorithm

1. The system tells the KnowLang Reasoner about errors, sensory data, execution of actions or
actual updates.

2. The KnowLang Reasoner switches to the KR Context and maps the input to KR symbols.

3. The KnowLang Reasoner updates the KB, e.g., updates concepts / objects or adds new concepts
/ objects and changes states.

ASK Algorithm

1. The system asks for a self-adaptive behavior, rule-based behavior, current state or current situa-
tion.

2. The KnowLang Reasoner switches to the KR Context and maps the input to KR symbols.

3. The KnowLang Reasoner processes the query to get behavior actions or retrieve information
and eventually updates the KB.
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4. The KnowLang Reasoner builds the output and returns the result to the system.

So far, we have developed the operational semantics of the following TELL and ASK Operators
[Vas12d]:

• TELL ERR - tells about a raised error;

• TELL SENSOR - tells about new data collected by a sensor;

• TELL ACTION - tells about action execution;

• TELL ACTION (behavior) - tells about action execution as part of behavior performance;

• TELL OBJ UPDATE - tells about a possible object update;

• TELL CNCPT UPDATE - tells about a possible concept update;

• ASK BEHAV IOR - asks for self-adaptive behavior considering the current situation;

• ASK BEHAV IOR(goal) - asks for self-adaptive behavior to achieve certain goal;

• ASK BEHAV IOR(situation, goal) - asks for self-adaptive behavior to achieve certain goal
when departing from a specific situation;

• ASK BEHAV IOR(state) - asks for self-adaptive behavior to go to a certain state;

• ASK RULE BEHAV IOR(conditions) - asks for rule-based behavior;

• ASK CURR STATE(object) - asks for the current state of an object;

• ASK CURR STATE - asks for the current system state;

• ASK CURR SITUATION - asks for the current situation.

The rest of this section is a brief presentation of the operational semantics of two KB Operators.

Operational Semantics of the TELL SENSOR Operator.

TELL SENSOR Operator is used by the system to tell the KnowLang Reasoner about new sensory
data, i.e., data obtained by one of the system’s sensors, e.g., light sensor, microphone, etc. In order
to update the KB with the recent sensory data, the system passes it through the TELL SENSOR
Operator along with the data source, i.e., the program object, class and/or method implementing that
sensor. The following rules reveal the operational semantics of the TELL SENSOR Operator. Note
that in the definitions below, σ states for the system Operational Context (OC) and σ′ states for the
system KR Context (KRC). Moreover, for clarity reasons (to show that the system stays in KRC while
the KnowLang Reasoner is operating within it), we do not show the change in KRC after updates have
been made in that context.

(1) σ
tell sensor(d,s)−−−−−−−−−→σ′

〈TELL SENSOR(d,s),σ′〉−→〈findMetricConcept(s),σ′〉 d-data, s-source

(2)σ
tell sensor(d,s)−−−−−−−−−→σ′〈findMetricConcept(s),σ′〉−→〈c,σ′〉

〈findMetricObject(c,s),σ′〉−→〈om,σ′〉 c-metric concept, om-metric object
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(3)σ
tell sensor(d,s)−−−−−−−−−→σ′〈findMetricObject(c,s),σ′〉−→〈om,σ′〉

〈update(om,d),σ′〉−→〈o′m,σ′〉
o′m-updated metric object

(4) 〈update(om,d),σ
′〉−→〈o′m,σ′〉〈findMetricEvents(o′m),σ′〉−→〈Em,σ′〉
∀em∈Em•〈fireEvent(em),σ′〉−→〈oe,σ′〉 oe-event instance (fired event)

(5) 〈fireEvent(e),σ
′〉−→〈oe,σ′〉〈findDependedObjects(e),σ′〉−→〈Od,σ′〉

∀od∈Od•〈setCurrentState(od,e),σ′〉−→〈od.STATE,σ′〉

(6) 〈fireEvent(e),σ
′〉−→〈oe,σ′〉∀od∈Od•〈setCurrentState(od,e),σ′〉−→〈od.STATE,σ′〉

〈findCurrentSituation(),σ′〉−→〈si,σ′〉

(7) 〈fireEvent(e),σ
′〉−→〈oe,σ′〉〈findCurrentSituation(),σ′〉−→〈si,σ′〉

〈recordEventHistory(oe,si),σ′〉−→〈e←si ,σ′〉

As shown in Rule 1, the call of the tell sensor() function (a method implementing the system call

of the TELL SENSOR Operator) triggers a context switching σ
tell sensor(d,s)−−−−−−−−−→ σ′, i.e., the process

control is passed to the KnowLang Reasoner, which operates in the KRC only. Further, this context
switching initiates an internal for KRC call of the TELL SENSOR Operator, which triggers the
retrieval of the metric concept specified in the KB to represent the sensor’s class implemented in the
program. The findMetricConcept(s) function is used to denote the execution of a traversal algo-
rithm that finds a metric concept by an IMPL reference string (s carries information about the sensor
implementation, e.g., a class). Then, if the metric concept has been successfully found, the reasoner
looks up the concept instance representing the sensor’s object in the program implementation (denoted
in Rule 2 with the findMetricObject(c, s) function). If the concept instance is successfully found,
then the reasoner updates that instance accordingly (denoted in Rule 3 with the update(om, d) func-
tion). Next, the reasoner looks up and fires all the events specified to be activated by a change in this
specific metric (see Rule 4 and the abstract functions findMetricEvents(o′m) and fireEvent(em)
respectively). Note that KnowLang events can be specified to be activated by a data change in specific
metrics. The following fragment of the KnowLang Grammar [Vas12c] demonstrates that:

Event-Activ-Fact := CHANGED { Metric-Name }

When an event is fired, actually the reasoner creates a new event instance (event object) in the KRC.
Further, the reasoner looks up all the concept instances whose states depend on the existence of that
event (see Rule 5 and abstract function findDependedObjects(e)). Recall that states in KnowLang
are expressed as Boolean expression over ontology (see Section 2.2.2). The occurrence of an event
can be used within such expressions and thus, events can be used to specify states. The following are
fragments of the KnowLang Grammar [Vas12c] demonstrating that:

State-Body := Bln-Expr

Bln-Reln := OCCURRED ( Event-Name )

Therefore, in order to keep the KB consistent, every time when an event is fired in the KRC, the
KnowLang Reasoner finds the objects (concept instances) whose states depend on that event and sets
their states accordingly (denoted in Rule 5 with setCurrentState(od, e)). As shown in Rule 6, once
all the objects have been updated accordingly, the reasoner looks up the new situation in regards to
the global state change (denoted in Rule 6 with findCurrentSituation()). Finally, the fired event is
recorded in the event history of the current situation (see Definition 25 in Section 2.1).

Operational Semantics of ASK BEHAV IOR Operator.

ASK BEHAVIOR Operator is used by the system to ask the KnowLang Reasoner for self-adaptive
behavior considering the current situation the system is in. The following rules reveal the operational

ASCENS 19



D3.2: Second Report on WP3 (Final) November 12, 2012

semantics of the ASK BEHAVIOR Operator. Again, σ states for OC and σ′ states for KRC. Also,
again for clarity reasons, we do not show the change in KRC after updates have been made in that
context.

(8) σ
ask behavior()−−−−−−−−−→σ′

〈ASK BEHAV IOR,σ′〉−→〈findCurrentSituation(),σ′〉

(9)σ
ask behavior()−−−−−−−−−→σ′〈findCurrentSituation(),σ′〉−→〈si,σ′〉

〈findSitnPolcyRltns(si),σ′〉−→〈Rsi,σ′〉

(10)σ
ask behavior()−−−−−−−−−→σ′〈findSitnPolcyRltns(si),σ′〉−→〈Rsi,σ′〉

〈max(Rsi),σ′〉−→〈πsi,σ′〉 probability distribution determines πsi

(11) 〈π, σ′〉 −→ 〈applyPolicy(π), σ′〉 evaluate policy π in context σ′

(12) 〈πsi,σ
′〉−→〈applyPolicy(πsi),σ′〉∀nπ∈Nπ•〈nπ ,σ′〉−→〈TRUE,σ′〉

〈map(πsi,Nπ ,Aπ ,Z),σ′〉−→〈<A′π ,Z′>,σ′〉
A′π ⊆ Aπ

(13) 〈πsi,σ
′〉−→〈applyPolicy(πsi),σ′〉〈map(πsi,Nπ ,Aπ ,Z),σ′〉−→〈<A′π ,Z′>,σ′〉〈max(Z′),σ′〉−→〈z,σ′〉

〈getProbableActions(<A′π ,Z′>,z),σ′〉−→〈<A′′π ,z>,σ′〉

(14)

〈πsi,σ′〉−→〈applyPolicy(πsi),σ′〉〈map(πsi,Nπ,Aπ,Z),σ′〉−→〈<A′π,Z′>,σ′〉
〈getProbableActions(<A′π ,Z′>,z),σ′〉−→〈<A′′π ,z>,σ′〉

〈recordBehavior(πsi,A′′π),σ′〉−→〈bπsi,σ′〉
A′′π ⊆ Asi

(15)
σ

ask behavior()−−−−−−−−−→σ′〈recordBehavior(πsi,Aπ),σ′〉−→〈bπsi,σ′〉
σ′

return(b
π
si)−−−−−−−→σ

Aπ ⊆ Asi

As shown in Rule 8, to ask for behavior, the system calls the ask behavior() function (a method
implementing the system call of the ASK BEHAVIOR Operator), which triggers a context switching

σ
ask behavior()−−−−−−−−−→ σ′. This passes the process control to the KnowLang Reasoner, which operates in the

KRC only. Further, this context switching initiates an internal for KRC call of the ASK BEHAVIOR
Operator, which starts an internal operation (denoted with the findCurrentSituation() abstract
function) to find the current situation the system is currently in. The current situation will be ap-
proximately determined based on the global system state. Once the current situation is successfully
determined (see the second premise in Rule 9), the reasoner needs to find all the policies associated
with that situation. Thus, the reasoner looks up all the situation-policy relations the current situation
participates in (denoted with the findSitnPolcyRltns(si) - see the conclusion in Rule 9). Next, the
relation with the highest probability rate is selected (recall that KnowLang Relations may be asso-
ciated with a probability rate - see Definition 38 in Section 2.1), which helps to determine the most
appropriate policy for that particular situation (see the conclusion in Rule 10). The evaluation of the
selected policy actually triggers its application (see Rule 11). The evaluation of a KnowLang pol-
icy triggers a mapping operation where any policy condition that is held (the conditions are Boolean
expressions) is mapped to appropriate actions with eventual probability rate (see Definition 19 in Sec-
tion 2.1). This operation selects pairs ”actions subset”-”probability rate” (see the conclusion in Rule
12). Next, the reasoner selects from these pairs the one with the highest probability rate to extract the
subset of actions to be executed (see the last premise and conclusion in Rule 13). The extracted subset
of possible actions has to be recorded as a behavior model (see the conclusion in Rule 14 where this
is denoted with the recordBehavior(πsi, A′′π) abstract function). Finally, the KnowLang Reasoner
returns the recorded behavior model to the system, which causes a context switching back to OC (see
Rule 15). Note that the behavior model must comprise only actions allowed to be executed from the
actual situation (see Definition 25 in Section 2.1).
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2.4.2 KR for Self-adaptive Behavior with KnowLang

KnowLang has intrinsic features supporting KR for autonomic systems (recall that ASCENS is a
class of atomic systems). An autonomic system [KC03, VH10] is considered to be a self-adaptive
system that changes its behavior in response to stimuli from its execution and operational environment.
Such behavior is considered autonomic and self-adaptive [VH10] and is intended to drive a system
in situations requiring adaptation. Any long-running system is subject to uncertainty in its execution
environment due to potential changes in requirements, business conditions, available technology, etc.
Thus, it is important to capture and cater for uncertainty as part of the development process. Failure
to do so may result in systems that are too rigid to be fit for purpose, which is of particular concern
for the domains that typically make use of self-adaptive technology, e.g., ASCENS. We hypothesize
that modeling uncertainty and developing mechanisms for managing it as part of KR&R will lead to
systems that are:

• more expressive of the real world;

• fault tolerant due to fluctuations in requirements and conditions being anticipated;

• flexible and able to manage dynamic changes.

The ability to represent knowledge providing for self-adaptive behavior is an important factor in deal-
ing with uncertainty. In our approach, the autonomic self-adaptive behavior is provided by policies,
events, actions, situations, and relations between policies and situations (see Definitions 18 through
25 in Section 2.1).

Ideally, policies are specified to handle specific situations, which may trigger the application of
policies. A policy exhibits a behavior via actions generated in the environment or in the system
itself. Specific conditions determine, which specific actions (among the actions associated with that
policy - see Definition 19 in Section 2.1) shall be executed. These conditions are often generic and
may differ from the situations triggering the policy. Thus, the behavior not only depends on the
specific situations a policy is specified to handle, but also depends on additional conditions. Such
conditions might be organized in a way allowing for synchronization of different situations on the
same policy. When a policy is applied, it checks what particular conditions are met and performs the
associated actions via special mappings (see map(Nπ, Aπ, [Z]) in Definition 19 in Section 2.1). An
optional probability distribution (Z) may additionally restrict the action execution. Although initially
specified, the probability distribution at the mappings is recomputed after the execution of any involved
action. The re-computation is based on the consequences of the action execution, which allows for
reinforcement leaning.

The cardinality of the policy-situation relationship is many-to-many, i.e., a situation might be
associated with many policies and vice versa. The set of policy situations (situations triggering a
policy) is open-ended, i.e., new situations might be added or old might be removed from there by the
system itself. Moreover, with a set of policy-situation relations we may grant the system with an initial
probabilistic belief (see Definition 19) that certain situations require specific policies to be applied.
Runtime factors may change this probabilistic belief with time, so the most likely situations a policy
is associated with can be changed. For example, the successful rate of actions execution associated
with a specific situation and a policy may change such a probabilistic belief and place a specific policy
higher in the ”list” of associated policies, which will change the behavior of the system when a specific
situation is to be handled. Note that situations are associated with a state (see Definition 25) and a
policy has a goal (see Definition 19), which is considered as a transition from one state to another (see
Definition 2). Hence, the policy-situation relations and the employed probabilistic beliefs may help a
cognitive system what desired state to choose, based on past experience.
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Figure 3: A marXbot Self-adaptation Case Study

As a proof of concept, we applied the approach to one of the ASCENS case studies - the Ensemble
of Robots Case Study. To illustrate autonomic behavior based on this approach, let us suppose that we
have a marXbot robot that carries items from point A to point B by using two possible routes - route
one and route two (see Figure 3).

A situation si1:”robot is in point A and loaded with items” will trigger a policy π1:”go to point
B via route one” if the relation r(si1, π1) has the higher probabilistic belief rate (let’s assume that
such a rate has been initially given to this relation because route one is shorter - see Figure 3.a). Any
time when the robot gets into situation si1 it will continue applying the π1 policy until it gets into
a situation si2:”route one is blocked” while applying that policy. The si2 situation will trigger a
policy π2:”go back to si1 and then apply policy π3” (see Figure 3.b). Policy π3 is defined as π3:”go
to point B via route two”. The unsuccessful application of policy π1 will decrease the probabilistic
belief rate of relation r(si1, π1) and the eventual successful application of policy π3 will increase
the probabilistic belief rate of relation r(si1, π3) (see Figure 3.b). Thus, if route one continues to be
blocked in the future, the relation r(si1, π3) will get to have a higher probabilistic belief rate than the
relation r(si1, π1) and the robot will change its behavior by choosing route two as a primary route
(see Figure 3.c). Similarly, this situation can change in response to external stimuli, e.g., route two got
blocked or a ”route one is obstacle-free” message is received by the robot.
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Another self-adaptation case study is presented in [WHM+12] where the experience of action
execution changes the probability distribution within the currently active policy, i.e., at the level of
policy mappings.

2.5 KnowLang Toolset

To support the R&D of KnowLang, we started working on the KnowLang Toolset. Originally, the
toolset is intended to provide a suitable development environment for KR where we can write KR
specifications in the KnowLang notation by using visual modeling tools and check for the syntactical
integrity and consistency of the KR models. As designed, the KnowLang Toolset consists of the
following components:

• Visual Editor;

• Grammar Compiler;

• KnowLang Parser;

• Consistency Checker;

• Semantics Analyzer.

Components from these tools are to be linked together to form a special KnowLang Compiler that shall
compile the KR models specified in KnowLang into KnowLang Binary (see Figure 4). The KnowLang
Binary is the core of the KB (Knowledge Base), which is operated by the KnowLang Reasoner. Note
that the KnowLang Reasoner is a distinct KnowLang component intended to be integrated within the
systems using KnowLang KR, but it also can be integrated in the KnowLang Toolset where it can be
used for testing and behavior analysis.

Figure 4: KnowLang Compiler

Currently, we have developed the first version of both Visual Editor and Grammar Compiler. This
allows us to have limited but sufficient capabilities for writing simple KR models with KnowLang.

The KnowLang Toolset provides a distinct set of software components part of the ASCENS Soft-
ware Component Repository presented in D8.2 [HBGK12].
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3 KR Models for ASCENS Case Studies

To specify knowledge with KnowLang you need to think about 1) domain concepts and their properties
and functionalities (e.g., actions that can be realized in the environment); 2) important states of major
concepts; 3) objects as realization of concepts; 4) relations to show how concepts and objects are
related to each other; 5) self-adapting scenarios for the system in question, e.g., eventual problematic
situations with desired outcome; 6) remarkable behavior in terms of policies driving the system out
of specific situations; 7) other important specifics that can be classified as concepts (could be explicit)
and objects, e.g., SLO (service-level objectives), QoS proiperties, system sensors, group formations,
etc.

In this second year of the project, we implemented initial KR models for all the three ASCENS
case studies [Vas12b]. Although, still these models need to be both refined and completed, we present
some parts of the KR Model for the marXbot case study [VH12d].

Figure 5 depicts the graphical representation of a concept tree specified with KnowLang. As
shown, the three has a tree root Thing. The concept Thing is determined by the meta-concept Robot
Thing, which carries information about the interpretation of the root concept Thing such as ”Thing is
anything that can be related to the robot”. According to this concept tree there are two categories of

Figure 5: Concept Tree: ”Robot Thing”

things in a robot: entities (physical entities) and virtual entities where both are used to organize the
vocabulary in the internal robot domain. Note that the explicit concepts (see Figure 1 in Section 2.1)
are presented as concepts in this concept tree - qualified path Thing->Virtual Entity->Phenomenon,
i.e., in this ontology tree, the explicit concepts inherit the concepts Phenomenon, Function and State.
The following KnowLang code presents the actual specification of the Locomotion System concept.

CONCEPT Locomotion_System {
CHILDREN {}
PARENTS { SC.Thing..System }
STATES { STATE operational {} STATE on {} STATE off {} }
PROPS {

PROP engine { TYPE {SC.Thing..Engine} CARDINALITY {1} }
PROP wheel { TYPE {SC.Thing..Wheel} CARDINALITY {5} }
PROP locomotion_soft { TYPE {SC.Thing..Locomotion_Soft} CARDINALITY {1} }
PROP battery { TYPE {SC.Thing..Battery} CARDINALITY {1} }

}
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FUNCS {
FUNC move { TYPE {SC.Action.Move } }
FUNC stop { TYPE {SC.Action.Stop } }
FUNC turn { TYPE {SC.Action.Turn } }
}
IMPL { Robot.LocomotionSystem }

}

Recall that KnowLang concepts have a STATES attribute that may be associated with a set of possible
state values the concept instances may be in. The KnowLang states are intrinsic concepts descending
from the State concept (see Figure 5). In general, a system may occupy a new state when values of
concept properties have been changed or some events or actions have occurred in the system or the
environment. Therefore, a state can be determined by values held by concept properties, raised events
or executed actions. To represent a state, we construct a Boolean expression over ontology. A state of
a complex concept might be the product of the states of its properties. Only significant states should
be specified and evaluated by using predicates. For example, the predicate Is Operational evaluates
whether a concept instance is in operational state:

PREDICATE Is_Operational {
ENTRIES {SC.Thing..Locomotion_System}
STATES {Operational} EXPRESSION {...}

}

Further, we specify the concept Capability (see Figure 6), which descends from the Function concept
(see Figure 5) and couples a function with elements that increase its depth, scope, productivity, etc.
Capability may carry information about possible range, limits, etc.. The concept Action (see Figure
7) descends from the Function concept (see Figure 5) and defines the entire robot’s functionality as
possible actions. Moreover, actions are used to specify the functions (functionality) of a concept. In

Figure 6: Concept Tree: ”Robot Capability”

addition to the concept trees, to build the ontology concept maps, we also specify relations. In general,
we specify relations connecting concepts and objects in the Robot SC Ontology. For example, possible
relations are the following:

RELATION Instance_Of {
RELATION_PAIR {object.robot[1].locomotion_system, Thing..Locomotion_System} }

RELATION Part_Of { RELATION_PAIR {object.locomotion_system, object.robot[1]} }
RELATION Engrouped { RELATION_PAIR {object.robot[1], object.robot[2]} PROBABILITY {1} }

Figure 8 depicts a concept map built over specified relations for the Robot SC Ontology.
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Figure 7: Concept Tree: ”Robot Action”

To complete the KB we also need to specify object trees presenting the important concept instances
in the domain of interest, e.g., the content of the robot in terms of components. Note that the object
trees realize the concepts, i.e., they inherit the properties and functions of the concepts they instantiate.
For example, Figure 9 depicts the specification of the Gripper concept and its realization, the object
gripper 23.

We specify facts to impose true statements in ontology, e.g., implication. The following examples
present some facts:
FACT {

Predicate.Work_With(object.robot[1], object.robot[2]) =>
Predicate.Engrouped(object.robot[1], object.robot[2]) }

FACT {
Predicate.Is_Operational(THIS.locomotion_system) AND

Predicate.Obstacle_Free(THIS) => Predicate.Can_Move(THIS) }

We also specify rules to impose simple behavior, e.g.:

Figure 8: Concept Map: ”Robot Relations”
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RULE {
IF NOT Predicate.Can_Move(THIS) THEN { DO {Action.Check_Battery(THIS..battery);} } }

RULE {
IF NOT Predicate.Can_Move(THIS) AND Action.Get_Battery(THIS..battery) > 0.5
THEN {

DO {Action.Get_Dist(THIS, Action.Get_Closest(THIS, ENV.Thing..Obstacle)); } } }

Rules, also can be used to imply predicates, e.g.:

RULE {
IF Action.Get_Battery(THIS..battery) > 0.9 THEN {

Predicate.Charged(THIS..battery)
} ELSE {

NOT Predicate.Charged(THIS..battery)
}

}

In additon, constraints may be used to constraint the behavior of the system or impose predicates, e.g.:

CONSTRAINT {
IF Action.Get_Battery(THIS..battery) < 0.1 THEN { NOT Action.Move(THIS) }

CONSTRAINT {
IF Predicate.Is_Operational(THIS.locomotion_system) THEN {

Action.Get_Battery(THIS..battery) > 0.5 AND
Predicate.Is_Operational (THIS..wheel[1]) AND
Predicate.Is_Operational (THIS..wheel[2]) AND
Predicate.Is_Operational (THIS..wheel[3]) AND
Predicate.Is_Operational (THIS..wheel[4]) AND
Predicate.Is_Operational (THIS..wheel[5]) AND
Predicate.Is_Operational (THIS..engine) AND
Predicate.Is_Operational (THIS..locomotion_soft) AND
Predicate.Is_Running (THIS..locomotion_soft)

}
}

Constraints can also be used to impose data restrictions, e.g., let’s presume we want two robots to have
different first goals:

CONSTRAINT { robot[1].goal[1] <> robot[2].goal[1]; }

Finally, we need to specify important situations and policies driving the system in those situations. The
following examples represent the LoadedAndOperational situation and the policy ReturnAndUnload

Figure 9: Gripper Concept and its Realization
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specified to eventually handle that situation. Recall that we need also to specify a relation that connects
these two structures if we want the policy to handle the situation (see Section 2.4.2).

CONCEPT_SITUATION LoadedAndOperational {
CHILDREN {}
PARENTS {SC.Thing..Situation}
SPEC {

SITUATION_STATES { SC.Thing..Robot.operational , SC.Thing..Gripper.locked_stable }
SITUATION_ACTIONS { SC.Action.Move , SC.Action.Lay_dwn }

}
}

CONCEPT_POLICY ReturnAndUnload {
SPEC {

POLICY_GOAL { UnloadGripper }
POLICY_SITUATIONS { LoadedAndOperational }
POLICY_RELATIONS {....}
POLICY_ACTIONS {....}
POLICY_MAPPINGS {

MAPPING {
CONDITIONS {SC.Action.Get_position = B }
DO_ACTIONS {SC.Action.Lay_dwn }

}
MAPPING {

CONDITIONS {SC.Action.Get_position <> B }
DO_ACTIONS {SC.Action.Plan_trip, SC.Action.Move }

}
}

}
}

4 The Pyramid of Awareness

The ultimate goal of our KR approach is to allow for awareness and self-awareness capabilities of
ASCENS-like systems. In this second year of the project, in addition to the work done on KnowLang,
we also developed a comprehensive conceptual model for awareness in computerized systems, which
we called ”The Pyramid of Awareness” [Vas12a, VH12a]. The awareness model is presented in this
section.

4.1 Awareness

In general, any autonomic system engages in interactions where it is not just able to interact with its
operational environment, but also to perceive important structural and dynamic aspects of the same
[KC03, VH10]. To become interaction-aware such a system needs to be aware of its physical envi-
ronment and whereabouts and its current internal status. This ability is defined as awareness and it
helps intelligent computerized systems to sense, draw inferences for their own behavior and react.
The notion of awareness should be generally related to perception, recognition, thinking and even-
tually prediction. Closely related to artificial intelligence, awareness depends on the knowledge we
must transfer to a computerized system and make it use that knowledge, so it can exhibit intelligence.
However, in addition to computerized knowledge, artificial awareness also requires a means of sens-
ing changes (e.g., event perception and data gathering), so the external and internal worlds can be
perceived through their raw events and data. Thus, self-monitoring and monitoring the environment
is the key to awareness, i.e., to exhibit awareness, computerized systems must sense and analyze their
internal components and the environment where they operate. Such systems should be able to notice
a change and understand its implications. Moreover, an aware system should be able to determine
normal and abnormal states.
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4.2 Classes of Awareness

Awareness can be classified into two major classes: self-awareness about the internal world and con-
text awareness about the external world. The autonomic computing research [KC03] defines these two
classes as following:

• self-awareness - a system has detailed knowledge about its own entities, current states, capacity
and capabilities, physical connections and ownership relations with other (similar) systems in
its environment;

• context-awareness - a system knows how to sense, negotiate, communicate and interact with en-
vironmental systems and how to anticipate environmental system states, situations and changes.

Another intriguing class of awareness could be the so-called situational awareness, which is related
to situations. Situation awareness considers circumstances particularly relevant to important situa-
tions a computerized system can be involved in. Other classes might be more specific and draw our
attention to specific problems, e.g., operational conditions and performance (operational awareness),
control processes (control awareness), interaction processes (interaction awareness), navigation pro-
cesses (navigation awareness), etc. Note that although classes of awareness may differ by their subject,
basically they all require perception of events and data from the subjective context ”within a volume
of time and space, the comprehension of their meaning, and the projection of their status in the near
future” [End95].

To better understand the idea of awareness in computerized systems, we may think of an example
with exploration robots where we may consider navigation awareness, which requires context-relative
plots of position so that the system can infer robot speed and direction. Landmarks should be repre-
sented as part of the environment knowledge. Moreover, at the beginning of the navigation process
a special ”navigation map” can be built on the fly by the navigation awareness mechanism. Then,
basically navigation awareness is reading the sensor data from cameras and plotting the position of
the robot at the time of observation. Via repeated position plots, the course and land-reference speed
of the robot is established.

4.3 Structuring Awareness

Lately, there have been significant research efforts in the implementation of awareness for computer-
ized systems. For example, commercially-available server monitoring platforms, such as NimSoft’s
NimBUS and JJ Labs’ Watch Tower, offer robust, lightweight sensing and reporting capabilities across
large server farms. Note that these solutions are oriented towards massive data collection and perfor-
mance reporting, and leave much of the final analysis and decision-making to the administrator. In
other approaches, awareness is achieved through a model-based detection and response based on of-
fline training and models (e.g., Markov models) constructed to represent different scenarios that can
be recognized by the system at runtime.

To function, the mechanism implementing awareness must be structured taking into consideration
possible different stages of an awareness process. The mechanism of awareness might be built over
a complex chain of functions pipelining the stages of the awareness process such as: 1) raw data
gathering; 2) data passing; 3) filtering; 3) conversion; 4) assessment; 5) projection; and 6) learning.
As shown in Figure 10, ideally all the awareness functions might be structured as a Pyramid of
Awareness forming the mechanism that converts raw data (facts, measures, raw events, etc.) into
conclusions, problem prediction and eventually may trigger learning.

As shown in Figure 10, the different pyramid levels represent awareness functions that can be
grouped into four function groups determining specific awareness tasks. The first three pyramid levels
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compose the group of monitoring tasks. Further, the fourth level forms the group of recognition tasks.
The fifth and the sixth levels compose the group of assessment tasks, and finally, the last seventh
level form the group of learning tasks. In addition, aggregation can be included as a subtask at any
function level. Note that aggregation is intended to improve the overall awareness performance, e.g.,
aggregation techniques can be applied to aggregate large amounts of sensory data during the filtering
stage, or can be applied by the recognition tasks to improve classification.

Figure 10: The Pyramid of Awareness

Ideally, the four awareness function groups require a comprehensive and well-structured KB rep-
resenting knowledge in KR Symbols expressing the system itself with its proper internal structures
and functionality and the environment. Moreover, the awareness process is not as straightforward as
one might think. Instead, it is a cyclic with many iterations over the awareness functions. Thus, by
closing the chain of awareness functions we form a special awareness control loop [VH10] where
different classes of awareness may emerge (see Figure 11).

Figure 11: Awareness Control Loop

A more elaborated description of the awareness function groups is the following:

• monitoring - collects, aggregates, filters, manages, and reports internal and external details such
as metrics and topologies gathered from the system’s internal entities and its context;

• recognition - uses knowledge structures and data patterns to aggregate and convert raw data into
knowledge symbols;

• assessment - tracks changes and determines points of interest, generates hypotheses about situ-
ations involving these points, and recognizes situational patterns;

• learning - generates new situational patterns and maintains a history of property changes.
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Its cycling nature is the main reason to regard awareness as complex product with several levels of
exhibition and eventually degree of awareness. The levels of awareness might be related to data read-
ability and reliability, i.e., it could happen to have noisy data that must be cleaned up and eventually
interpreted with some degree of probability. Other levels of awareness exhibition might be early
awareness, which is supposed to be a product of one or two passes of the Awareness Control Loop
and late awareness, which should be more mature in terms of conclusions and projections. Similar
to humans who may react to their first impression and then the reaction might shift together with a
late but better realization of the current situation, an aware computerized system should rely on early
awareness to react quickly to situations when fast reaction is needed and on late awareness when more
precise thinking is required.

Ideally, awareness should be a part of the cognitive process where it might support learning. An
efficient awareness mechanism should rely on both past experience and new knowledge introduced to
the system. Moreover, awareness via learning is the basic mechanism for introducing new facts into
the cognitive system - other possible ways are related to interaction with a human operator who may
manually introduce new facts into the KB.

4.4 Implementing Awareness

To build an efficient awareness mechanism, we need to think how to properly integrate the Pyramid of
Awareness within the KnowLang Framework. The baseline is to provide a means of monitoring and
knowledge representation with proper reasoner supporting the Pyramid of Awareness. As shown in
Section 2.4.1, a KR with KnowLang adds a new context to the program and the KnowLang Reasoner
operates in this context taking into account the monitoring activities driven by the system’s sensors and
reported via TELL Operators to the reasoner (see also Figure 2). Therefore, the KnowLang Reasoner
must drive the Awareness Control Loop and deliver awareness results to the system as outputs of the
ASK Operators.

In addition to the awareness abilities initiated via ASK and TELL operators, we envision an addi-
tional awareness capability based on self-initiation where the KnowLang Reasoner may initiate actions
without being asked for it. In this approach, we consider a behavior model based on the so-called Par-
tially Observable Markov Decision Processes (POMDP) [Lit96]. Note that this model is appropriate
when there is uncertainty and lack of information needed to determine the state of the entire system.
For example, individuals in complex systems like swarms of robots (e.g., the ASCENS case study on
marXbots robots) often might be idle, i.e., not actively participating in the swarm’s activities, because
they are not certain about the current swarm state. Thus, the POMDP model helps a robot reason
on the current swarm state (or that of the environment) and eventually self-initiate when an action is
needed to be performed. According to our POMDP-based model, a swarm robot takes as input ob-
servable situations, involving other swarm robots and the environment, and generates as output actions
initiating robot activity. Note that the generated actions affect the global swarm state.

Formally, this model is a tuple M :=< S,A, T,R,X,O > where:

• S is a finite set of states of the system that are not observable.

• An initial belief state s0 ∈ S is based on z0(s0; s0 ∈ S), which is a discrete probability distribu-
tion over the set of system states S, representing for each state the robot’s belief that is currently
occupying that state.

• A is a finite set of actions that may be undertaken by the robot. Note that the system state
determines the current situation and thus, the possible set of actions is reduced to coop with that
situation (or respectively state).
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• T : S × A −→ Z(S) is the state transition function, giving for each system state s and robot
action a, a probability distribution over states. Here, T (s; a; s′) computes the probability of
ending in state s′, given that the start state is s and the robot takes action a, z(s′|s; a).

• O : A×S −→ Z(X) is the observation function giving for each system state s and robot action
a, a probability distribution over observations X . For example, O(s′; a;x) is the probability of
observing x, in state s′ after taking action a, z(x|s′; a).

• R : S × A −→ R is a reward function, giving the expected immediate reward gained by the
robot for taking an action in a state s, e.g., R(s; a). The reward is a scalar value in the range
[0..1] determining, which action (among many possible) should be undertaken by the robot in
compliance with the swarm goals.

Interpretation. To illustrate this model, let’s assume that a marXbot swarm is currently occupying
the state s = ”new object to be moved is discovered, but no moving team has been formed yet and
still no other marXbot has self-initiated for team formation”. Let’s assume there is at least one idle
marXbot in the swarm ready to undertake a few actions A, including the action a = ”self-initiation
for team formation”. The marXbot performs the following reasoning steps in order to self-initiate for
team formation:

1. The marXbot computes its current belief state s0 - the robot picks up the state with the highest
probability z0 and eventually s0 = s.

2. The marXbot computes the probability z1 of the swarm occupying the state s′ = ”new object is
discovered and a marXbot has self-initiated for team formation” if the action a is undertaken
from state s0.

3. The marXbot computes the probability z2(x|s′; a) of observation x = ”there are sufficient num-
bers of idle marXbots to form a new exploration team”.

4. The marXbot computes the reward r(s0; a) for taking the action a (self-initiation for team for-
mation) in state s0. If no other immediate actions should be undertaken (forced by other swarm
goals), the reward r should be the highest possible, which will determine the execution of a.

Probability Computation. The POMDP model for self-initiation requires the computation of a few
probability values. Our model for assessing probability applicable to the computation of POMDP
probability values (probability of the swarm being in a state and probability of observation) is basically
based on the probability distributions at the levels of situation-policy relations and policy mappings
connecting conditions to actions (see Definition 19 in Section 2.1). Therefore, we need to provide
the system with initial probability distributions at these levels, which practically is building Bayesian
networks in our KR model. In our approach, the probability assessment is an indicator of the num-
ber of possible execution paths a robot may take meaning the amount of certainty (excess entropy)
in the swarm’s behavior. To assess that behavior prior to the KR, it is important to understand the
complex interactions among the robots (SCs) in an SCE swarm. This can be achieved by modeling
the behavior of individual reactive robots together with the swarm (or team) behavior as Discrete Time
Markov Chains [EG05], and assessing the level of probability through calculating the probabilities of
the state transitions in the corresponding models. We assume that the robot-swarm interaction is a
stochastic process where the swarm events are not controlled by the robot and thus their probabilities
are considered equal.

The theoretical foundation for our Probability Assessment Model is the property of Markov chains,
which states that, given the current state of the swarm, its future evolution is independent of its history,
which is also the main characteristic of a reactive autonomic robot.
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Table 1: Transition Matrix Z
s1 s2 ... si ... sn

s1 z11 z12 ... z1j ... z1n
s2 z21 z22 ... z2j ... z2n
... ... ... ... ... ... ...
si zi1 zi2 ... zij ... zin
... ... ... ... ... ... ...
sn zn1 zn2 ... znj ... znn

An algebraic representation of a Markov chain is a matrix (called transition matrix) (see Table 1)
where the rows and columns correspond to the states, and the entry zij in the i-th row, j-th column is
the transition probability of being in state sj at the stage following state si. The following property
holds for the calculated probabilities:∑

j zij = 1

We contend that probability should be calculated from the steady state of the Markov chain. A steady
state (or equilibrium state) is one in which the probability of being in a state before and after a transi-
tion is the same as time progresses. Here, we define probability for a swarm (a SCE) composed of k
robots as the level of certainty quantified by the source excess entropy, as follows:

ZSCE =
∑

i=1,kHi −H
Hi = −

∑
j zijlog2(zij)

H = −
∑

i vi
∑

j zijlog2(zij)

Here,

• H is an entropy that quantifies the level of uncertainty in the Markov chain corresponding to an
SCE swarm;

• Hi is a level of uncertainty in the Markov chain corresponding to a marXbot robot;

• v is a steady state distribution vector for the corresponding Markov chain;

• zij values are the transition probabilities in the extended state machines that model the behavior
of the i-th robot.

Note that for a transition matrixZ, the steady state distribution vector v satisfies the property v∗Z = v,
and the sum of its components vi is equal to 1. The level of uncertainty H is exponentially related to
the number of statistically typical paths in the Markov chain. Having an entropy value of 0 means that
there is no level of uncertainty in a Markov system for a specific robot’s behavior. Here, a higher value
of a probability measure implies less uncertainty in the model, and thus, a higher level of predictability.

5 Soft Constraints for KnowLang

In general, the so-called soft constraints [BMR97, BM07] might be used as a KR technique that
will help designers impose constraining requirements for special liveness properties of an intelligent
system. In this context, the term liveness property must be considered as an approximation to our
understanding of a good-to-have property.
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In this second year of the project, we started collaborating with WP2 to integrate the theory of
soft constraints in KnowLang. The goal is to enrich KnowLang with a model for KR where we can
enforce desired restrictions on values held by a variety of system’s variables.

With the notion of Soft Constraint for KnowLang (SCKL), we intend to associate tuples of possible
values held by special KnowLang ”variables” with possible preferences. Thus, to express a SCKL, we
consider [MV12]:

1. a tuple of variables, representing a part of the system expressed with KnowLang;

2. a preferred combination of values held by these variables;

3. special constraint conditions defining conditions when the ”preferred combinations of values”
must be held.

In this approach, the notion of ”variable” is closely related to the notion of KR symbol. SCKL vari-
ables (called KR Variables) represent concepts defined by the ontologies (e.g., Policy or Action), con-
cept properties, or relations. Consecutively, the notion of ”value” is associated with realization of a
concept (e.g., an object), realization of a concept property, or realization of a relation. SCKL Values
are also called KR Values. Note that SCKL will not be used to set what values are allowed, but rather
at what specific state (component state or global system state) or situation are allowed.

5.1 Constraint Satisfaction Problem and Soft Constraints

The classical constraint satisfaction problem (CSP) framework [BM07] is a well-known paradigm,
that is suited to specify many kinds of real-life problems and that has been broadly investigated in
computer science and artificial intelligence. The key idea underlying CSP is to solve a problem by
stating constraints representing requirements about the problem and, then, finding solutions satisfying
all the constraints.

Some extensions of classical CSPs give specific interpretations of soft constraints like weighted
CSPs for modelling cost functions, probabilistic CSPs or fuzzy CSPs. The semi-ring-based constraints
[BMR97] are more generic extensions to soft constraints, in the sense that they can model different
kinds of constraints by varying their underlying structure.

A constraint semiring (c-semiring) [BMR97] is an algebra 〈A,+,×, 0, 1〉, where 〈A,+, 0〉 and
〈A,×, 1〉 are commutative monoids, + is idempotent, × distributes over +, 1 and 0 are absorbing
elements for + and × respectively (i.e., a+ 1 = 1 and a× 0 = 0 for all a ∈ A). C-semirings are also
equipped with a partial ordering ≤ such that a ≤ b iff a + b = b, which means that a is worse than
b, or, more interestingly, that a entails b. Intuitively, the preference level associated to each variable
instantiation is modelled as a value of a c-semiring; the combination of constraints is expressed by the
product operation, while the sum a+b chooses the worst constraint better than a and b. Moreover, 1 is
the maximal and 0 the minimal element. Remarkably, several efficient algorithms defined for ordinary
constraints, like constraint propagation or dynamic programming, can be generalised to c-semirings.

5.2 Elaborating on SCKL

Our notion of SCKL internalizes, in the style of [BM07], the KnowLang variables V into a c-semiring
S . Namely, our SCKL constraints are functions associating to each feasible assignement of variables
V a value of S. Thus to formally define a SCKL for a constraint semiring S, we consider a set of KR
Variables I and a set of possible KR Values V , where for each i ∈ I , there is a set Vi ⊂ V of possible
KR Values for the variable i. A SCKL can be defined as c := (J ;P ) with c ∈ C (set of constraints),
i.e., c is defined as a pair (J ;P ) where J := (j1, ..., jk) is an ordered subset of I (denoted as J ⊂ I)
and P is a function mapping Vj1×, ...,×Vjk into S.
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The semiring values are ordered (usually, totally ordered) by the semiring ordering ≤. Thus it
is possible to identify the preferred variable assignments as those with the highest semiring value
associated to them.

Often, SCKLs have additional constraint conditions Z, expressed as Boolean operations over
the KnowLang Ontologies O. Normally, a condition shall be expressed with ”states”, ”situations”,
”events”, and/or ”actions”.

Once KnowLang variables and their possible values are fixed, different SCKLs are characterized
by their functions P . Thus the semiring operations of addition and multiplications can be extended to
SCKLs by composing functions P pointwise.

In addition, an operation of restriction can be defined with eliminates a variable assigning to it
the best possible value. Technically, the restriction (x)p(x) is obtained by summing up p(v) for all
possible values of v. The projection operation is restriction’s dual: to evidence the effect of a constraint
on a set of variables is sufficient to restrict it with respect to all the other variables.

Complex SCKL systems can be obtained by applying the above operations to elementary (typically
finite, explicitly listed) SCKLs. Often, several elementary SCKLs involving only a few variables are
multiplied, obtaining a large constraint network. Then the resulting complex SCKL is projected into
some variables, which represent the visible interface of the system.

A Constraint Satisfaction Problem (CSP) for a SCKL system is to find an assignment of its vari-
ables which returns the best semiring value. Of course there can be ties, i.e. several assignments can
yield the same value, which makes the solution process nondeterministic. The situation is particularly
critical for the classical semiring, where assignments can return only 1 or 0, i.e. possible or impos-
sible. If the semiring ordering is partial, a solution is an assignment which returns a semiring value
which is non-dominated (i.e. it is a local maximum, sometimes called Pareto-optimal).

5.3 Soft Constraints for marXbot Robot

With reference to the KR structures presented in Section 3, we may consider the following constraint
for marXbot. A marXbot robot has six wheels, each of which can be considered as a variable that can
take state values in:

wheel.STATES := { clockwise, counterclockwise, stop, idle }

The wheels operate in pairs, and on each wheel pair we apply a constraint stating that pair weels
must take ”certain” values. In fact, if two wheels in a pair are turning clockwise and anticlockwise
respectively the pair is moving forward. If in a pair a wheel is turning clockwise and the other wheel
is stopped, then the pair turns left, etc. Here, the tree pairs of wheels can have global state values as
following:

wheel_pair.STATES := {forward, backward, left, right, stop, idle}

The soft constraint approach considers a pair of wheels equipped with three variables representing left
and right wheels and the global state of the pair:

pair(global) :- left(global,leftwheel),right(global,rightwheel)

where the constraints left and right determine the relation between the possible states of the wheels
and the global state. For classical Horn clauses, the relational operator ”:-” means that the right hand
side implies the left hand side, while for all the soft constraints ”:-” means that the right hand side is
larger than the left hand side in the semiring partial ordering. The comma ”,” means multiplication,
logical AND in the classical case. Here, for a pair, left and right are defined as:
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left(forward,counterclockwise) :-
right(forward,clockwise) :-
left(backward,clockwise) :-
right(backward,counterclockwise) :-
left(left,stop) :-
right(left,clockwise) :-
left(right,counterclockwise) :-
right(right,stop) :-
left(idle,idle) :-
right(idle,idle) :-
left(stop, stop) :-
right(stop,stop) :-

Here the empty right hand side obviously means 1. For instance, the assignment global := forward,
leftwheel := counterclockwise and rightwheel := clockwise is allowed, namely it is mapped to 1.
Conversely, no assignment is possible with leftwheel := clockwise and rightwheel := clockwise.

The robot has three pairs of wheels and a GLOBAL state variable with possible values:

robot[1].STATES := \{forward, left, right, stop\}

Thus:

robot[1](GLOBAL) :- OK(GLOBAL,global1,global2,global3),
pair(global1),pair(global2),pair(global3)

where OK is defined as:

OK(forward,forward,forward,forward) :- very fast
...
OK(forward,forward,idle,idle) :- slow
OK(left,left,idle,idle) :- slow
...

Notice that here OK has been defined in a soft way: the option where the forward action of the robot
is obtained with all three pairs contributing to it has been evaluated as ”very fast”, assuming that the
semiring has such a value, while if only one pair has forward and the other two have idle, the value is
”slow”. Here the idea is that ”very fast” is better in the semiring ordering than ”slow”.

6 KnowLang vs SCEL and SOTA

Ideally, KnowLang is going to be used to build KR models that must be integrated in the SCEs im-
plemented with SCEL, the Service Component Ensembles Language tackled by WP1. KnowLang
should provide a KR model of the SCEL knowledge base. Therefore, the KR, built with KnowLang,
must cope with the system implementation specified with SCEL. The KR models are going to be used
by the system (programmed with SCEL) to find missing answers, e.g., find behavior that will help
solve a problem that is not initially programmed. Recall that both the KnowLang concepts and ob-
jects might be specified to represent entities implemented in the system’s program (see Section 2.2.1).
Moreover, these KR models must be kept relevant all the time during the system’s execution. This can
be achieved by updating the KB with the most recent errors, events and actions raised/executed in the
system or in the environment (see Section 2.4.1 ). The points where KnowLang and SCEL must work
together are:

1. The ASK and TELL KB Operators (see Section 2.4.1) shall be implemented by the KnowLang
Reasoner, but also should be interfaced in the system’s implementation as well. This includes
work on parameters passing and work on parameters and results mapping. Recall that both ASK
and TELL Operators may pass parameters to the KB, which must be mapped to KnowLang’s
symbols before processing the call within the KR Context (see Section 2.4). Moreover, the ASK
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Operators return a result produced by the KnowLang Reasoner and this result must be mapped
to implemented variables and structures.

2. The KB Operators should be compatible with the SCEL operators for reading from and writing
to the SCEL tuple space. Eventually, the KB will be stored in a SCEL tuple space where the
physical location of the possibly distributed data will be transparent.

3. The ontologies specified with KnowLang must incorporate some parts of the SCEL description
of the ASCENS system under development. This will help the developers map concepts and
objects specified with KnowLang to program structures specified with SCEL. For example,
KnowLang policies may address a particular instance of SCEL policies dedicated to adaptation.

To provide for a basic knowledge representation mechanism and knowledge handling, SCEL eventu-
ally relies on DEECo presented in D1.5 [BGH+12]. However, to increase its expressiveness and ex-
tend its knowledge handling capabilities, DEECo shall incorporate both the KnowLang specification
model and the KnowLang Reasoner where the TELL and ASK operators should also be integrated.

KnowLang will be used to model situations and self-adaptation policies determined with SOTA,
the State Of The Affairs framework tackled by WP4. SOTA can be used to produce a set of require-
ments and guidelines for knowledge modeling and representation, which will be then specified with
KnowLang. Moreover, WP4 has compiled an extensive catalogue of adaptation patterns [ZAC+12]
focused on the relations among different SCs within a shared ensemble. Considering that KnowLang
has been designed to keep track of the system and the environment (including the topology of the
network), these patterns could be expressed in KnowLang to provide for predefined self-adaptation
scenarios.

A part of the KnowLang states can be derived from the General Ensemble Model(GEM)’s struc-
tures defining the state space as the result of an interaction between the ensemble and its environment.
Also, KnowLang policies can be built to impose behavior based on POEMs strategies. Note that
GEM is a mathematical model for the behavior of ensembles in the state-of-the-affairs space, and the
Pseudo-Operational Ensemble Modeling Language (POEM) is a modeling language based on GEM
(and thus SOTA) [WHM+12].

7 Summary and Future Goals

In the course of the second year of WP3, we shaped our research activities towards focusing on the
KnowLang Framework where our ultimate goal is to structure computerized knowledge so that a
computerized system can effectively process it and gain awareness capabilities and eventually derive
its own behavior. To provide comprehensive and powerful specification formalism, we developed
a powerful multi-tier specification model where ontologies are integrated with rules and Bayesian
networks. The approach allows for efficient and comprehensive knowledge structuring and awareness
based on logical and statistical reasoning. We used the KnowLang notation to specify some initial
knowledge models for all three ASCENS case studies. Although, those models need to be shaped and
developed further, this exercise demonstrated the ability of KnowLang to handle KR for systems from
different application domains. In addition, along with further development of the language theory
and knowledge-specification structures, we started working on the KnowLang Reasoner and started
implementing the KnowLang Toolset. A very important milestone we overcame is the KnowLang
mechanism for self-adaptive behavior where knowledge representation and reasoning help to establish
the vital connection between knowledge, perception, and actions realizing self-adaptive behavior. The
knowledge is used against the perception of the world to generate appropriate actions in compliance
to some goals and beliefs. To support this approach, we developed a KR mechanism for self-adaptive
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behavior and started developing special ASK and TELL operators used by the system to talk to the
KnowLang Reasoner. We developed an initial operational semantics for these operators. Moreover, we
developed a conceptual reference model for awareness called ”Pyramid of Awareness” and outlined
how this model can be realized with the KnowLang Framework. Finally, a joint work with WP2
derived a theoretical model for Soft Constraints for KnowLang where the goal is to help designers
impose constraining requirements for special liveness properties.

Our plans for the third year of WP3 are mainly concerned with further development of KnowLang.
As part of Task T3.1, we shall complete the formal notation and implement appropriate tools for
KnowLang, such as Grammar Compiler (partially completed), Visual and Textual Editor (partially
completed), Syntax and Consistency Checker and KnowLang Specification Compiler.

As for Task 3.2, we shall continue with further development of the KR models for the three AS-
CENS Case Studies. This eventually will help us derive generic KR models for ASCENS-like systems.

Task 3.3, will continue with further development of the KnowLang Reasoner where we need to
complete the KB Operators and start implementing the Inference Primitives together with the KnowL-
ang Awareness Mechanism.

Finally, in Year 3 of the project, we shall start Task 3.4 with work on awareness prototyping.
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