
www.ascens-ist.eu

ASCENS
Autonomic Service-Component Ensembles

JD2.1: Languages and Knowledge Models for Self-
Awareness and Self-Expression

Grant agreement number: 257414
Funding Scheme: FET Proactive
Project Type: Integrated Project
Latest version of Annex I: Version 2.2 (30.7.2011)

Lead contractor for deliverable: IMT
Author(s): Rocco De Nicola (IMT) - editor, Matthias Hölzl (LMU),
Michele Loreti (UNIFI), Alberto Lluch Lafuente (IMT), Ugo Montanari
(UNIPI), Emil Vassev (UL) and Franco Zambonelli (UNIMORE)

Reporting Period: 2
Period covered: October 1, 2011 to September 30, 2012
Submission date: November 12, 2012
Revision: Final
Classification: PU

Project coordinator: Martin Wirsing (LMU)
Tel: +49 89 2180 9154
Fax: +49 89 2180 9175
E-mail: wirsing@lmu.de

Partners: LMU, UNIPI, UDF, Fraunhofer, UJF-Verimag, UNIMORE,
ULB, EPFL, VW, Zimory, UL, IMT, Mobsya, CUNI

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

Executive Summary

Self-adaptivity is considered a fundamental feature of autonomic systems. It is thus of fundamental
importance to equip the different linguistic and semantic tools that are introduced for achieving the
goal of the ASCENS project with the right abstractions and constructs for enabling components of
ensembles to adapt to changing environments or to mutated goals. Obviously, adaptivity is possible
only if the individual components have the appropriate knowledge (self-awareness) and the appropri-
ate capability (self-expression). These features have to be made available at different stages during the
development of autonomic components and at run-time. In particular they are relevant both when pro-
viding an abstract modeling of the autonomic system and when providing its concrete implementation.
But these features do play a key rôle also when the knowledge handler is designed. This deliverable
describes how such mechanisms are realized in ASCENS. We focus, in particular, in abstract model-
ing techniques (SOTA and GEM), knowledge representation models (KnowLang and soft constraints)
and specification languages (SCEL). In order to provide a more uniform and coherent presentation all
the approaches focus on a common scenario, dealing with robot swarms operating in highly variable,
unknown environments and having to solve their tasks in a collaborative manner.

ASCENS 2

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

Contents

1 Introduction 5
1.1 Self-adaptation. 5
1.2 Self-awareness, self-adaptation and self-expression in robot swarms. 6
1.3 Structure of the Deliverable. 7

2 Abstract Modelling 8
2.1 SOTA . 8

2.1.1 The Rationale behind SOTA . 8
2.1.2 The SOTA Space . 9
2.1.3 Goals and Utilities . 10

2.2 GEM and POEM . 11
2.2.1 Trajectory Space, Situations, Fluents . 11
2.2.2 Goals, Utilities and Strategies . 13

3 Knowledge Representation Modelling 15
3.1 KnowLang . 15

3.1.1 Structuring Knowledge with KnowLang . 16
3.1.2 Modeling Self-adaptive Behavior with KnowLang 17
3.1.3 ASK and TELL Operators and KnowLang Reasoner 18
3.1.4 Case Study . 19

3.2 Soft Constraints . 20
3.2.1 Constraints and Adaptation . 20
3.2.2 Hierarchical Constraints for KnowLang . 22
3.2.3 Constraints and Emergent Knowledge . 22
3.2.4 Soft constraints in the case study . 22

4 Languages 23
4.1 SCEL: Service Component Ensemble Language 24
4.2 Robotics scenario in SCEL . 24
4.3 Running the scenario . 27
4.4 Soft Constraints as a linguistic abstraction in SCEL 27

5 Conclusions 28

ASCENS 3

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

ASCENS 4

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

1 Introduction

Self-adaptivity is considered a fundamental feature of autonomic systems. It is thus of fundamental
importance to equip the different linguistic and semantic tools that are introduced for achieving the
goal of the ASCENS project with the right abstractions and constructs for enabling components of
ensembles to adapt to changing environments or to mutated goals. Obviously, adaptivity is possible
only if the individual components have the appropriate knowledge (self-awareness) and the appro-
priate capability (self-expression). These features have to be made available at run time and at the
different stages during the development of autonomic components: In particular they are important
both when providing an abstract modeling of the autonomic system and when providing its concrete
implementation. But these features do play a key rôle also when the knowledge handler is designed.

This deliverable describes how such mechanisms are realized in ASCENS. We focus, in particular,
in abstract modeling techniques (SOTA and GEM), knowledge representation models (KnowLang and
soft constraints) and specification languages (SCEL).

1.1 Self-adaptation.

Self-adaptive systems have been widely studied in several disciplines ranging from Biology to Econ-
omy and Sociology. They have become a hot topic in Computer Science in the last decade as a con-
venient solution to the problem of mastering the complexity of modern software systems, networks
and architectures. In particular, self-adaptivity is considered a fundamental feature of autonomic sys-
tems, that can specialize to several other self-* properties like self-configuration, self-optimization,
self-protection and self-healing, as discussed for example in [20]. The literature on this topic enjoys
valuable works aimed at capturing the essentials of adaptivity both in the most general sense (see
e.g. [23]) and in specific fields such as that of software systems (see e.g. [39, 21]) providing in some
cases very rich surveys and taxonomies.

Despite of all these efforts, there is no general agreement on the notion of adaptivity in general or
in software systems, and no general consensus is perceived around a foundational model for adaptiv-
ity. According to widely accepted (though not very concrete as we shall see) definitions a software
system is called “self-adaptive” if it “modifies its own behavior in response to changes in its operating
environment” [34], where such “environment” or “context” has to be understood in the widest possible
way, including both the external environment and the internal state of the system itself. Typically, such
changes are applied when the software system realizes that “it is not accomplishing what the software
is intended to do, or better functionality or performance is possible” [38].

The limited success obtained in the investigation of the foundations of (self-)adaptive software
systems might be due to the fact that it is not clear what are the characterizing features that distinguish
such systems from plain (“non-adaptive”) ones. In fact, almost any software system can be considered
self-adaptive, according to the definitions recalled above, since any system of a reasonable size can
modify its behaviour (for example by following different branches at the same control point) as a
reaction to a change in its context of execution (like the change of variables or parameters).

The ASCENS project proposes concrete notions of adaptation from two perspectives: the black-
box one and the white box one. Early versions of both approaches and a brief discussion are described
in [3] and summarized below.

Black-box Adaptation Some approaches adopt the above definitions from a black-box (or behav-
ioral or observational) perspective (e.g. [19]), aimed at measuring how well a software system adapts
to some context for some purpose.

Such perspective focuses on the point of view of an observer and does not care about the internal

ASCENS 5

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

mechanisms by which the adaptive behavior is achieved. On the one hand, this standing is interesting
and useful for estimating or predicting the system robustness under some conditions. On the other
hand it is of little use for design purposes where modularization and reuse are critical aspects.

White-box adaptation Instead, white-box perspectives allow one to inspect, to some extent, the
internal structure of a system. They offer a clear separation of concerns to distinguish the cases where
the changes of behaviour are part of the application logic from those where they realize the adaptation
logic, calling adaptive only systems capable of the latter.

In general, the behavior of a component is governed by a program and according to the traditional,
basic view, a program is made of control (i.e. algorithms) and data. Therefore, one can say that control
and data are two conceptual ingredients that in presence of sufficient resources (like computing power,
memory or sensors) determine the behaviour of the component. The conceptual notion of adaptivity
of [7] requires to make explicit the fact that the behaviour of a component depends on some well
identified control data which can be changed to adapt the component’s behaviors. This definition of
adaptation is then very simple but quite concrete: Given a component with a distinguished collection
of control data, adaptation is the run-time modification of such control data.

From this basic definition one can immediately derive several others. A component is adaptable if
it has a distinguished collection of control data that can be modified at run-time. Further, a component
is adaptive if it is adaptable and its control data are modified at run-time, at least in some of its
executions. Moreover, a component is self-adaptive if it modifies its own control data at run-time.

The intrinsic subjectivity of adaptation is captured by the fact that the collection of control data
of a component can be defined, at least in principle, in an arbitrary way, ranging from the empty set
(“the system is not adaptable”) to the collection of all the data of the program (“any data modification
is an adaptation”). This means that the white-box perspective is as subjective as black-box one. The
fundamental difference lies in the responsible of declaring which behaviours are part of the adaptation
logic and which not: the observer (black-box) or the designer (white-box).

Summarizing, in order to adhere to the proposed white-box notion of adaptivity, when modelling
or specifying the behaviour of a system the designer can declare explicitly which behaviours are
adaptations simply by designating as control data exactly those data whose modification triggers,
according to his/her interpretation, an adaptation of the system.

1.2 Self-awareness, self-adaptation and self-expression in robot swarms.

In order to provide a more uniform and coherent presentation, all the approaches will focus on a
common scenario where self-adaptation, self-expression and self-awareness appear as suitable mech-
anisms to achieve a successful adaptive behavior. These three mechanisms should not be considered
as unrelated or independent. In fact, self-adaptivity and autonomicity mostly rely on an intelligent
cooperation between declarative aspects of the system, that should be able to keep at run time a
possibly abstract, up-to-date representation of the operating environment (context-) and of the sys-
tem itself (self-awareness), and the procedural aspects, that should be able to transfer the relevant
modification of the declarative representation into correspoding adaptation or reconfiguration actions
(self-expression).

Robot swarms operating in highly variable, unknown environments and having to solve their tasks
in a collaborative manner are not only one of the case studies (see [50, 49]) of the ASCENS project
but also an archetypal example of collective self-adaptive systems. Consider, for example, the case
of a robot that breaks down or gets trapped while performing its duties. Suppose further that the
robot starts emitting a rescue request in form of some signal. The members of the swarm that detect
the request have to decide whether to postpone their current activities and help the blocked robot.

ASCENS 6

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

Those robots that decide to start the rescue operation will need to face several problems, including
the presence of obstacles in the terrain which may hamper navigation or disturb the rescue request
signal. In order to be successful they have to adapt their behavior to such obstacles or other unex-
pected events (e.g. low battery, other help requests). That is, they cannot just run straightforwardly to
the help request signal but may need to self-adapt their routes and behaviors independently (e.g. by
circumventing the obstacle) or collectively (e.g. by forming assemblies or convoys or observing the
trajectories of other robots). The latter may require complex forms of collective adaptation, called
self-expression [51, 52], involving the coordination of individual adaptation strategies (e.g. enforc-
ing the change of one adaptation pattern to another, changing the shape of an assembly or the leader
of a convoy, etc.). All the decisions involved in this situation will be based on the awareness of
the robot, i.e. on its knowledge of the environment (context-awareness) and “about its own entities,
current states, capacity and capabilities, physical connections and relations with other systems in its
environment” (self-awareness) [47, 16].

The scenario is inspired by the experiments presented in [33], which were conducted on the
SWARM-BOT robotic platform [26] and is one of the three main scenarios considered in ASCENS .
We assume that the current situation is that of an irregular ground area where some robots have been
deployed, one of which is trapped in a small hole. We further assume that the trapped robot is able
to emit a rescue-request light. At least one of the remaining robots is able to sense that signal, while
the rest cannot. Unfortunately, the rescue signal consumes much more battery than ordinary signaling
due to the required intensity. The terrain between the safe robots and the trapped one is full of obsta-
cles: rocks of various size that have to be circumvented or climbed and might hide the light signal,
and holes, again of various size. The number of robots needed to pull the trapped robots outside the
hole is unknown. Indeed most of the above described information is unknown to the robots, but their
knowledge base can of course contain useful information to provide estimates (e.g. to estimate the
probability of successfully passing over a hole or the weight of a rock, etc.).

1.3 Structure of the Deliverable.

Section 2.1 is devoted to SOTA, a formalism for describing self-adaptation and self-awareness require-
ments. Self-adaptation is approached from a black-box perspective, by expressing the desired behavior
of a system in terms of the State Of The Affairs, i.e sets of trajectories in the space of possible system
configurations. A configuration represents all the relevant information of a system, including the in-
ternal status of components and their environment. In this manner SOTA specifications specify both
the relevant information the system should be aware of (i.e. its self-awareness), and which trajectories
the adaptive behavior of the system should guarantee (i.e. its self-adaptation requirements).

Section 2.2 overviews the GEM model, which provides a more detailed and formal counterpart
of SOTA specifications. The treatment of self-adaptation and self-awareness is also based on iden-
tifying the relevant information the system should be aware of and considering trajectories in the
corresponding space. In addition, the GEM approach allows to provide more detailed specifications
of the system’s adaptive behavior by means of specifications in an action planning language called
POEM, where one can specify the system domain (i.e. the signature for the SOTA/GEM space) and
the behavior of components, of ensembles and of the environment (by means of action rules).

Section 3.1 introduces the KnowLang framework, which supports the development of rich, ontology-
based knowledge structures as well as the implementation of reasoning mechanisms. The latter are
enacted by using a set of so-called policies, implementing a form of reactive reasoning. Policies are
triggered by situations and enable the execution of actions. In this framework, adaptation is realized
mainly in two ways: (1) via Tell actions, that update the knowledge-base, and (2) via effect-driven
re-computation of actions’ preference/probability, implementing a form of reinforcement learning.

ASCENS 7

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

Section 3.2 advocates soft constraints as a suitable mechanism for knowledge representation and
reasoning. Soft programming addresses the problem of knowledge representation, reasoning, and
adaptation in a uniform way: by providing a theory of constraints and its resolution, based on a
mechanism known as constraint propagation. Constraints can be defined on several domains and
are satisfiable up to a degree (soft), thus allowing for preferential/prioritized reasoning. Constraint
propagation is a well-understood and modular mechanism that is well suited for domains that require
to distribute both the knowledge representation and the reasoning tasks.

Section 4 provides a brief description of the specification/programming language SCEL, a Service
Component Ensemble Language, and shows how it can be used to implement the case study described
above by providing the SCEL code for significative parts of the code of the different robots. Two kinds
of programs are provided. Some are just simple SCEL specifications that thanks to the formal opera-
tional semantics of the languages are amenable to many qualitative and quantitative analysis. Others
are Java programs that exploit the language extension designed for dealing with key abstractions for
autonomic computing such as group based communication, knowledge manipulation, etc.. The direct
correspondence between the SCEL and the Java statements permits gaining confidence on the quality
of the executable code, once key properties have been assessed at the specification level.

2 Abstract Modelling

2.1 SOTA

A key open issue in the study of self-adaptive systems concerns the identification of a general require-
ments modeling framework upon which to ground software analysis and development activities. To
tackle this issue, we defined SOTA (“State Of The Affairs”) [1], a robust conceptual framework that
can act as an effective support to self-adaptive software development.

2.1.1 The Rationale behind SOTA

Traditionally, in the software engineering area, the requirements can be divided into two categories:
functional requirements (what the system should do) and non-functional requirements (how the system
should act in achieving its functional requirements, e.g., in terms of system performances, quality of
service, etc.).

In the area of adaptive systems, and more in general of open-ended systems immersed in dynamic
environments both functional and non-functional requirements are better expressed in terms of “goals”
[30]. A goal, in general terms, is a “state of the affairs” that an entity aims to achieve.

The idea of goal-oriented modeling of requirements naturally matches goal-oriented and inten-
tional entities (e.g., humans, organizations, and multi-agent systems). Therefore, since self-adaptation
is naturally perceivable as an “intentional” quality, goal-oriented modeling appears the natural choice
for self-adaptive systems, since it matches the “observable” intentionality of a system that takes actions
aimed at adapting its behavior.

Interestingly, goal-oriented modeling of self-adaptive systems enables a uniform and comprehen-
sive way of modeling functional requirements and non-functional ones, the former representing the
eventual state of affairs that the system has to achieve, and the latter representing the current state of
the affairs that the system has to maintain while achieving the goal.

As for the “state of the affairs” (from which the SOTA acronym derives), this represents the state
of everything in the world in which the system lives and executes that may affect its behavior and
that is relevant w.r.t. its capabilities of achieving. We could also say that such state of affairs is the
“context” of the systems.

ASCENS 8

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

Against this background, SOTA builds on the most assessed approaches to goal-oriented require-
ments engineering [30]. For modeling the adaptation dimension, SOTA integrates and extends recent
approaches on multidimensional modeling of context such as the Hyperspace Analogue to Context
(HAC) approach [37]. In particular, such generalization and extensions try to account for the general
needs of dynamic self-adaptive systems and components.

Figure 1: The trajectory of an entity in the SOTA space, starting from a goal precondition and trying
to reach the postcondition while moving in the area specified by the utility.

2.1.2 The SOTA Space

SOTA assumes that, for an entity e (let it be an individual component or an ensemble), its current
“state of the affairs” Se(t) at time t (or, for the sake of simplifying the notation, simply S(t)), can be
described as a tuple of n values, each representing a specific aspect of the current situation:

S(t) = 〈s1, s2, . . . , sn〉

As the entity executes, S changes either due to the specific actions of e or because of the dynamics
of e’s environment. Thus, we can generally see this evolution of S as a movement in a virtual n-
dimensional space S (see Fig.1):

S = S1 × S2 × . . .× Sn

Or, according to the standard terminology of dynamical systems modeling, we could consider S as
the phase space of e and its evolution (whether caused by internal actions or by external contingencies)
as a movement in such phase space.

To clarify, let us refer to the robotics case study and to the problem – described in the introduction
– of robots in charge of reaching a target in an adaptive way. There, it is clear that a robot lives in
a multidimensional SOTA space whose dimensions have to include the physical dimensions (i.e., the
spatial coordinates of the environment). However, other dimensions that may have to be fruitfully
included in the SOTA space may be the level of the batteries of a robot, its current speed, or the values
of some parameters sensed by its sensors. In fact, all these parameters may affect the capability of a
robot to properly execute and achieve what it was deployed for.

ASCENS 9

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

To model the evolution of the system in terms of “transitions”, θ(t, t + 1) expresses a movement
of e in the space S, i.e.,

θ(t, t+ 1) = 〈δs1, δs2, . . . , δsn〉, δs1 = (s1(t+ 1)− s1(t))

A transition can be endogenous, i.e., induced by actions within the system itself, or exogenous,
i.e., induced by external sources. The existence of exogenous transitions is particularly important
to account for, in that the identification of such source of transitions (i.e., the identification of which
dimensions of the SOTA space can induce such transition) enables identifying what can be the external
factors requiring adaptation.

For instance, in the robotic case study, any movement of the robot induces a transition in the SOTA
space, there included moving along the axis of the SOTA space representing the physical environment,
but also moving down the axis representing the battery level.

2.1.3 Goals and Utilities

A goal by definition is the eventual achievement of a given state of the affairs. Therefore, in very
general terms, a specific goal Gi for the entity e can be represented as a specific point, or more
generally as a specific area, in such space. That is:

Gi = A1 ×A2 × . . .×An, Ai ⊆ Si

In the case of a robot, a goal could be reaching a specific region of the physical space with a
minimum level of batteries.

A goal Gi of an entity e may not necessarily be always active. Rather, it can be the case that a
goal of an entity will only get activated when specific conditions occur. In these cases, it is useful to
characterize a goal in terms of a preconditionGprei and a postcondition Gprei , to express when the goal
has to be activated and what the achievement of the goal implies. Both Gprei and Gposti represent two
areas (or points) in the space S. In simple terms: when an entity e finds itself in Gprei the goal gets
activated and the entity should try to move in S so as to reachGposti , where the goal is to be considered
achieved (see Fig.1). A goal with no precondition is like a goal whose precondition coincides with the
whole space, and it is intended as a goal that is always active.

In the robotics case study, it could be the case that only when a robot “hears” via some sensor a
specific help signal from another robot (pre-condition) it activates the goal of reaching that robot to
rescue (post-condition).

As goals represent the eventual state of the affairs that a system or component has to achieve, they
can be considered functional requirements. However, in many cases, a system should try to reach
its goals by adhering to specific constraints on how such a goal can be reached. By referring again
to the geometric interpretation of the execution of an entity as movements in the space S, one can
say that sometimes an entity should try (or be constrained) to reach a goal by having its trajectory
confined within a specific area (see Fig.1). We call these sorts of constraints on the execution path
that a system/entity should try to respect as utilities. This is to reflect a nature that is similar to that of
non-functional requirements.

Like goals, a utility Ui can be typically expressed as a subspace in S, and can be either a general
one for a system/entity (the system/entity must always respect the utility during its execution) or one
specifically associated with a specific goal Gi (the system/entity should respect the utility while trying
to achieve the goal). For this latter case, the complete definition of a goal is thus:

Gi = {Gprei , Gposti , Ui}

ASCENS 10

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

For instance, in the robot case study, a utility can express the need to move while respecting a
minimal and a maximal speed. That it, by moving along a trajectory in the SOTA space that remains
within a specific interval of the speed dimension in the SOTA space.

In some cases, it may also be helpful to express utilities as relations over the derivative of a
dimension, to express not the area the trajectory should stay in but rather the direction to follow
in the trajectory (e.g., try to minimize execution time, where execution time is one of the relevant
dimension of the state of affairs). It is also worth mentioning that utilities can derive from specific
system requirements or can derive from externally imposed constraint.

A complete definition of the requirements of a system-to-be thus implies identifying the dimen-
sions of the SOTA space, defining the set of goals (with pre- and postcondition, and possibly associated
goal-specific utilities) and the global utilities for such systems, that is, the sets:

S = S1 × S2 × . . .× Sn

G = {G1, G2, . . . , Gm}

U = {U1, U2, . . . , U
e
p}

Of course, during the identification of goals and utilities, it is already possible to associate goals
and utilities locally to specific components of the system as well as globally, to the system as a whole.
Thus, the above sets can be possibly further refined by partitioning them among local and global ones.

2.2 GEM and POEM

SOTA is concerned with the overall domain and the requirements of the system. For this it is sufficient
to deal with the state of the affairs without regard for details such as the state’s internal structure or
the probabilities of the different trajectories. For a more detailed investigation of the structure and
behavior of ensembles we need a more expressive model. To this end, in parallel with the definition
of the SOTA model and in concert with it, we have defined the General Ensemble Model (GEM) [19],
a mathematical model for the behavior of ensembles in the state-of-the-affairs space, and the Pseudo-
Operational Ensemble Modeling Language (POEM), a modeling language based on GEM (and thus
SOTA). In Sect. 2.2.1 we introduce the notion of trajectory space on which the GEM model is based
and describe its relationship to situations and time in POEM; in Sect. 2.2.2 we show how goals and
utilities are used in GEM and POEM. In order to simplify the exposition we restrict ourselves to a
deterministic scenario, even though both GEM and POEM permit probabilistic extensions.

2.2.1 Trajectory Space, Situations, Fluents

In general, a system can behave in a non-deterministic manner and therefore have multiple possible
trajectories through the state space. If we know all possible trajectories of the system, we know
everything that the state space can express about the system.1 In GEM we identify a system Sys with
the set of all its possible trajectories in the SOTA space which we call the system’s trajectory space Ξ.
Writing T for the time domain, S for the state space, and F [T → S] for the set of all functions from
T to S, the trajectory space is simply Ξ = F [T → S]. Then, a system is a subset of the trajectory
space, Sys ⊆ Ξ.

The state of the affairs concept of SOTA can therefore also be expressed in an enriched way to
account for such trajectories: for each trajectory ξ of the system, and at each point in time t the state

1This does not hold in the probabilistic case where the probability distribution of trajectories gives additional information.

ASCENS 11

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

of affairs is the value Sys(ξ, t), which is a point of the state space S which we assume to be a product
of sets with the (finite or infinite) index set I:

Sys(ξ, t) = ξ(t) = 〈si〉i∈I ∈ S if ξ ∈ Sys.

In GEM we structure the state space as the result of an interaction between the ensemble and its
environment. We formalize this using the notion of a combination operator: let Ξens and Ξenv be the
trajectory spaces of the ensemble and environment, respectively2, and let ⊗ : Ξens × Ξenv → Ξ be
a partial map that is a surjection onto Sys, i.e., there exist Sysens ⊆ Ξens and Sysenv ⊆ Ξenv such
that Sysens ⊗ Sysenv = Sys. In this case we obtain a trajectory of the system for compatible pairs
of ensemble and environment trajectories in Sysens × Sysenv . We therefore regard the system as the
result of combining ensemble Sysens and environment Sysenv using the operator ⊗.

For example, in GEM we can structure a model of the robot ensemble as follows. First we define
the state space Srobot as the Cartesian product of the robot’s coordinates (R2) and its current state
{Exploring,Resting,Trapped}, and the trajectory space Ξrobot as usual

Srobot = R2 × {Exploring,Resting,Trapped}
Ξrobot = F [T → Srobot].

The model of each robot Sysroboti is a subset of the trajectory space consisting of all possible trajec-
tories that the robot can take through its state space: Sysroboti thus belongs to the powerset of Ξrobot

(written P(Ξrobot)). The ensemble consisting of all N robots has as state space Sens = (Srobot)N ,
as trajectory space Ξens = F [T → Sens], and the model of the ensemble, Sysens , can be obtained
from the models of the individual robots by a combination operator ⊗ : P(Ξrobot)N → P(Ξens) that
combines all trajectories of robots that are physically possible, i.e., ⊗ is essentially the canonical map
between P(Ξrobot)N and P(Ξens), but it removes those trajectories where robots would overlap in
space.

In this example, we define the state space for the environment as follows: We include the number
of observed items of interest (e.g. obstacles) in the area Items], a function Itemsloc : N → R2 so that
Itemsloc(i) gives the location of the i-th item of interest that was discovered, and the coordinates of
the robots to be rescued:

Senv = N×F [N→ R2]×P(R2).

As usual, the trajectory space of the environment is Ξenv = F [T → Senv] and each environment
Sysenv is a member of P(Ξenv). In this simple example, the state space S for the whole ensemble is
the product Sens ×Senv and the ensemble’s trajectory space is defined as F [T → S]; the combination
operator for ensemble and environment has then the signature

⊗ : P(Ξens)×P(Ξenv)→ P(Ξ)

and combines again all trajectories of the environment and the ensemble that are possible while re-
moving those combined trajectories that cannot happen (e.g., no robot can be outside the explored
area, and if no robot is in state Exploring during a time interval [t0, t1], then the number of observed
items cannot decrease between t0 and t1, etc.).

While the GEM model is conceptually simple, it quickly becomes tedious to write down the nec-
essary relations and combination operators without additional linguistic constructs. We have therefore

2Formally we have Ξens = F [T → Sens] where Sens =
∏
k∈K Sens

k , and Ξenv = F [T → Senv] where Senv =∏
l∈L Senv

l . Note that the sets Sens
k and Senv

l may be different from the sets Si that appear in the system’s state space
S =

∏
i∈I Si.

ASCENS 12

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

defined the POEM language which simplifies the specification of a large class of GEM models in
a style that resembles more traditional approaches to software development, without sacrificing the
generality of GEM models.

A POEM model consists of two parts: a domain specification and behavioral strategies. The
domain specification is a sorted first-order theory consisting of background knowledge that describes
general knowledge about the domain, constraints on the domain and an action theory that describes
which actions can be performed by components of the ensemble and the environment, and which
effects they have on the domain. An interpretation of the domain specification gives rise to a GEM
trajectory space; the possible execution traces of the model’s strategies give rise to the GEM system.
Therefore a POEM model formally corresponds to a class of GEM specifications.

POEM itself has few ontological commitments about the domain specification; the main restriction
is that control of the system is effected by discrete actions that “change” the value of functional or
relational fluents, and that the system is deterministic except for the choice of actions.3 We call a
sequence of actions a situation, and write s = [a1, . . . , an] for the situation that consists of performing
actions a1 to an in this order and s0 for the situation where no actions have been performed, s0 = [].
Each action a may have a precondition poss(a, s) that specifies in which situations s the action a can
be performed; often each action also has an associated time, written time(a) that specifies when the
action takes place. Typically the domain of time is the GEM model’s time domain T ; in that case the
situations describe the instances where direct control activities happen. We write s :: a for performing
action a in situation s, i.e., for performing a after performing all the actions in s. A fluent is a property
of the environment that may change over time, which is formally represented as a function or relation
with exactly one situation argument and no action argument; “changes” of the fluent happen if a fluent
has different values for different situations.

Part of the domain specification for the robot domain is given in Fig. 2. To simplify the speci-
fication we ignore the time that a robot needs for moving. The functional fluent location describes
the location of an object, robot-state describes a robot’s state in a given situation; the relational fluent
found-item is true if the robot has discovered an item. The action move is only possible when the
robot is not currently trapped and if the goal location is not occupied by another robot.4 Its effect is to
take the robot to the specified position if there is no hole along the path; otherwise the robot becomes
trapped in the location of the hole. Note that we do not specify domain closure axioms since these
can be automatically generated. We expect that the domain specification will often be provided in
the KnowLang language (see Sect. 3.1) which offers more elaborate constructs for knowledge rep-
resentation, but can be translated into the POEM primitives in a straightforward manner. We discuss
behavioral specifications after introducing goals and utilities in the next section.

2.2.2 Goals, Utilities and Strategies

GEM is intended to serve as semantic foundation for various kinds of calculi and formal methods
which often have a particular associated logic. We define the notion of goal satisfaction “System Sys
satisfies goal G,” written Sys |= G in a manner that is parametric in the logic and in such a way that
different kinds of logic can be used to describe various properties of a system (see [19] for details).
In POEM models, goals correspond directly to relations in the domain specification, since the two
possible interpretations for Sys |= G (as logical entailment and goal satisfaction in GEM) coincide.

Strategies in POEM serve to connect goal-based requirements specifications in the style of SOTA
with concrete process models, such as those introduced by SCEL (see Sect. 4). POEM strategies con-

3Note that this restriction is not as severe as it may appear at first. In particular, it allows the specification of contin-
uous deterministic control and probabilistic behaviors and control and therefore, e.g., of Markov Decision Processes with
probabilistic (stationary and non-stationary) policies. It does not allow for continuous probabilistic control.

4We use the abbreviation (∃ 6=r1, . . . rn).P for (∃r1, . . . rn).r 6= r1 ∧ · · · ∧ rn−1 6= rn ∧ P .

ASCENS 13

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

sort action
sort situation
sort position
sort rstate
sort obj
subsort robot < obj
constant ri : robot
constant pi : position

fluent robot-state : robot× situation→ rstate
fluent found-item : robot× situation
fluent ready? : robot× robot× situation
fluent location : obj× situation→ position
action move(r, p) : robot× position→ action

pre poss(move(r, p), s) ⇐⇒
(
¬(robot-state(r, s) = Trapped)

∧¬(∃6=r′ : robot).location(r′, s) = p
)

eff location(r, s :: move(r, p)) = q
∧ robot-state(r, s :: move(r, p)) = Trapped if hole at q

location(r, s :: move(r, p)) = p otherwise

Figure 2: POEM domain specification for the robot example

sist of preconditions, maintain goals and achieve goals, as well as an optional process description.
Strategies, goals and processes are first class values that can be inspected, passed as parameters, dy-
namically created, loaded or communicated to other service components, etc. Strategies can refer to
goals in the domain and, e.g., use them to select other strategies for achieving sub-goals; this enables
a straightforward specification of goal-driven architectures as described in Sect. 2.1; the possibility
to communicate goals and strategies between SCs together with the availability of a logical domain
model enables sophisticated ways of achieving white-box adaptation. We call a strategy fully specified
if it has a process description that either references no other strategy or only fully specified strategies.

POEM processes are specified in a non-deterministic, goal-directed, concurrent, higher-order ac-
tion language. The family of action languages [40] is comprised of languages whose primitive actions
correspond to actions in a logical domain specification; in order to execute a primitive action its pre-
condition must be satisfied.5 Programming and modeling-language constructs are layered on top of the
primitive actions to allow the concise specification of behavior in the domain modeled by the domain
specification. The POEM strategy language includes operators for non-deterministic choice of ac-
tion or parameters and supports both don’t care (committed choice) and don’t know non-determinism;
like most concurrent languages it defaults to committed choice. POEM supports concurrent execu-
tion of strategies, with a concurrency model based on that introduced by SCEL (see Sect. 4). If the
primitive actions of the domain model and the reasoning process for computations with don’t know
non-determinism can be represented by operations on SCEL knowledge repositories, a fully specified
POEM strategy corresponds to a SCEL process together with a specification of its preconditions and
effects.6

To give a simple example we specify a strategy that generates a plan to satisfy the SOTA-Goal
G = {Gpre, Gpost, U} whenever this is possible in the underlying action theory: The pick-such-
that-do operation non-deterministically chooses a value for its argument that satisfies the condition
given in its second clause and continues the execution of the strategy with a binding for the chosen
value; loop is a non-deterministic loop that executes its body zero or more times; holds? checks a
condition and fails if the condition is false. wait is similar to holds?, but blocks the strategy until its
argument (a logical formula in the domain theory) becomes true. The operation search executes its
body “off-line”, using don’t know non-determinism, therefore we obtain a plan to satisfy G by:

search(
wait(Gpre);
loop(pick(a : action) such-that holds?(U) do(a));
holds?(Gpost))

5Note that this notion of action language is distinct from the action calculi introduced in [25].
6Since SCEL is parametric in the choice of model for knowledge repositories, the required reasoning about the domain

can be captured in SCEL by defining appropriate semantics for the get, put and qry operations.

ASCENS 14

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

initially location(r1, s0) = p1(
call-for-help(r1)∗ � help(r1)∗ � random-walk(r1)∗

)
‖
(
call-for-help(r2)∗ � . . .

)
strategy random-walk(r : robot)

proc while (¬found-item(r, now)) do pick(p : position); move(r, p) end
goal found-item(r,now)

strategy help(r : robot)
pre (∃6=r′ : robot).robot-state(r′,now) = Trapped

bind rt : robot
proc pick(rt : robot)

such-that robot-state(rt,now) = Trapped;
pick(p : position)
such-that (adjacent(p, location(rt,now)) ∧ ¬(∃6=r′′ : robot).location(r′′,now) = p)
do move(r, p);
ready-to-rescue(r, rt);
wait ((∃6=r1, r2).ready?(r1, rt,now) ∧ ready?(r2, rt,now));
rescue({r, r1, r2}, rt)

goal ¬robot-state(rt,now) = Trapped

Figure 3: POEM behavioral specification for the robot example

This purely planning-based approach is obviously unsuitable for most domains since the search
space of all actions is prohibitively large even for modest problems. Therefore typical POEM strategies
consist of a mix of pre-defined behaviors and non-deterministic choices. Some strategies for the robot
scenario are shown in Fig. 3.

The strategy random-walk shows a possible implementation of a random walk until the robot
has found an item. It uses non-deterministic choice to select the next position and then executes the
primitive action move to move the robot to the chosen position. The while-loop ensures that this
behavior is repeated until the robot has discovered an item. Note that the goal clause in the strategy
specifies only partial correctness; there is no guarantee that the robot will ever discover an item, and
the strategy also does not take into account the possibility of the robot becoming trapped.

Instead of integrating the behaviors for a breakdown and for providing help into a single strategy
we prefer to model these concerns by two strategies executing concurrently with the basic random-
walk strategy. Concurrent execution of strategies can be controlled by policies; for simplicity we use
two operators in the example: ‖ represents unrestricted interleaving and is used to model the behavior
of independent robots; S1 � S2 is a concurrent form of execution where strategy S1 is performed
whenever possible, and S2 is only executed when S1 is finished and its precondition is not applicable.
The strategy call-for-help has the highest priority, so no other strategy will be tried while the robot is
trapped. The strategy help has priority over random-walk, so whenever a robot knows about another
robot being trapped it will try to help rather than continue to explore. This strategy also shows how
several robots can synchronize using the shared fluent ready?.

A more detailed discussion of POEM can be found in the Technical Report [18].

3 Knowledge Representation Modelling

3.1 KnowLang

Developing intelligent systems with Knowledge Representation and Reasoning (KR&R) has been an
increasingly interesting topic for years. Examples are found in semantic mapping [14], improving
planning and control aspects [31], and most notably HRI systems [22, 17]. Overall, KR&R strives to
solve complex problems where the operational environment is non-deterministic and a system needs

ASCENS 15

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

to reason at runtime to find missing answers.
One of the main scientific contributions that we expect to achieve with ASCENS is related to

KR&R where within the WP3’s mandate we are currently developing the KnowLang framework. A
key feature of KnowLang is a formal language with a multi-tier knowledge specification model allow-
ing for integration of ontologies together with rules and Bayesian networks [32]. The language aims
at efficient and comprehensive knowledge structuring and awareness based on logical and statistical
reasoning. It helps us to tackle [44] 1) explicit representation of domain concepts and relationships;
2) explicit representation of particular and general factual knowledge, in terms of predicates, names,
connectives, quantifiers and identity; and 3) uncertain knowledge in which additive probabilities are
used to represent degrees of belief. Other remarkable features are related to knowledge cleaning (al-
lowing for efficient reasoning) [44] and knowledge representation for autonomic behavior [46]. By
applying the KnowLang’s multi-tier specification model we build a Knowledge Base (KB) structured
in three main tiers [44]: 1) Knowledge Corpuses; 2) KB Operators; and 3) Inference Primitives. The
tier of Knowledge Corpuses is used to specify KR structures. The tier of KB Operators provide access
to Knowledge Corpuses via special classes of ASK and TELL Operators where ASK Operators are
dedicated to knowledge querying and retrieval and TELL Operators allow for knowledge update.

3.1.1 Structuring Knowledge with KnowLang

When we specify knowledge with KnowLang, we build a KB with a variety of knowledge structures
such as ontologies, facts, rules and constraints where we need to specify the ontologies first in order to
provide the ”vocabulary” for the other knowledge structures. A KnowLang ontology is specified over
concept trees, object trees, relations and predicates. Each concept is specified with special properties
and functionalities and is hierarchically linked to other concepts through PARENTS and CHILDREN
relationships. In addition, for reasoning purposes every concept specified with KnowLang has an in-
trinsic STATE attribute that may be associated with a set of possible state values the concept instances
may be in. The concept instances are considered as objects and are structured in object trees. The
latter are a conceptualization of how objects existing in the world of interest are related to each other.
The relationships in an object tree are based on the principle that objects have properties, where the
value of a property is another object, which in turn also has properties. Moreover, concepts and ob-
jects might be connected via relations. Relations connect two concepts, two objects, or an object with
a concept and may have probability-distribution attribute (e.g., over time, over situations, over con-
cepts’ properties, etc.). Probability distribution is provided to support probabilistic reasoning and by
specifying relations with probability distributions we actually specify Bayesian networks connecting
the concepts and objects of an ontology.

Figure 4 shows a KnowLang specification sample demonstrating both the language syntax [41]
and its visual counterpart - a concept map based on interrelations with no probability distributions.

Modeling knowledge with KnowLang [45, 43] goes over a few phases:

1. Initial knowledge gathering - involves domain experts to determine the basic notions, relations
and functions (operations) of the domain of interest;

2. Behavior definition - identifies situations and behavior policies as ”control data” helping to
identify important self-adaptive scenarios

3. Knowledge structuring - encapsulates domain entities, situations and behavior policies into
Knowlang structures like concepts, properties, functionalities, objects, relations, facts and rules.

ASCENS 16

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

Figure 4: KnowLang Specification Sample

3.1.2 Modeling Self-adaptive Behavior with KnowLang

KnowLang employs special knowledge structures and a reasoning mechanism for modeling autonomic
self-adaptive behavior [46]. Such a behavior can be expressed via KnowLang policies, events, actions,
situations and relations between policies and situations (see Definitions 1 through 9). Policies (Π) are
at the core of autonomic behavior. A policy π has a goal (g), policy situations (Siπ), policy-situation
relations (Rπ), and policy conditions (Nπ) mapped to policy actions (Aπ) where the evaluation of
Nπ may eventually (with some degree of probability) imply the evaluation of actions (denoted with

Nπ
[Z]→ Aπ) (see Definition 2). A condition is a Boolean expression over ontology (see Definition 4),

e.g., the occurrence of a certain event.
Policy situations Siπ are situations (see Definition 6) that may trigger (or imply) a policy π,

in compliance with the policy-situations relations Rπ(denoted with Siπ
[Rπ]→ π), thus implying the

evaluation of the policy conditions Nπ(denoted with π → Nπ)(see Definition 2). Therefore, the
optional policy-situation relations (Rπ) justify the relationships between a policy and the associated
situations (see Definition 9). Note that in order to allow for self-adaptive behavior, relations must
be specified to connect policies with situations over an optional probability distribution (Z) where a
policy might be related to multiple situations and vice versa. Probability distribution is provided to
support probabilistic reasoning and to help the reasoner to choose the most probable situation-policy
”pair”. Thus, we may specify a few relations connecting a specific situation to different policies to
be undertaken when the system is in that particular situation and the probability distribution over
these relations (involving the same situation) should help the reasoner decide which policy to choose

(denoted with si
[Z]→ π - see Definition 9). Hence, the presence of probabilistic beliefs at both mappings

and policy relations justifies the probability of policy execution, which may vary with time.
A goal g is a desirable transition to a state or from a specific state to another state (denoted with

s⇒ s′) (see Definition 5). A situation is expressed with a state (s), a history of actions (A ←si) (actions
executed to get to state s), actions Asi that can be performed from state s and an optional history of
events E ←si that eventually occurred to get to state s (see Definition 7).

Def. 1 Π := {π1, π2,, πn}, n ≥ 0 (Policies)

ASCENS 17

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

Def. 2 π :=< g, Siπ, [Rπ], Nπ, Aπ,map(Nπ, Aπ, [Z]) > (Policy)

Aπ ⊂ A,Nπ
[Z]→ Aπ (Aπ - Policy Actions)

Siπ ⊂ Si, Siπ
[Rπ]→ π → Nπ (Siπ - Policy Situations)

Rπ ⊂ R (Rπ-Policy-Situation Relations)

Def. 3 Nπ := {n1, n2,, nk}, k ≥ 0 (Policy Conditions)

Def. 4 n := be(O) (Condition - Boolean Expression over Ontology)

Def. 5 g := 〈⇒ s′〉|〈s⇒ s′〉 (Goal)

Def. 6 Si := {si1, si2,, sin}, n ≥ 0 (Situations)

Def. 7 si :=< s,A
←
si , [E

←
si], Asi > (Situation)

A
←
si⊂ A (A ←si - Executed Actions)

Asi ⊂ A (Asi - Possible Actions)
E
←
si⊂ E (E ←si - Situation Events)

Def. 8 R := {r1, r2,, rn}, n ≥ 0 (Relations)

Def. 9 r :=< π, [rn], [Z], si > (Relation, rn - Relation Name, Z - Probability Distribution)

si ∈ Si, π ∈ Π, si
[Z]→ π

KnowLang policies can be built to impose behavior based on POEM’s strategies. Ideally, policies
are specified to handle specific situations, which may trigger the application of policies. A policy ex-
hibits a behavior via actions generated in the environment or in the system itself. Specific conditions
determine, which specific actions (among the actions associated with that policy - see Definition 2)
shall be executed. These conditions are often generic and may differ from the situations triggering the
policy. Thus, the behavior not only depends on the specific situations a policy is specified to handle,
but also depends on additional conditions. Such conditions might be organized in a way allowing for
synchronization of different situations on the same policy. When a policy is applied, it checks what
particular conditions are met and performs the mapped actions (see map(Nπ, Aπ, [Z]) - see Defini-
tion 2). An optional probability distribution may additionally restrict the action execution. Although
initially specified, the probability distribution at both mapping and relation levels is recomputed after
the execution of any involved action. The re-computation is based on the consequences of the action
execution, which allows for reinforcement learning.

Please refer to D3.2 [48] for more details on the KnowLang specification formalism.

3.1.3 ASK and TELL Operators and KnowLang Reasoner

KnowLang is to be supplied with a special KnowLang Reasoner, which in addition to the trivial
knowledge-querying and knowledge-updating tasks will support self-adaptive behavior retrieval. The
KnowLang Reasoner operates in the KR Context (it operates with KR symbols only) and the system
talks to the reasoner via the ASK and TELL Operators [42]. TELL Operators feed the KR context
with important information driven by errors, executed actions, new sensory data, etc., thus helping the
KnowLang Reasoner to update the KB with recent changes in both the system and execution envi-
ronment. The system uses ASK Operators to receive recommended behavior (e.g., ASK BEHAVIOR
Operator [42]) where knowledge is used against the perception of the world to generate appropriate

ASCENS 18

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

actions in compliance to some goals and beliefs. In addition ASK Operators may provide the system
with awareness-based conclusions about the current state of the system or the environment.

For example, when called the ASK BEHAVIOR Operator [42] will ask the Reasoner to gener-
ate a self-adaptive behavior by considering the actual situation the system is currently in. Thus, it
looks up for the current situation by estimating the current system state and then evaluates the rela-
tions of that situation with policies to determine which policy to apply. There are also other variants
of the ASK BEHAVIOR Operator, e.g., the system may ask for a self-adaptive behavior to achieve
a particular goal or a behavior that will lead the system out of a particular situation. Note that the
ASK BEHAVIOR operates exclusively in the KR Context and thus, the relevance of its output highly
depends on the relevance of the knowledge stored in the KB. Thus, it is very important that the system
feeds the KB with any important relevant information about the system itself and the execution envi-
ronment, e.g., errors, sensory data, raised events, executed actions, etc. Therefore, if we assume that
the system is implemented in SCEL, then in the program there should be explicit SCEL calls of both
TELL and ASK Operators any time when the system has to pass/get information to/from the KB.

3.1.4 Case Study

To illustrate autonomic self-adaptive behavior based on this approach, we are going to elaborate on
the ”trapped robot case study” by assuming that the trapped robot keeps sending a help signal and
Robot A is receiving that signal. Eventually, the sensory data representing the received signal will
be passed to the Robot’s KB via system calls of TELL Operators. Then, the system may call an
ASK BEHAVIOR operator to get the most appropriate behavior in the current situation. Let us assume
that we have used KnowLang to specify a KB for Robot A where in addition to another explicit
knowledge, we have also specified policy π1 (see Figure 5). Although we are missing the basic
specification of the involved actions, goal, situation and relation, we can conclude that the current
situation si1:”a robot needs assistance” will trigger a policy π1:”go to the signal source” if the
relation r1(si1, π1) has the higher probabilistic belief rate. The π1 policy will realize actions Turn and
Move iff the robot’s battery is charged at least 50% and there is no another higher priority task to finish
up first (currently ongoing or scheduled). The ASK BEHAVIOR Operator will return the generated
behavior as a sequence of actions, e.g., {Action.Turn(Action.GetSignalAngle), Action.Move}.

Figure 5: KnowLang Policies

Next, Robot A will perform the generated actions and will start moving towards the signal. Let us
assume that while moving, at certain point, Robot A will hit a wall and get into a situation si2:”road
is blocked”, which by specification is related to policy π2:”avoid obstacle” (see Figure 5). Policy
π2 will force the robot to turn right and move, because of the initial probability distribution in the
MAPPING sections. Eventually, Robot A will reach a hole in the wall and thus, will accomplish the

ASCENS 19

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

π2’s goal g2:”free road”. Then it will go back to the initial situation si1:”a robot needs assistance”,
which will trigger the policy π1:”go to the signal source” and the robot will start moving again towards
the trapped robot. Let us suppose that there are more walls on the route to the trapped robot and any
time when Robot A gets into situation si2:”road is blocked” it will continue applying the π2 policy
by avoiding the wall from the right side until it hits a very long wall on the right side and gets into a
situation si3:”signal is lost”. This new situation shall trigger another policy π3:”go back until signal
appears”, which will move the robot back to a point where the help signal appears again and then,
the robot will get back to situation si2 and policy π2. Following π2, the robot can fall again into si3
and then back to si2. However, every time when policy π2 fails to accomplish its goal g2:”free road”,
the KnowLang Reasoner re-computes the probability distribution in the MAPPING sections, which
eventually may lead to a point where by applying policy π2 the robot will turn left and move, i.e., it
will self-adapt to the current situation and will try to avoid the wall from the left side.

3.2 Soft Constraints

This section describes our efforts to integrate constraint-based features to support or enrich knowl-
edge and adaptation mechanisms. We start in Section 3.2.1 with a short overview of soft constraints
and their use for adaptation purposes. Next (Section 3.2.2), we move to the integration of constraints
within KnowLang [29], aimed at obtaining a more flexible way of specifying knowledge. Last (Sec-
tion 3.2.3) we focus on need to deal with emergent and distributed knowledge, which requires the uses
of distributed constraint handling mechanisms.

3.2.1 Constraints and Adaptation

Constraint Satisfaction Problems A connection graph [28] is a tuple 〈N,A, a, c〉, where N is a set
of nodes, A is a set of arcs, a ∈ A is an interface arc, and c is a connection function. Connection
function c =

⋃
k(Ak → Nk) is a correspondence between arcs and nodes: c(h) = 〈x1, . . . , xk〉 is

a tuple of nodes connected by h, xi 6= xj when i 6= j. Additionally, A = ∪kAk is a ranked set:
each h ∈ Ak is an arc connected to k nodes. We refer to the connection graph by writing: a ← G,
where G = 〈N,A, c〉. Labeled arcs are sometimes used to introduce additional functions in the tuple
assigning a label to every arc. A network of constraints [28] is a pair C = a← G | l, where a← G is
a finite connection graph, whose nodes are variables and arcs are constraints; l is a labelling function
l :
⋃
k(Ak → P (Uk)), where U is a finite set of values for the variables of C; P (Uk) is the set of all

k-relations on U . Solving a network of constraints is called a constraint satisfaction problem (CSP).
Let C = a ← G | l, G = 〈N,A, a, c〉, n = #N , and 〈x1, . . . , xn〉 be any ordering of the variables
of N . Given that v = 〈v1, . . . , vn〉 is n-tuple of values of U , let us set v|〈xi1,...,xim〉 = 〈vi1, . . . , vim〉.
The solution of network C is the set {〈v1, . . . , vn〉|c(a) : ∀b ∈ A, 〈v1, . . . , vn〉|c(b) ∈ l(b)}. In other
words, the CSP for a network of constraints is to find the set of all the assignments of the variables
connected by the interface arc such that every such assignment can be extended to an assignment of
all the variables in N which satisfies all the constraints in A [28].

Solving Constraint Satisfaction Problems Constraint propagation turns a constraint satisfaction
problem into an equivalent one that is easier to solve [2] by enforcing some kind of local consistency.
This can be done by applying a set of relaxation rules. Let C = a← G | l be a network of constraints.
A relaxation rule r is any subgraph r = b← F of a← G. Applying the relaxation rule r to C means
solving the network b ← F | l and then setting the labelling function of the corresponding subgraph
as implied by the obtained solution. It was proved that a relaxation rule returns an equivalent network
of constraints [28]. A generic relaxation algorithm works by applying a number of relaxation rules
until no more changes can be done (in this case, we reach a stable network).

ASCENS 20

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

Given two disjoint graphs a← G and a′ ← G′ with G = 〈N,A, c〉, G′ = 〈N ′, A′, c′〉, and an arc
b ∈ A with rank(b) = rank(a′), the replacement of b with a′ ← G′ in a← G is the new graph a←
H = a ← G[a′ ← G′] obtained by identifying b with a′ and the tuple of nodes connected to b with
the tuple of nodes connected to a′. A Hypergraph Replacement System (HRS) is a pair 〈a ← G,P 〉
where a← G is the initial graph and P is a set of productions graphs. The graph language generated
by a HRS is the set of graphs of the form a← H = a← G[a1 ← G1] . . . [an ← Gn], where graphs
ai ← Gi, i = 1, . . . , n, are in P . Sequence 〈a1 ← G1 , . . . , an ← Gn〉 is a derivation of a← H .

It is possible to prove [28] that the relaxation algorithm which, beginning from a network of
constraints a ← H | l, applies to it in the reverse order the relaxation rules corresponding to a
derivation of a ← H , including the initial graph itself, namely the relaxation rules an ← Gn, . . .,
a1 ← G1 and a ← G, is perfect. A perfect relaxation algorithm applies every relaxation rule only
once and the relation in the interface arc of the resulting graph is the solution of the initial network
of constraints a ← H | l. As a consequence, in the finite case (all graphs, N and P being finite)
a perfect relaxation algorithm provides a linear solution algorithm for any class of networks whose
graphs are included in the language of some HRS. A perfect relaxation algorithm can be understood
as an application of the dynamic programming solution method. Given a HRS H, a hierarchical
network of constraints is a network of constraints and a derivation sequence for its graph inH.

From crisp to soft constraints and how to program them for adaption purposes Classical CSPs
are not well-suited in several real-life scenarios. Indeed, CSPs are not able to model constraints
that are preferences rather than strict requirements or to provide a ”non-complete” solution when
the problem is over- constrained. A soft CSP [4] handles an enriched network of constraints where
constrains rather than returning booleans yield more informative values, such as preference values,
fuzzy values, probabilities or costs, which form a constraint semiring. Relaxation algorithms can
be applied only in some cases, while dynamic programming (perfect relaxation) is always effective.
Within ASCENS, soft constraints have been shown to be expressive enough to offer a declarative view
of several optimization problems relevant to the e-mobility case study [27].

Ordinary logic programming (LP) can be considered as an extension of CSP where: (i) disjunction
is available; (ii) the network structure is recursively defined; and (iii) predicates concern assignments
to Herbrand terms rather than only to constants. LP can be extended to soft constraint LP [5] (SCLP),
by extending predicates to functions yielding constraint semiring values. Soft concurrent constraint
programming [6, 10] is a programming paradigm which includes, besides constraints, a procedural
part, in process algebra style, and guard primitives like ask, tell and guarantee negotiation constructs.
Future work is planned to integrate soft constraint programming into SCEL.

As explained in Section 1.2 adaptation often relies on a convenient interaction between proce-
dural and declarative information. (Soft) constraint programming is a well studied approach where
both aspects are structured and consistently interacting. Thus its relevance to adaptation is clear. In
the white box approach to adaptation studied in ASCENS, at least some of the constraints should be
considered as part of the control data, i.e. of those data that should be modified in the process of adap-
tation. If constraints are modeling nontrivial knowledge, constraint management could be complex,
and certainly not monotone. However, as explained in Section 3.2.3, also the process of constraint
propagation can be considered as an important mechanism for adapting and making consistent the
behavior of systems.

ASCENS 21

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

3.2.2 Hierarchical Constraints for KnowLang

le#	

right	

le#wheel1	

rightwheel1	

global1	

pair	

le#	

right	

le#wheel2	

rightwheel2	

global2	

pair	

le#	

right	

le#wheel3	

rightwheel3	

global3	

pair	

OK	

robot	

GLOBAL	

Figure 6: A network of constraints.

For the purpose of obtaining a more flexible way of spec-
ifying knowledge representation in ASCENS, an integra-
tion of the constraints paradigm with KnowLang has been
recently proposed [29]. The approach extends KnowLang
with a technique where knowledge can be enriched as spe-
cial restrictive rules that may require full or partial satisfac-
tion, and represent special liveness properties.

The approach has been applied to derive a knowledge
representation structure for the marXbot mobile robotics
platform [29]. The hierarchical structure of the ontol-
ogy is reflected in the tree structure (where additionally
the branches are connected through a bounded number of
nodes) of the (soft) constraint network.

In general, the comprehensive structuring of KnowLang should be matched by a corresponding
articulation of the soft CSP part. Hierarchical networks of constraints are well suited for this pur-
pose since, as we mentioned, they are equipped with linear solution algorithms. For instance, the
specification of the locomotion system of the marXbot robot [29] includes the following two clauses.

robot(GLOBAL) :- OK(GLOBAL,global1,global2,global3),
pair(global1),pair(global2),pair(global3)

pair(global) :- left(global,leftwheel),right(global,rightwheel)

They can actually be interpreted as productions, where pair and robot arcs are the interface arcs. The
generated network is shown in Figure 6. Notice that the second production has been employed three
times, and that fresh nodes have been introduced. Notice that the graph is tree-like. This is due to the
fact that all the interface arcs have rank 1. In general the structure of the generated graph is that of a
thick tree, i.e. trees where the branches are connected through a bounded number of nodes.

3.2.3 Constraints and Emergent Knowledge

Very often knowledge is emergent and distributed: it changes over time; local knowledge does not cor-
respond to global knowledge, and new information is unequally distributed. Additionally, knowledge
may be uncertain or not completely available.

Each service component can represent knowledge as a set of constraints about himself and the
surrounding world: (K1, C1), (K2, C2), . . . , where Ci are the constraints, and Ki are the keys that
explain the meaning of the constraints (e.g. distance, temperature, danger level). Constraints are a
generic way to represent knowledge, and constraint operations correspond to knowledge operations.

As explained in [36] knowledge representation styles can be integrated, and distributed constraint
handling techniques can carry on deduction steps and consistency checks, where the local, specific
knowledge interacts with the constraint representation via suitable interfaces.

Emergent knowledge needs to be discovered and combined with existing knowledge. When a ser-
vice component discovers new information, its local knowledge can propagate to become global. The
process starts with neighbours by achieving some kind of local consistency, and propagates further.

3.2.4 Soft constraints in the case study

Consider the case study of this deliverable and the situation depicted in Figure 7 (a), where where
robots (small circles) must avoid the obstacles A and B. Each robot keeps track of the distance and
the angle to the obstacle. Because of measure errors, a robot uses an estimation of its own location

ASCENS 22

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

A

B

r

x
y

z

(a) (b)

Figure 7: (a) Robot r and all robots within the range (x, y, z) form an ensemble, and adapt their
control data concurrently. (b) Two robots combine their control data represented as constraints.

with a specific degree of certainty. With the distance, uncertainty grows. We consider a 10% error: a
measure error up to 1 cm for each 10 cm.

In order to estimate its own position over time, robots may apply social odometry [15] techniques,
where robots exchange location information with robots within communicating range (i.e. ensem-
bles), and adjust their own estimation accordingly. While changes in data about orientation and dis-
tance when moving according to robot plans can be considered as ordinary evolution, changes to their
planning data as a consequence of interaction with other robots should be seen as adaptation.

We use a rectangle to represent a robot’s beliefs about his own location: a robot believes he can
be located anywhere within the rectangle. We can see this as a constraint. With a higher uncertainty,
the rectangle will be larger. Our assumption is that the distance to an obstacle is uncertain and needs
to be adjusted. When two robots meet, they combine their location information in the following way
(Figure 7b): knowing the distance and the angle between the two robots, we move one rectangle in
the direction to the other, and compute an intersection. A smaller rectangle can be received as a result.
We can see this as achieving some kind of local consistency, or propagation of constraints. Constraint
propagation can be computed concurrently for all robots within the ensemble.

This example highlights the convenience of constraint propagation in scenarios with distributed
and emergent knowledge. To deal with more sophisticated scenarios, we may proceed in many ways,
both in terms of the knowledge actually represented in the constraints, and in terms of the kind of
global effects which can emerge from propagation. The linguistic constructs of SCEL look quite
convenient, with the logically defined notion of ensemble, for modeling both the dynamic interaction
taking place during constraint propagation and the structural nature of hierarchical constraints.

4 Languages

Models of computation, and languages, for self-aware, self-adaptive and self-expressive autonomic
components and ensembles need to include: (i) procedural components; (ii) declarative knowledge
representation components and their bookkeeping primitives; and (iii) primitives to allow for the in-
teraction of the two components. The latter part requires innovative ideas, since adaptivity and au-
tonomicity rely mostly on an intelligent cooperation between procedural and declarative aspects of
system behavior. To this aim, in this section we briefly sketch a dialect of the SCEL language, that
relies on a simple notion of knowledge structured as a set of data tuples. There is obviously a contin-
uum of alternatives between this basic choice that leaves all control to the programming language and
the possibility of delegating all decisions to the knowledge handler modelled in the style of KnowL-
ang. At the end of this section, we perform an initial step in the direction of having a “more active”
knowledge handler by briefly considering the impact of an approach that relies on constraint-based
knowledge. For a more detailed account of the work on SCEL, the reader is referred to [35].

ASCENS 23

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

4.1 SCEL: Service Component Ensemble Language

SCEL [11, 13, 12] provides abstractions explicitly supporting autonomic computing systems in terms
of Behaviors, Knowledge and Aggregations, according to specific Policies. Behaviors describe how
computations progress. Knowledge provides the high level primitives to manage pieces of relevant
information coming from different sources, a distinction is assumed between application data and
control data, the latter being used exactly for guaranteeing self-awareness and adaptation. Aggrega-
tions describe how different entities are brought together to form components and ensembles and to
offer the possibility to construct the software architecture of autonomic systems. Policies control and
adapt the actions of the different components. For the sake of simplicity, in this section, we do not
consider policies explicitly while assuming that all the interactions are always permitted.

In SCEL, behaviours are modeled as processes executing actions, in the style of standard process
calculi. Actions of the form get(T)@c, qry(T)@c and put(t)@c are used to withdraw, retrieve, add
information items from/to the knowledge repository identified by c. In this deliverable we assume a
very simple knowledge manager: the knowledge items are just sequences of values, i.e. tuples, and the
operations on the knowledge manager permit adding, removing and reading tuples. Actions get(T)@c
and qry(T)@c rely on pattern-matching wrt a given template (sequences of values and variables) to
select a tuple from the tuple space and remove it or just take into account the necessary variable
bindings to be used in the continuations7. Both these actions are blocking. A process executing
get(T)@c or qry(T)@c is blocked until a tuple matching T is found. Action put(t)@c simply adds
tuple t to the knowledge repositories of the components identified by c.

Composition of components and their interaction is implemented by exploiting the notion of inter-
face. A component’s interface can be inquired to extract information about the component, its status
or its execution environment, as well as the services offered by the component. In fact, the interface
provides a set of attributes characterising the component itself, which are simply names acting as ref-
erences to information stored in the knowledge repository. For example, attributes might indicate the
CPU load, the component’s GPS position or, in addition, the provided services and their signature.
Thus, components’ composition and interaction rely on the attributes contained in the their interfaces.
This form of semantics-based aggregation of components permits defining ensembles, which repre-
sent social or technical networks of autonomic components. The key point is that the formation rule
is endogenous to components: components of an ensemble are connected by the interdependency re-
lations defined through predicates over interfaces’ attributes. In fact, an ensemble is not a rigid fixed
network but rather a dynamic graph-like structure where component linkages are dynamically estab-
lished. Therefore, no specific syntactic category or operator for forming ensembles is provided by
SCEL, but they are dynamically ‘synthesized’ via group-oriented, attribute-based communication.

4.2 Robotics scenario in SCEL

In this section we show how the considered scenario can be modelled in SCEL. For the sake of
simplicity we consider a simplified scenario where we have a single trapped robot8. Moreover, we
consider only the part of the specification that shows how robots can reach the participant trapped in
the hole. We assume that each robot is modelled via a SCEL node where the knowledge repository
is implemented as a tuple space. Each robot is also equipped with sensors and actuators. Sensors can
be used to collect data from the environment. Actuators are used to send commands to robot equip-
ments (wheels, transmitters, gripper-based mechanism, etc.). In particular, we assume that each robot
is equipped with the following sensors:

7A tuple matches a template if they have the same number of elements and corresponding elements have matching values
or variables; variables match any value of the same type, and two values match only if they are identical.

8A detailed specification can be found at http://code.google.com/p/jresp/

ASCENS 24

http://code.google.com/p/jresp/

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

• a motion sensor that can be used to verify if the robot is able or not to move;

• a grasp sensor that permits verifying if a robot can grasp another robot;

• a GPS sensor that identifies robot location.

Processes running at a robot can interact with the sensors outlined above by relying on standard
operations on knowledge repository. This because we assume that sensors automatically publish read
data in the knowledge repository. Knowledge items published by a sensor have the following structure:

〈sensor name, d1, . . . , dn〉

where sensor name indicates the sensor that has published the item while d1,. . . , dn are the actual
values read from the environment.

In our case an element of the form 〈motion, true〉 indicates that the robot can move (i.e. it is not
trapped in a hole) while 〈gps, x, y〉 states that robot is located at (x, y).

Each robot is also equipped with the following actuators:

• a motion controller that can be used to control wheels;

• a rescue signal transmitter that permits sending a rescue signal;

• a gripper controller that can be used to activate the gripper-based mechanism.

Like for sensors, processes interact with actuators by adding to the knowledge repository messages
of the form:

〈actuator name, d1, . . . , dn〉

where actuator name identifies the controlled actuator while d1, . . . , dn are the data sent to the actua-
tor. In our case we use messages of the form:

• 〈wheels, δ〉, to control wheels and rotate the robots towards angle δ;

• 〈rescue, b〉, to start (when b = true) or stop (when b = false) emission of the rescue signal;

• 〈gripper, b〉, to activate the gripper-based mechanism (b = true or b = false to activate or
deactivate the mechanism).

Each robots publish in its status via the interface. Namely, we assume that I.rescue = b if and
only if a tuple of the form:

〈rescue, b〉

is in the robot local knowledge. If I.rescue = true then the robot is trapped and it is emitting a rescue
signal.

Controlling robot movements We assume that three processes run at each node: randomWalker,
rescueReceiver and rescueHandler.

Process randomWalker is used to control the robot movements when no rescue signal has been
received and when the robot is not trapped in a hole. Process code is the following:

ASCENS 25

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

randomWalker
def
=

while (true) {
qry(motion, !canMove)@self
if (¬canMove) {

put(rescue, true)@self.
qry(motion, true)@self.
put(rescue, false)@self.

}
qry(rescueMode, !isInvolved)@self
if (isInvolved) {

rescueHandler()
} else {

put(wheels, random(0, 2π))@self.
}

}

This process first checks if it the robot can move (i.e. if it is or not trapped). If the robot is
trapped, a rescue signal is sent until the robot, thanks to the help of other robots, goes outside the hole.
Process randomWalker also checks if the robot is involved in a mission for saving a trapped robot.
Knowledge element 〈rescueMode, b〉 is used to notify the process if the current robot is involved or
not in rescuing another participant (b is a boolean value). This tuple is always available in the robot
knowledge repository. If the robot is involved then process rescueHandler() is executed. Otherwise,
the robot moves towards a direction that is randomly selected in the interval [0, 2π].

Process rescueReceiver is devoted to intercept rescue signals and set the robot direction towards
the trapped robot:

rescueReceiver
def
=

while (true) {
qry(gps, !x, !y)@{I.rescue}
put(wheels, towards(x, y)))@self.
get(rescueMode, false))@self.
put(rescueMode, true))@self.
qry(rescueMode, false))@self.

}

In the process above action qry(gps, !x, !y)@{I.rescue} permits identifying the location (define
in terms of gps-coordinates) of a trapped robot. This action is based on a group communication.
Indeed, the target is predicate I.rescue that is satisfied only by trapped robots.

As soon as the trapped robot is reached, process rescueHandler() activates the gripper-based mech-
anism and starts the activities (not specified here) to move the robot outside the hole:

rescueHandler
def
=

qry(grasp, true)@self.
put(grip, true)@self.
Actions for rescuing the trapped robot
put(grip, false)@self.
get(rescueMode, true))@self.
put(rescueMode, false))@self.

ASCENS 26

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

4.3 Running the scenario

To run the scenario considered in the previous section, we can rely on jRESP9. This is a runtime
environment, developed in Java, that aims at providing programmers with a framework that permits
developing autonomic and adaptive systems programmed in SCEL. A detailed description of jRESP
can be found in [24, 8].

jRESP provides a set of API that permits using the SCEL paradigm in Java programs. This
allows programmers to experiment with SCEL primitives that are integrated in a standard and well
known programming language. For instance, the Java code programming the behaviour of random-
Walker agent is reported in Figure 8.

Figure 8: A portion of Java code using jRESP API

4.4 Soft Constraints as a linguistic abstraction in SCEL

Another possible approach to deal with autonomic computing issues, such as self-aware, self-adaptive
and self-expressive, could be based on soft concurrent constraint programming, a programming paradigm
with guard primitives like ask, tell and possibly guarantee negotiation constructs. A good example is
cc-pi calculus [10]. However we are not interested in developing a new programming language, rather
we think it is more productive to embed some of the design concepts and primitives of soft concurrent
constraint programming into the ASCENS language SCEL. In fact, the linguistic constructs of SCEL

9http://code.google.com/p/jresp/

ASCENS 27

http://code.google.com/p/jresp/

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

look quite convenient, equipped as they are with the logically defined notion of ensemble, for model-
ing both the dynamic interaction taking place during constraint propagation, and the structural nature
of hierarchical constraints.

We mention two examples of nontrivial interaction between the procedural and the declarative
aspects of autonomic components. One is about emerging knowledge, described in Section 3.2.3: in
the ordinary execution phase the behavior is guided by the present knowledge of the robot, which
however tends to become obsolete due to “cyberphysical” errors. In the constraint propagation phase,
the present knowledge is procedurally updated on the basis of deduction procedures activated by the
interaction with other robots, in general we could say by additional interaction with the environment.
When seen in SCEL terms, the constraint propagation phase could be interpreted as a generalized
multiparty transactional synchronization step, where the ensemble coordinator asks for everybody
knowledge, derives all the additional consequences, and returns them to the ensemble components.

The second example is about constraints for service contracts, in the style of [9], presented in
ASCENS deliverable D2.1. The participants negotiate their behaviours, and if an agreement is reached
they commit and start an execution which is guaranteed to be stuck-free. More precisely, the first phase
consists of a compilation step which generates for every client and every server separately a constraint
modelling its behaviour and an instrumented compiled code. The second step is simply constraint
composition for the client and the server which want to interact: it is successful (i.e. the result is
consistent) only if the resulting constraint is satisfiable. Finally, the actual execution is monitored by
ask-like guards present in the instrumentation, which forbid interactions leading to a stuck situation.
Here the advantage of a constraint based approach is clear: the necessary constraints can be built
inductively at compile time, composed at matching time and tested at run time taking advantage of
concepts well-studied in the area of constraint programming.

We plan to investigate if the instrumented, compiled code could be programmed in a suitable
SCEL dialect. Also a compilation tool could be considered.

5 Conclusions

We have briefly introduced the main formalism developed in ASCENS to support development of
autonomic components during the different stages of the software cycle. Moreover we have given an
indication of how they can be exploited by showing how they are can be used to model components
inspired by a simple scenario dealing with robot swarms operating in an open environments within
which they have to collaborate to achieve assigned goals.

This work has to be considered as a first step in the direction of understanding the connections
between the different formalism that are developed, and used, by very different communities. Indeed,
what we plan for next year is to move from a common scenario to a common case study. This will
still be based on one of the three scenarios considered in the project but, being more concrete and
detailed will allow us to evaluate how abstract specifications providing different level of details in
SOTA and GEM/POEM can be used as the starting points to develop a running piece of Java code that
is built directly from the SCEL model. We will also experiment with the use of different knowledge
representation mechanisms such as those based on KnowLang and/or on concurrent constraint. For
the latter, we will continue our experiments with adding constraint-based repository to SCEL to assess
the gain with respect to the tuple based approach. Again, in the direction of integration with research
pursued in different work packages we will investigate how properties of SCEL programs can be
guaranteed by exploiting the operational semantics of the language and by mapping the transition
system associated to a program into the internal representation of set of BIP-based verification tools
that are heavily used in WP5.

ASCENS 28

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

References

[1] D. B. Abeywickrama, N. Bicocchi, and F. Zambonelli. Sota: Towards a general model for self-
adaptive systems. In 21st IEEE International Workshop on Enabling Technologies: Infrastruc-
ture for Collaborative Enterprises, WETICE 2012, Toulouse, France, June 25-27, 2012, pages
48–53, 2012.

[2] K. R. Apt. The essence of constraint propagation. Theoretical Computer Science, 221(1-2):179–
210, 1999.

[3] S. Bensalem, M. Boreale, M. Loreti, R. Bruni, A. Corradini, F. Gadducci, U. Montanari, M. Sam-
martino, M. G. Buscemi, R. De Nicola, A. Lluch Lafuente, A. Vandin, G. Cabri, D. Latella, and
M. Massink. D2.1: First report on wp2. enhanced connectors, resource-aware operational models
and the negotiate-commit-execute schema and its foundations, 2011. ASCENS Deliverable.

[4] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfaction and optimiza-
tion. J. ACM, 44(2):201–236, 1997.

[5] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based contstraint logic programming: syntax
and semantics. ACM Trans. Program. Lang. Syst., 23(1):1–29, 2001.

[6] S. Bistarelli, U. Montanari, and F. Rossi. Soft concurrent constraint programming. ACM Trans.
Comput. Log., 7(3):563–589, 2006.

[7] R. Bruni, A. Corradini, F. Gadducci, A. Lluch-Lafuente, and A. Vandin. A conceptual framework
for adaptation. In J. de Lara and A. Zisman, editors, Proceedings of the 15th International
Conference on Fundamental Approaches to Software Engineering, FASE 2012, volume 7212 of
Lecture Notes in Computer Science, pages 240–254. Springer, 2012.

[8] T. Bureš, V. Horký, J. Keznikl, J. Kofroň, M. Loreti, and F. Plášil. Language extensions for
implementation-level conformance checking. ASCENS Deliverable D1.5, September 2012.

[9] M. G. Buscemi, M. Coppo, M. Dezani-Ciancaglini, and U. Montanari. Constraints for service
contracts. In R. Bruni and V. Sassone, editors, TGC, volume 7173 of Lecture Notes in Computer
Science, pages 104–120. Springer, 2011.

[10] M. G. Buscemi and U. Montanari. Cc-pi: A constraint-based language for specifying service
level agreements. In R. De Nicola, editor, ESOP, volume 4421 of Lecture Notes in Computer
Science, pages 18–32. Springer, 2007.

[11] R. De Nicola, G. Ferrari, M. Loreti, and R. Pugliese. Languages primitives for coordination,
resource negotiation, and task description. ASCENS Deliverable D1.1, September 2011. http:
//rap.dsi.unifi.it/scel/.

[12] R. De Nicola, G. Ferrari, M. Loreti, and R. Pugliese. A language-based approach to autonomic
computing. In Proc. of the 10th International Symposium on Software Technologies Concertation
on Formal Methods for Components and Objects (FMCO 2011), LNCS 7542, pages 25–48.
Springer, 2012. http://rap.dsi.unifi.it/scel/.

[13] R. De Nicola, M. Loreti, R. Pugliese, and F. Tiezzi. SCEL: a Language for Autonomic Comput-
ing. Technical Report, September 2012. http://rap.dsi.unifi.it/scel/.

[14] C. Galindo, J. Fernandez-Madrigal, J. Gonzalez, and A. Saffiotti. Robot task planning using
semantic maps. Robotics and Autonomous Systems, 56(11):955–966, 2008.

ASCENS 29

http://rap.dsi.unifi.it/scel/
http://rap.dsi.unifi.it/scel/
http://rap.dsi.unifi.it/scel/
http://rap.dsi.unifi.it/scel/

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

[15] A. Gutiérrez, A. Campo, F. C. Santos, C. Pinciroli, and M. Dorigo. Social odometry in popula-
tions of autonomous robots. In Proceedings of the 6th international conference on Ant Colony
Optimization and Swarm Intelligence, ANTS ’08, pages 371–378, Berlin, Heidelberg, 2008.
Springer-Verlag.

[16] M. G. Hinchey and R. Sterritt. Self-managing software. IEEE Computer, 39(2):107–109, 2006.

[17] H. Holzapfel, D. Neubig, and A. Waibel. A dialogue approach to learning object descriptions
and semantic categories. Robotics and Autonomous Systems, 56(11):1004–1013, 2008.

[18] M. Hölzl, L. Belzner, A. Klarl, and C. Kroiss. D8.2: Second report on wp8: The ascens service
component repository (first version).

[19] M. M. Hölzl and M. Wirsing. Towards a system model for ensembles. In G. Agha, O. Danvy,
and J. Meseguer, editors, Formal Modeling: Actors, Open Systems, Biological Systems - Essays
Dedicated to Carolyn Talcott on the Occasion of Her 70th Birthday, volume 7000 of Lecture
Notes in Computer Science, pages 241–261. Springer, 2011.

[20] IBM Corporation. An Architectural Blueprint for Autonomic Computing, 2006.

[21] S. Kounev. Self-Aware Software and Systems Engineering: A Vision and Research Roadmap. In
GI Softwaretechnik-Trends, 31(4), November 2011, ISSN 0720-8928, Karlsruhe, Germany, 2011.

[22] G.-J. M. Kruijff, P. Lison, T. Benjamin, H. Jacobsson, and N. Hawes. Incremental, multi-level
processing for comprehending situated dialogue in human-robot interaction. In Proceedings of
the Symposium on Language and Robots, 2007.

[23] T. Lints. The essentials in defining adaptation. In Proceedings of the 4th Annual IEEE Systems
Conference, pages 113–116, 2010.

[24] M. Loreti. jresp: a run-time environment for scel programs. Technical Report, September 2012.
http://rap.dsi.unifi.it/scel/.

[25] R. Milner. Calculi for interaction. Acta Inf., 33(8):707–737, 1996.

[26] F. Mondada, G. C. Pettinaro, A. Guignard, I. W. Kwee, D. Floreano, J.-L. Deneubourg, S. Nolfi,
L. M. Gambardella, and M. Dorigo. Swarm-bot: A new distributed robotic concept. Autonomous
Robots, 17(2-3):193–221, 2004.

[27] G. V. Monreale and U. Montanari. Soft constraint logic programming for electric vehicle travel
optimization. In WLP 2012, 2012.

[28] U. Montanari and F. Rossi. Constraint relaxation may be perfect. Artificial Intelligence, 48:143–
170, 1991.

[29] U. Montanari and E. Vassev. Soft constraints for knowlang. In FMSAS 2012. ACM Press, 2012.

[30] M. Morandini, L. Sabatucci, A. Siena, J. Mylopoulos, L. Penserini, A. Perini, and A. Susi. On
the use of the goal-oriented paradigm for system design and law compliance reasoning. In iStar
2010–Proceedings of the 4 th International i* Workshop, page 71, Hammamet, Tunisia, June
2010.

ASCENS 30

http://rap.dsi.unifi.it/scel/

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

[31] O. Mozos, P. Jensfelt, H. Zender, G.-J. M. Kruijff, and W. Burgard. An integrated system for
conceptual spatial representations of indoor environments for mobile robots. In Proceedings of
the IROS 2007 Workshop: From Sensors to Human Spatial Concepts (FS2HSC), pages 25–32,
2007.

[32] R. Neapolitan. Learning Bayesian Networks. Prentice Hall, 2003.

[33] R. O’Grady, R. Groß, A. L. Christensen, and M. Dorigo. Self-assembly strategies in a group of
autonomous mobile robots. Autonomous Robots, 28(4):439–455, 2010.

[34] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici,
D. S. Rosenblum, and A. L. Wolf. An architecture-based approach to self-adaptive software.
Intelligent Systems and their Applications, 14(3), 1999.

[35] R. Pugliese, T. Bures, R. D. Nicola, J. Keznikl, M. Loreti, F. Plasil, and F. Tiezzi. D1.2: Second
Report on WP1 Languages for Coordinating Ensemble Components, 2012. ASCENS Deliver-
able, D1.2, October 2012.

[36] O. Pustovalova and U. Montanari. Constraint Logic Programming for Service-Oriented Com-
puting: A Case Study in Prova. Technical report, IMT Institute for Advanced Studies Lucca,
2012. Available online at http://www.imtlucca.it/olga.pustovalova.

[37] K. Rasch, F. Li, S. Sehic, R. Ayani, and S. Dustdar. Context-driven personalized service discov-
ery in pervasive environments. World Wide Web, 14(4):295–319, 2011.

[38] P. Robertson, H. E. Shrobe, and R. Laddaga, editors. Self-Adaptive Software, First International
Workshop, IWSAS 2000, Oxford, UK, April 17-19, 2000, Revised Papers, volume 1936 of LNCS.
Springer, 2001.

[39] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and research challenges. ACM
Transactions on Autonomous and Adaptive Systems, 4(2), 2009.

[40] M. Thielscher. Action Programming Languages. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool Publishers, 2008.

[41] E. Vassev. KnowLang Grammar in BNF. Technical Report Lero-TR-2012-04, Lero, University
of Limerick, Ireland, 2012.

[42] E. Vassev. Operational semantics for KnowLang ASK and TELL operators. Technical Report
Lero-TR-2012-05, Lero, University of Limerick, Ireland, 2012.

[43] E. Vassev and M. Hinchey. Towards a formal language for knowledge representation in Auto-
nomic Service-Component Ensembles. In Proceedings of the 3rd International Conference on
Data Mining and Intelligent Information Technology Applications (ICMIA2011), pages 228–235.
AICIT, IEEE Xplore, 2011.

[44] E. Vassev and M. Hinchey. Knowledge representation for cognitive robotic systems. In Proceed-
ings of the 15th IEEE International Symposium on Object/Component/Service-oriented Real-
time Distributed Computing Workshops (ISCORCW 2012), pages 156–163. IEEE Computer So-
ciety, 2012.

[45] E. Vassev and M. Hinchey. Knowledge representation with KnowLang - the marXbot case study.
In Proceedings of the 11th IEEE International Conference on Cybernetic Intelligent Systems (CIS
2012). IEEE Computer Society, 2012.

ASCENS 31

http://www.imtlucca.it/olga.pustovalova

JD2.1: Self-Awareness, Self-Expression, Adaptation (Final) November 12, 2012

[46] E. Vassev, M. Hinchey, and B. Gaudin. Knowledge representation for self-adaptive behavior.
In Proceedings of C* Conference on Computer Science & Software Engineering (C3S2E ’12),
pages 113–117. ACM, 2012.

[47] E. Vassev, M. Hinchey, B. Gaudin, P. Nixon, N. Bicocchi, and F. Zambonelli. D3.1: First Report
on WP3. Knowledge Representation for Self-Awareness, 2011. ASCENS Deliverable.

[48] E. Vassev, M. Hinchey, U. Montanari, N. Bicocchi, F. Zambonelli, and M. Wirsing. D3.2: Second
Report on WP3. The KnowLang Framework for Knowledge Modeling for SCE Systems, 2012.
ASCENS Deliverable.

[49] N. Šerbedžija, M. Massink, M. Brambilla, D. Latella, M. Dorigo, M. Birattari, N. Hoch, H. P.
Bensler, D. Abeywickrama, J. Keznikl, I. Gerostathopoulos, and T. Bures. D7.2: Second Re-
port on WP7. Ensemble Model Syntheses with Robot, Cloud Computing and e-Mobility, 2012.
ASCENS Deliverable.

[50] N. Šerbedžija, S. Reiter, M. Ahrens, J. Velasco, C. Pinciroli, N. Hoch, and B. Werther. D7.1: First
Report on WP7. Requirement specication and Scenario description, 2012. ASCENS Deliverable.

[51] F. Zambonelli, D. B. Abeywickrama, N. Bicocchi, M. Puviani, R. Pugliese, and E. Vassev.
D4.1.0: First Report on WP4, 2011. ASCENS Deliverable.

[52] F. Zambonelli, N. Bicocchi, G. Cabri, L. Leonardi, and M. Puviani. On self-adaptation, self-
expression, and self-awareness, in autonomic service component ensembles. In Proceedings
of the AWARENESS Workshop at the 5th IEEE International Conference on Self-adaptive and
Self-organizing Systems, 2011.

ASCENS 32

	Introduction
	Self-adaptation.
	Self-awareness, self-adaptation and self-expression in robot swarms.
	Structure of the Deliverable.

	Abstract Modelling
	SOTA
	The Rationale behind SOTA
	The SOTA Space
	Goals and Utilities

	GEM and Poem
	Trajectory Space, Situations, Fluents
	Goals, Utilities and Strategies

	Knowledge Representation Modelling
	KnowLang
	Structuring Knowledge with KnowLang
	Modeling Self-adaptive Behavior with KnowLang
	ASK and TELL Operators and KnowLang Reasoner
	Case Study

	Soft Constraints
	Constraints and Adaptation
	Hierarchical Constraints for KnowLang
	Constraints and Emergent Knowledge
	Soft constraints in the case study

	Languages
	SCEL: Service Component Ensemble Language
	Robotics scenario in SCEL
	Running the scenario
	Soft Constraints as a linguistic abstraction in SCEL

	Conclusions

