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Executive Summary

One of the main scientific contributions that we expect to achieve with ASCENS is related to Knowl-
edge Representation and Reasoning for self-adaptive systems. Within the WP3’s mandate of the
project, we are currently developing the KnowLang Framework that implies a notion for modeling
knowledge and self-adaptive behavior of ASCENS-like systems. In this third year of WP3, we con-
tinued working on the implementation of KnowLang where we focused on the KnowLang Toolset.
Moreover, we started working on the implementation of the KnowLang Reasoner carrying an inte-
grated mechanism for knowledge processing and self-adaptive behavior. In addition to this routine
implementation, we also worked on the knowledge models for the ASCENS Case Studies. In a joint
project with ESA (European Space Agency), we developed an approach to Autonomy Requirements
Engineering (ARE), which we used to build efficient and relevant knowledge models for ASCENS.
In this endeavor, we used ARE as a software engineering step to select and refine relevant and effi-
cient knowledge data that needs to be represented with KnowLang for the ASCENS Science Clouds
case study. The novel requirements engineering technique helped us build a knowledge representation
model, which is at the right level of abstraction and relevance, i.e., carrying all the necessary details to
represent the knowledge necessary to process self-adaptive behavior based on awareness capabilities.
Note that, finding the right level of abstraction and data relevance for the knowledge models specified
with KnowLang was a major flow in our previous knowledge models, which carried unnecessary de-
tails, thus eventually overwhelming the reasoning process. Similar to the previous years, in this year,
we continued collaborating with WP1, WP2, WP4 and WP7 for the gradual integration of KnowLang
with SCEL and SOTA tackled by WP1 and WP4 respectively, and for knowledge modeling for the
ASCENS Case Studies tackled by WP7.
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1 Introduction

Knowledge and awareness are two major and necessary compounds that can make a software-intensive
system self-adaptive. WP3 focuses on approaches and mechanisms dealing with these issues. Three
years ago, when we started this project, the major challenge was ”how to represent knowledge for
self-adaptive systems”. In this third year of the project, we may say that we have found our answer
to the ”how” question - we developed the KnowLang framework where symbols serve as knowl-
edge surrogates for real world artefacts and underlying mechanisms provide vital connection between
knowledge, perception and actions realizing self-adaptive behavior. However, somewhere along the
route of our research, we realized that another major issue is the relevance of the knowledge to be
presented. Thus, our focus slightly shifted from ”how” to ”what”, i.e., what knowledge should be
given to the system in order to become self-adaptive. Along with our work on the implementation of
KnowLang, this deliverable presents our approach to this new issue.

1.1 Research Focus and Tasks

In this third year of WP3, we continued working on the implementation of KnowLang (WP3.T1)
where we focused on the KnowLang Toolset. We fully implemented the KnowLang’s Text Editor,
Grammar Compiler and Parser, and almost completed the implementation of the Visual Editor, Se-
mantic Analyzer and Consistency Checker. Moreover, we started working on the implementation of
the KnowLang Reasoner (WP3.T3) carrying the integrated mechanism for knowledge processing and
self-adaptive behavior along with ASK and TELL operators and implementation of the awareness
control loop. In addition to this routine implementation, we also worked on the knowledge models for
the ASCENS Case Studies (WP3.T2). In a joint project with ESA (European Space Agency), we de-
veloped an approach to Autonomy Requirements Engineering (ARE), which we used to build efficient
and relevant knowledge models for ASCENS. In this endeavor, we used ARE as a software engineer-
ing step to select and refine relevant and efficient knowledge data that needs to be represented with
KnowLang for the ASCENS Science Clouds case study. The novel requirements engineering tech-
nique helped us build a knowledge representation model, which is at the right level of abstraction, i.e.,
carrying all the necessary details to represent the knowledge necessary to process self-adaptive behav-
ior based on awareness capabilities. Note that, finding the right level of abstraction for the knowledge
models specified with KnowLang was a major flow in our previous knowledge models, which car-
ried unnecessary details, thus eventually overwhelming the reasoning process. With ARE, we focus
on the so-called self-* objectives providing for self-adaptive behavior and consecutively centering the
knowledge models around this self-adaptive behavior, which makes the knowledge representation very
efficient.

1.2 Relations with Other WPs

In the third year of this project, we continued collaborating intensively with WP1, WP2, WP4 and
WP7. The collaboration with WP1 is currently going at the level of interoperability between SCEL
and KnowLang. KnowLang provides a KR model of the SCEL knowledge base and the Knowlang
Reasoner should be properly integrated with SCEL. We are currently working on a solution where
the KnowLang Reasoner communicates with a SCEL application via a distinct tuple space where
data initiating ASK and TELL operations is recorded. Basically, the application writes in this tuple
space errors, sensory data and actions performed by the system. Moreover, when needed, the SCEL
program gets from this tuple space a self-adaptive behavior model outlined by a sequence of actions
to be performed by the system. We are also working on the integration of POEM with the reasoning
process driven by the KnowLang Reasoner. Our goal is to integrate POEM as a FOL reasoner. To do
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so, we are currently working on a special interpreter that extracts from a KnowLang specification the
specified facts, rules and constraints to supply these to the POEM Reasoner, which can quantify on
them under request.

The collaboration with WP2 continued with further implementation of our model for soft con-
straints for KnowLang [VHM+12]. The soft constraints for KnowLang are used as a KR technique
that will help designers impose constraining requirements for special liveness properties, an approx-
imation to our understanding of good-to-have properties. The approach associates tuples of possible
values held by special KnowLang variables with possible preferences.

Concerning WP4, in this third year of the project, we relied on WP4 mainly to determine scenarios
for our self-* objectives by using SOTA, the State Of The Affairs framework tackled by WP4. More-
over, WP4 has compiled an extensive catalogue of adaptation patterns, which we also used to derive
some self-adaptation scenarios for the Science Clouds case studies. SOTA adaption patterns are more
abstract than ARE scenarios. Ideally, they describe how different components might interact (or might
be connected) to achieve adaptive behavior. To do so, SOTA provides special trajectories towards a
goal [PNAZ13]. These trajectories directly connect SOTA and ARE, because we may translate tra-
jectories to ARE scenarios where given a set of predefined conditions (an n-dimensional volume in
SOTA), ARE scenarios are executed causing the system to move within a SOTA space. Different
scenarios imply different trajectories.

WP7 [SMP+12, SHP+13] provides vital experimental platforms for both the notation and toolset
of KnowLang. In collaboration with WP7, this year, we used ARE to capture relevant knowledge data
and we used KnowLang to specify a complete relevant knowledge model for the Science Clouds case
study where WP7 provided us with important information related to the possible states expression.
Note that with the ARE approach we overcome the main challenge to identify the right level of knowl-
edge abstraction and relevance at which reasoning can provide for adaptation and self-awareness. For
the Science Clouds case study, along with the intensive specification of initial knowledge models (on-
tologies, facts, rules and constraints), we also specified complete behavior models provided by policies
and situations. These models actually specify self-* objectives derived with the ARE approach (see
Section 3). In the following last year of the project, we will build relevant knowledge models for the
other two case studies. These models along with the KnowLang Reasoner will be used for awareness
prototyping, which is planned for Task 3.4. Note that currently we do have previously specified knowl-
edge models for these two case studies, but we still need to complete and refine these by applying the
ARE approach.

WP8 tackles the Ensemble Development Life Cycle (EDLC) [HK13, KHK+13]. The ARE ap-
proach contributes to EDLC by adding on to the requirements engineering of the design phase of
EDLC. More specifically, it helps to capture the autonomy requirements of the system in question,
which in turn are used as a basis for deriving relevant knowledge-representation models for that very
system. In the EDLC requirements engineering, both SOTA and ARE are collaborating to come up
with self-adaptive behavior. ARE’s GAR model might be used to add on to the SOTA adaptation
patterns by outlining self-* objectives providing for self-adaptive behavior. Moreover, SOTA patterns
might help identify self-* objectives along with proper scenarios defined as SOTA trajectories to a
goal.

1.3 Structure of the Document

The rest of this document is organized as follows. Section 2 presents the Autonomy Requirements
Engineering approach by demonstrating how autonomy requirements can be captured by focusing
on self-* objectives. Section 3 presents our work on capturing the autonomy requirements for the
Science Clouds case study with ARE and specifying these requirements with KnowLang as a relevant
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knowledge representation model. In Section 4, we present our results related to the implementation
of the KnowLang Framework, those including both the KnowLang Toolset and Reasoner. Finally, to
conclude the topic, in Section 5, we present a brief summary and future goals.

2 Autonomy Requirements Engineering

The Autonomy Requirements Engineering (ARE) approach has been developed by Lero - the Irish
Software Engineering Research Center within the mandate of a joint project with ESA, the European
Space Agency. The approach is intended to help engineers tackle the integration and promotion of
autonomy in software-intensive systems. ARE combines generic autonomy requirements (GAR) with
goal-oriented requirements engineering (GORE). Using this approach, software engineers can deter-
mine what autonomic features to develop for a particular system (e.g., the ASCENS Science Clouds
case study) as well as what artifacts that process might generate (e.g., goals models, requirements
specification, etc.). For the ASCENS project in particular, ARE shall not only help us capture the
autonomy requirements for the ASCENS Case Studies, but also help us derive efficient and relevant
knowledge models for these case studies.

2.1 Understanding ARE

The first step in developing any new software-intensive system is to determine the system’s functional
and non-functional requirements. The former requirements define what the system will actually do,
while the latter requirements refer to its qualities, such as performance, along with any constraints un-
der which the system must operate. Despite differences in application domain and functionality, all au-
tonomous systems extend upstream the regular software-intensive systems with special self-managing
objectives (self-* objectives). Basically, the self-* objectives provide the system’s ability to automati-
cally discover, diagnose, and cope with various problems. This ability depends on the system’s degree
of autonomicity, quality and quantity of knowledge, awareness and monitoring capabilities, and qual-
ity characteristics such as adaptability, dynamicity, robustness, resilience, and mobility. Basically,
this is the basis of the ARE approach [VH13d, VH13c, VH13a, VH13b]: autonomy requirements are
detected as self-objectives backed up by different capabilities and quality characteristics outlined by
the GAR model.

The ARE approach starts with the creation of a goals model that represents system objectives and
their interrelationships. For this, we use GORE where ARE goals are generally modeled with intrinsic
features such as type, actor, and target, with links to other goals and constraints in the requirements
model. Goals models might be organized in different ways copying with the system specifics and
engineers’ understanding about the system goals. Thus we may have 1) hierarchical structures where
goals reside different level of granularity; 2) concurrent structures where goals are considered as
concurrent; etc. At this stage, the goals models are not formal and we use natural language along
with UML-like diagrams to record them.

The next step in the ARE approach is to work on each one of the system goals along with the
elicited environmental constraints to come up with the self-* objectives providing the autonomy re-
quirements for this particular system’s behavior. In this phase, we apply our GAR model to a system
goal to derive autonomy requirements in the form of goal’s supportive and alternative self-* objectives
along with the necessary capabilities and quality characteristics. In the first part of this phase, we
record the GAR model in natural language. In the second part though, we use a formal notation to
express this model in a more precise way. Note that, this model carries more details about the au-
tonomy requirements, and can be further used for different analysis activities, including requirements
validation and verification.
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2.2 System Goals and Goals Models

Goals have long been recognized to be essential components involved in the requirements engineering
(RE) process [RS77]. To elicit system goals, typically, the system under consideration is analyzed
in its organizational, operational and technical settings. Problems are pointed out and opportunities
are identified. High-level goals are then identified and refined to address such problems and meet the
opportunities. Requirements are then elaborated to meet those goals.

Goal identification is not necessarily an easy task [vLDM95, HPW98, RSA98]. Sometimes goals
can be explicitly stated by stakeholders or in preliminary material available to requirements engineers.
Often though, they are implicit so that goal elicitation has to be undertaken. The preliminary analysis
of the current system along with the operational environment is an important source for goal identi-
fication. Such analysis usually results in a list of problems and deficiencies that can be formulated
precisely. Negating those formulations yields a first list of goals to be achieved by the system-to-be.
In our experience, goals can also be identified systematically by searching for intentional keywords
in the preliminary documents provided, e.g., ASCENS case study description. Once a preliminary set
of goals and goal-related constraints is obtained and validated with stakeholders, many other goals
can be identified by refinement and by abstraction, just by asking HOW and WHY questions about
the goals/constraints already available [vL00]. Other goals are identified by resolving conflicts among
goals or obstacles to goal achievement. Further, such goals might be eventually defined as self-*
objectives.

Goals are generally modeled by intrinsic features such as their type and attributes, and by their
links to other goals and to other elements of a requirements model. Goals can be hierarchically or-
ganized and prioritized where high-level goals (e.g., main system objectives) might comprise related,
low-level, sub-goals that can be organized to provide different alternatives of achieving the high-level
goals. In ARE, goals are registered in plain text with characteristics like actors, targets and rationale.
Moreover, inter-goal relationships are captured by goals models putting together all goals along with
associated constraints. ARE’s goals models are presented in UML-like diagrams. Goals models can
assist us in capturing autonomy requirements in several ways [VH13d, VH13c, VH13a, VH13b]:

1. An ARE goals model might provide the starting point for capturing autonomy requirements
by analyzing the environment for the system-to-be and by identifying the problems that exist
in this environment as well as the needs that the system under development has to address to
accomplish its goals.

2. ARE goals models might be used to provide a means to represent alternative ways where the
objectives of the system can be met and analyze and rank these alternatives with respect to
quality concerns and other constraints, e.g., environmental constraints:

(a) This allows for exploration and analysis of alternative system behaviors at design time.

(b) If the alternatives that are initially delivered with the system perform well, there is no need
for complex interactions on autonomy behavior among autonomy components.

(c) Not all the alternatives can be identified at design time. In an open and dynamic environ-
ment, new and better alternatives may present themselves and some of the identified and
implemented alternatives may become impractical.

(d) In certain situations, new alternatives will have to be discovered and implemented by the
system at runtime. However, the process of discovery, analysis, and implementation of
new alternatives at runtime is complex and error-prone. By exploring the space of alterna-
tives at design time, we are minimizing the need for that difficult task.
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3. ARE goals models might provide the traceability mechanism from design to requirements.
When a change in requirements is detected at runtime, goal models can be used to re-evaluate
the system behavior alternatives with respect to the new requirements and to determine if system
reconfiguration is needed:

(a) If a change in requirements affects a particular goal in the model, it is possible to see how
this goal is decomposed and which parts of the system implementing the functionality
needed to achieve that goal are in turn affected.

(b) By analyzing a goals model, it is possible to identify how a failure to achieve some partic-
ular goal affects the overall objective of the system.

(c) Highly variable goals models can be used to visualize the currently selected system con-
figuration along with its alternatives and to communicate suggested configuration changes
to users in high-level terms.

4. ARE goals models provide a unifying intentional view of the system by relating goals assigned
to individual parts of the system (usually expressed as actors and targets of a goal) to high-level
system objectives and quality concerns:

(a) High-level objectives or quality concerns serve as the common knowledge shared among
the autonomous system’s parts (or components) to achieve the global system optimization.
In this way, the system can avoid the pitfalls of missing the globally optimal configuration
due to only relying on local optimizations.

(b) Goals models might be used to identify part of the knowledge requirements, e.g., actors or
targets.

Moreover, goals models might be used to manage conflicts among multiple goals including self-*
objectives. Note that by resolving conflicts among goals or obstacles to goal achievement, new goals
(or self-* objectives) may emerge.

2.3 Self-* Objectives and Autonomy-Assistive Requirements

Basically, the GAR (generic autonomy requirements) model follows the principle that despite their
differences in terms of application domain and functionality, all autonomous systems are capable
of autonomous behavior driven by one or more self-management objectives [VH13b] that drive the
development process of such systems. ARE uses goals models as a basis helping to derive self-*
objectives per a system goal by applying a model for generic autonomy requirements to any system
goal [VH13c, VH13b]. The self-* objectives represent assistive and eventually alternative goals (or
objectives) the system may pursue in the presence of factors threatening the achievement of the initial
system goals. The diagram presented in Figure 1 depicts the process of deriving the self-* objectives
from a goals model of the system-to-be. Basically, a context-specific GAR model provides some initial
self-* objectives, which should be further analyzed and refined in the context of the specific system
goal to see their applicability. For example, the context-specific GAR model for the domain of Cloud
Computing defines a predefined set of self-* objectives that cope with both constraints and challenges
a cloud must overcome while delivering resources to its users. For example, GAR may define the
following self-* objectives for Scientific Clouds (see Section 3.2):

• self-healing: The high-level goal of the science cloud is to provide application execution. If
a cloud machine fails or is shut down, the applications executing must be made available (re-
sumed) somewhere else in the cloud. A self-healing self-* objectives should ensure that this is
possible.

ASCENS 9



D3.3: Third Report on WP3 (Final) November 8, 2013

Figure 1: The ARE Process of Deriving Self-* Objectives per System Goal

• self-configuring: Each cloud machine is aware about changes in the cloud - new machines can
be added to the cloud or other can be opted out. A cloud machine should adapt itself to make
use of newly available resources or consider disappearing resources.

• self-optimizing: If a cloud machine reaches its capacity (consistent high CPU load or swapping),
it may transfer some of the load to another cloud machine. The same applies to overloaded links
in the network.

As shown in Figure 1, in addition to the derived self-* objectives, the ARE process also produces
autonomy assistive requirements. These requirements (also defined as adaptation-assistive attributes)
are initially defined by the GAR model [VH13d, VH13b] and are intended to support the achievements
of the self-* objectives. The autonomy assistive requirements outlined by GAR might be defined as
following:

• Knowledge - basically data requirements that need to be structured to allow efficient reasoning.

• Awareness - a sort of functional requirements where knowledge is used as an input along with
events and/or sensor signals to derive particular system states.

• Resilience and robustness - a sort of soft-goals. For example, such requirements for Science
Clouds can be defined as ”robustness: cloud is robust to communication latency” and ”re-
silience: cloud is resilient to cloud machines failures, disappearances, or appearances”. These
requirements can be specified as soft goals leading the system towards ”reducing and copying
with communication latency” and ”keeping cloud’s performance optimal”. A soft goal is sat-
isficed rather than achieved. Note that specifying soft goals is not an easy task. The problem
is that there is no clear-cut satisfaction condition for a soft goal. Soft goals are related to the
notion of satisfaction. Unlike regular goals, soft goals can seldom be accomplished or satisfied.
For soft goals, eventually, we need to find solutions that are ”good enough” where soft goals
are satisficed to a sufficient degree. Thus, when specifying robustness and resilience autonomy
requirements we need to set the desired degree of satisfaction, e.g., by using probabilities.

• Monitoring, mobility, dynamicity and adaptability - might also be defined as soft-goals, but with
relatively high degree of satisfaction. These three types of autonomy requirements represent
important quality requirements that the system in question needs to meet to provide conditions
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making autonomicity possible. Thus, their degree of satisfaction should be relatively high.
Eventually, adaptability requirements might be treated as hard goals because they determine
what parts of the system in question can be adapted (not how).

2.4 Autonomy Needs and Requirements Chunks

To record autonomy requirements, ARE relies on both natural language and formal notation. A natural
language description of a self-* objective has the following format [VH13c]:

• Name of Self-* Objective: Rationale of this self-* objective.

– Assisting system goals: List of system goals assisted by this self-* objective.

– Actors: Actors participating in the realization of this self-* objective.

– Targets: Targets of this self-* objective.

Note that this description is abstract and does not say how the self-* objective is going to be achieved.
Basically, as recorded the self-* objectives define the ”textitautonomy needs” of the system. How these
needs are going to be met is provided by more detailed description of the self-* objectives recorded
as ARE Requirements Chunks and/or specified formally. In general, a more detailed description in a
natural language may precede the formal specification of the elicited autonomy requirements. Such
description might be written as a scenario describing both the conditions and sequence of actions
needed to be performed in order to achieve the self-* objective in question. Note that a self-objective
could be associated with multiple scenarios. The combination of a self-* objective and a scenario
forms an ARE Requirements Chunk (see Figure 2). A requirements chunk can be recorded in a natural
language as following:

ARE Requirements Chunk

• Name of Self-* Objective: Rationale of this self-* objective.

– Assisting system goals: List of system goals assisted by this self-* objective.

– Actors: Actors participating in the realization of this self-* objective.

– Targets: Targets of this self-* objective.

• Scenario: Description of a scenario how this self-* objective can be met by performing the
system’s functionality.

Requirements chunks associate each goal with scenarios where the goal-scenario pairs can be assem-
bled together through composition, alternative and refinement relationships (see Figure 2). The first
two lead to AND and OR structures of requirements chunks, whereas the last leads to the organiza-
tion of the collection of requirements chunks as a hierarchy of chunks of different granularity. AND
relationships among requirements chunks link complementary chunks in the sense that everyone re-
quires others to define a completely functioning scenario covering a main goal. Requirements chunks
linked through OR relationships represent alternative ways of fulfilling the same goal. Requirements
chunks linked through a refinement relationship are at different levels of abstraction. Internally, the
scenarios might introduce additional variability via conditional requirements derived from the GAR’s
requirements such as monitoring, adaptability, dynamicity, resilience, and robustness.
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Figure 2: Requirements Chunk - Goal & Scenario

2.5 Formal Specification

ARE relies on KnowLang for the formal specification of the elicited autonomy requirements. There-
fore, we use KnowLang to record these requirements as knowledge representation in a Knowledge
Base (KB) comprising a variety of knowledge structures, e.g., ontologies, facts, rules, and constraints.
The self-* objectives are specified with special policies associated with goals, special situations, ac-
tions (eventually identified as system capabilities), metrics, etc. Thus, the self-* objectives are rep-
resented as policies describing at an abstract level what the system will do when particular situations
arise. The situations are meant to represent the conditions needed to be met in order for the system
to switch to a self-* objective while pursuing a system goal. Note that the policies rely on actions
that are a priori-defined as functions of the system. In case, such functions have not been defined yet,
the needed functions should be considered as autonomous functions and their implementation will be
justified by the ARE’s selected self-* objectives. ARE does not state neither specify how the system
will perform these actions. This is out of the scope of the ARE approach. Basically, any requirements
engineering approach states what the software will do not how the software will do it.

3 Capturing Autonomy Requirements for Science Clouds

In this exercise, we applied the ARE approach to capture the autonomy requirements for the ASCENS
Science Clouds case study. This helped us determine the right level of abstraction for the needed
knowledge representation model. By applying GORE, we built goals models that helped us consecu-
tively derive and organize the autonomy requirements for Science Clouds. In our approach, the goals
models provided the starting point for ARE Science Clouds by defining 1) the objectives of the sys-
tem in 2) the system’s operational environment, and by identifying the 3) restrictions that exist in this
environment along with service-level agreements as well as 4) the immediate targets supporting the
system objectives and 5) constraints the system needs to address. Moreover, GORE helped us identify
the system actors (SCP, SCP instance, virtual machine, SCP ensemble, etc.). In this exercise, we did
not categorize the objectives’ actors, but for more comprehensive requirements engineering, actors
might be categorized by role or by importance (e.g., main, supporting and offstage actors). Note that
the ARE goals models can be used as a baseline for validating the system.

Next, following the ARE Approach, we put the GAR model in the context of cloud computing to
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derive a domain-specific GAR model. Further, we merged the domain-specific GAR model with the
goals model to derive for the system goals assistive and alternative self-* objectives along with appro-
priate adaptation-assistive attributes. Next, we identified the autonomy needs and the ARE require-
ments chunks for Science Clouds. Finally, we specified those requirements chunks with KnowLang,
which basically means that we built the knowledge representation model for Science Clouds at the
right level of abstraction.

Both ASCENS deliverables D7.2 [SMP+12] and D7.3 [SHP+13] were the major source of in-
formation for this activity. The description of the Science Clouds case study along with that of the
cloud computing domain helped us build our GAR model for Science Clouds (see Section 3.2). More-
over, D7.2 was used as a preliminary source for determining the goals (or objectives) of a Science
Cloud (see Section 3.1). In particular, we derived most of the objectives from the services a Science
Cloud needs to provide. Further, self-* objectives assisting the cloud’s objectives were derived from
the prospective self-adaptive and autonomy cloud’s features described in D7.2. Finally, the scenario
described in D7.3 inspired some of the scenarios we defined for the ARE requirements chunks for
Science Clouds. Note that these scenarios along with the science cloud goals and self-* objectives
were formally specified with KnowLang (see Section 3.4).

3.1 GORE for Science Clouds

Science Clouds is a cloud computing scientific platform for application execution and data storage
[MKH+13]. Individual users or universities can join a cloud to provide (and consume of course)
resources to the community. A science cloud is a collection of cloud machines - notebooks, desk-
tops, servers, or virtual machines, running the so-called Science Cloud Platform (SCP). Each machine
is usually running one instance of the Science Cloud Platform (Science Cloud Platform instance or
SCPi). Each SCPi is considered to be a Service Component (SC) in the ASCENS sense. To form
a cloud, multiple SCPis communicate over the Internet by using the IP protocol. Within a cloud, a
few SCPis might be grouped into a Service Component Ensemble (SCE), also called a Science Cloud
Platform ensemble (SCPe). The relationships between the SCPis are dynamic and the formation of a
SCPe depends mainly on the properties of the SCPis. The common characteristic of an ensemble is
SCPis working together to run one application in a fail-safe manner and under consideration of the
Service Level Agreement (SLA) of that application, which may require a certain number of active
SCPis, certain latency between the parts, or have restrictions on processing power or memory. The
SCP is a platform as a service (PaaS), which provides a platform for application execution [SRA+11].
Thus, SCP provides an execution environment where special applications might be run by using the
SCP’s application programming interface (API) and SCP’s library [SRA+11]. These applications pro-
vide a software as a service (SaaS) cloud solution to users. The data storage service is provided in the
same manner, i.e., via an application.

Based on the rationale above, we may deduct that the Science Clouds’ main objective is to provide
a scientific platform for application execution and data storage [MKH+13]. Being a cloud computing
approach, the Science Clouds approach extends the original cloud computing goal to provide services
(or resources) to the community of users. Note that cloud computing targets three main types of
service (or resource):

1. Infrastructure as a Service (IaaS): a solution providing resources such as virtual machines, net-
work switches and data storage along with tools and APIs for management (e.g., starting VMs).

2. Platform as a Service (PaaS): a solution providing development and execution platforms for
cloud applications.

3. Software as a Service (SaaS): a solution providing software applications as a resource.
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The three different services above can be defined as three main goals of cloud computing, and their re-
alization by Science Clouds will define the main Science Clouds goals. Figure 3 depicts the ARE goals
model for Science Clouds where goals are organized hierarchically at four different levels. In addi-
tion, from the rationale above we may deduct that an underlying system goal is to optimize application
execution by minimizing resource usage along with providing a fail-safe execution environment. As
shown in Figure 3, the goals from the first three levels are main system goals captured at different
levels of abstraction. The 3rd level is resided by goals directly associated with Science Clouds and
providing a concrete realization of the cloud computing goals outlined at the first two levels. Finally,
the goals from the 4th level are supporting and preliminary goals that need to be achieved before
proceeding with the goals from the 3rd level. Figure 3 puts together all the system goals by relating
them via particular relationships such as inheritance and dependency. Goals are depicted as boxes
listing both goal actors and targets (note that targets might be considered as a distinct class of ac-
tors). The ARE Goals Model for Science Clouds provides the traceability mechanism for autonomy
requirements. When a change in requirements is detected at runtime, the goals model can be used
to re-evaluate the system behavior with respect to the new requirements and to determine if system
reconfiguration is needed. Moreover, the presented goals model provides a unifying intentional view
of the system by relating goals assigned to actors and involving targets. Some of the actors can be
eventually identified as the autonomy components providing a self-adaptive behavior when necessary
to keep up with the high-level system objectives (the goals residing Level 3). The following elements

Figure 3: Science Clouds Goals Model

describe the system goals by goal levels as shown in Figure 3:

ASCENS 14



D3.3: Third Report on WP3 (Final) November 8, 2013

Level 1 Goals:

• Provide Resources: A cloud computing system (cloud) shall provide computational resources
to the community of users.

– Actors: cloud (the cloud computing system), users
– Targets: resources

Level 2 Goals:

• Provide Infrastructure as a Service: The cloud shall provide resources such as virtual ma-
chines, virtual network switches, and data storage. To manage this infrastructure, the cloud
provides tools and APIs for management, e.g., starting and stopping VMs or creating new vir-
tual networks.

– Actors: cloud, operators
– Targets: virtual machines, network switches, data storage

• Provide Platform as a Service: The cloud shall provide development and execution platforms
for cloud applications, e.g., it may provide a framework for writing applications (by developers),
which can either be supplied with adequate resources and distributed automatically, or request
additional resources.

– Actors: cloud, developers
– Targets: development platforms, execution platforms

• Software as a Service: The cloud shall provide software applications that can be run by users
within the cloud. Some examples of such applications could be e-mail service, word processor,
etc. A good real-life example is Google Apps.

– Actors: cloud, execution platform, users
– Targets: applications platforms

Level 3 Goals:

• Provide Zimory Cloud: This goal is to realize the Provide Infrastructure as a Service cloud
computing goal by running the Zimory Cloud. The Zimory Cloud shall provide cloud infras-
tructure based on SCP by running SCPis on virtual machines, as described by the rationale
above. In addition, the goal requires that the Zimoty Cloud provide both API and tools needed
for infrastructure management.

– Actors: Zimory Cloud, API, tools, SCP, SCPis, operators

– Targets: virtual machines, network switches, data storage, applications

• Provide SCP: This goal is to realize the Provide Platform as a Service cloud computing goal
by providing the Zimory Cloud’s SCP. The SCP must ensure both development and execution
platforms where cloud applications can be developed and executed. Therefore, the platform
must provide both API and libraries used by developers.

– Actors: SCP, developers, scientists

– Targets: API, library, virtual machines, services, grid-like calculations, data storage

ASCENS 15



D3.3: Third Report on WP3 (Final) November 8, 2013

• Provide Applications: This goal is to realize the Provide Software as a Service cloud comput-
ing goal by providing applications running in the SCP Cloud (or Zimory Cloud). The software
applications can be run within a SCPe by users using the SCP’s application programming in-
terface (API) and SCP’s library. Data storage services might be provided via applications as
well.

– Actors: SCP Cloud, SCPe, API, library, users

– Targets: applications, data storage

Level 4 Goals:

• Form SCPe: This goal is to form a dynamic SCPe that shall provide the needed computational
resources for the realization of either the Provide SCP goal or Provide Applications goal, or
both. The Form SCPe goal is supportive to these two goals (see the allows relationship in
Figure 3). Moreover, the achievement of this goal may initiate two more assistive goals: Provide
Fail-safe Execution and Optimize Resource Usage, which assist the Provide Applications goal
(see Figure 3). Note that this goal shall take into consideration the Service Level Agreement
constraint, which may impose restrictions (or requirements) on the processing power, number
of SCPis running within the ensemble, communication latency, memory usage, etc.

– Actors: SCP Cloud, SCPis, application, communication, Service Level Agreement

– Targets: SCPe

• Form SCP Cloud: This goal is to form the SCP Cloud (Zymory Cloud) from the running
SCPis joining their resources within that cloud. Note that the cloud allows the individual SCPis
voluntarily join in or opt out. In addition, any application that runs on a cloud’s SCPi is also
added to the cloud as a resource. Thus, the SCP Cloud is formed by both running SCPis and
applications (see Figure 3).

– Actors: SCP, SCPis, application, communication

– Targets: SCP Cloud

• Run SCPi: This goal is to run a SCPi as an instance of SCP hosted by a virtual machine.
Basically, this goal along with the Run Application goal (both connected via AND relationship)
might be considered as a sub-goal of the Form SCP Cloud goal.

– Actors: SCP, virtual machine

– Targets: SCPi

• Run Application: This goal is to run an application on a SCPi using SCP’s API and library.
This goal must be achieved as part of the Form SCP Cloud goal, i.e., it might be considered as
a sub-goal of this goal.

– Actors: SCPi, API, library

– Targets: application

• Provide Fail-safe Execution: This goal is to ensure that running applications will continue
working if a hosting SCPi fails. This policy must be provided by a SCPe, eventually formed to
provide a fail-safe execution environment. The Provide Fail-safe Execution goal is assistive to
the Run Application goal and it may be considered as a self-* objective providing fault tolerance.
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– Actors: applications, SCPis, SCPe

– Targets: fail-safe execution of applications

• Optimize Resource Usage: This goal is to ensure that running applications will use the cloud
resources in the most optimal way. This policy must be provided by a SCPe, eventually formed
to provide an optimal use of particular cloud resources, e.g., memory, disk space, etc. The
Optimize Resource Usage goal is assistive to the Run Application goal and it may be considered
as a self-* objective providing self-optimization.

– Actors: applications, SCPis, SCPe, cloud resources

– Targets: optimized resource usage

3.2 GAR for Science Clouds

After completing the goals model for Science Clouds, the next step of the ARE approach is to put the
GAR model in the context of cloud computing to derive a domain-specific GAR that can be applied
to the goals captured by the goals model for Science Clouds. To derive the domain-specific GAR we
elaborated on the Science Clouds features, issues and goals to come up with self-* objectives and the
consecutive autonomy-assistive requirements. For example, some remarkable issues that eventually
can turn to autonomy features are [MKH+13]:

• fail-safe operation: An application should be available even its host SCPi fails (see Provide
Fail-safe Execution goal in Section 3.1).

• load balancing / throughput: Parallel execution of same applications to distribute the computa-
tional/resource overhead (load) when it is high, but not before that.

• energy conservation: Shutting down virtual machines or de-configuring virtual networks if not
required (this feature requires IaaS support).

• SCPi fails, disappears, or appears: A failing SCPi attempts to notify other SCPis, which need to
take over responsibilities. If a new SCPi appears, it should engage with applications execution.

• SCPi (or link) with high load, or idle: Move applications to another SCPi, receive applications
from another SCPi, or run a new SCPi on a virtual machine. If a SCPi is idle, then engage with
applications running already on another SCPi, or simply shut down it.

To address these issues, SCPis must be monitored (including self-monitored) along with the cloud
environment to detect high computational loads (due to applications), high communication latency,
high memory usage, other SCPis that join in or opt out, etc. Basically, monitoring shall go on three
levels:

• network level: The SCPis forming a SCPe need to know each other and be able to route between
themselves.

• application level: The SCPis forming a SCPe need to know what applications run on which
SCPis.

• data level: When an application is deployed, the SCPis that can eventually run that application
need to have the application executable (immutable data). Moreover, the SCPis running that
application need to monitor the application data (mutable data) and eventually store it through
check points, so the application can be resumed in case of a SCPi failure or the failure of the
application itself.
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Addressing these issues in the context of the system goals (see Section 3.1) will result into self-
adaptive behavior realized by self-* objectives. These self-* objectives along with the autonomy-
assistive requirements form our domain-specific GAR model for Science Clouds as following:

• self-* objectives (autonomicity):

– self-healing: If a SCPi fails or is shut down, the applications executing on it must be made
available on another SCPi in the SCPe hosting those SCPis.

– self-configuring 1: Each SCPi is aware about changes in its hosting SCPe - new SCPis can
be added to the hosting SCPe or other can voluntarily leave of shut down. A SCPi should
adapt itself to take into consideration both the newly available resources and recently dis-
appeared resources provided by other SCPis.

– self-configuring 2: A SCPi is aware about the performance of the hosted applications. If
an application is slowing down due to a lack of resources, this application can be dis-
tributed among different SCPis (run/resumed in parallel) if the application itself supports
distributed execution.

– self-optimizing 1: If a SCPi reaches its capacity (e.g., consistent high CPU load or swap-
ping due to high memory usage), it may transfer some of the computational load to another
SCPi from the same SCPe.

– self-optimizing 2: If the communication latency within a SCPe is relatively high, due to
overloaded links in the network, the SCPe may engage new SCPis to reduce the commu-
nication traffic.

– self-optimizing 3: If the communication latency within a SCPe is relatively high, due to
overloaded links in the network, the SCPe may reduce the load transfer within the SCPe
itself.

– self-optimizing 4: If SCPis are no longer required, the hosting SCPe may reconfigure to
engage the idle SCPis in computational processes.

– self-optimizing 5: If certain SCPis are no longer required, they may shut down along with
their hosting virtual machines to save energy.

– self-optimizing 6: If the computational load in certain SCPes is relatively high, due to
overloaded application executions, the SCPe may start new SCPis along with the hosting
virtual machines (if necessary) to reduce the computational overload.

• knowledge: cloud objectives; SCPes (engaged SCPis, ensemble’s applications, ensemble’s vir-
tual machines, service level agreement, states), SCPis (applications, CPU, memory, storage
capacity, states); applications (needed resources, distributiveness, states); communication links;

• awareness: application awareness (resource consumption, execution stage, load distribution,
data-transfer); SCPi self-awareness (applications, resources, hosting virtual machine, user);
SCPe awareness (participating SCPis, communication links, distributed applications, service
level agreement); cloud awareness (SCPes, SCPis); communication awareness (communicating
SCPis, data-transfer);

• monitoring: SCPi self-monitoring (running applications, CPU load, memory usage, storage
capacity); SCPe monitoring (ensemble’s SCPis, communication latency between SCPis, data
transfer within SCPe);

• adaptability: adaptable load balancing; adaptable communication;
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• dynamicity: dynamic communication links; dynamic SCPe formation;

• robustness: robust to SCPi failures; robust to data-transfer failures; robust to application execu-
tion failures;

• resilience: resilient communication links (communication losses must be repairable); network
resilience (the routing needs to work in a dynamic environment where SCPis voluntarily join in
and opt out of SCPes); application resilience; data resilience;

• mobility: data distribution; application distribution; SCPi mobility (SCPis may run on different
virtual machines);

3.3 ARE Requirements Chunks for Science Clouds

The next step is to merge the GORE model for Science Clouds with the GAR model for science clouds,
by applying the GAR model to the system goals captured in the first phase of the ARE process. Con-
sidering the fact that the Level 3 goals (see Figure 3 and Section 3.1) present the main system goals,
we applied the GAR model to these goals to derive self-adaptive behavior supporting the common
Science Clouds behavior realized by the goals Provide Zimory Cloud, Provide SCP, and Provide Ap-
plications. Note that not all the self-* objectives derived by the GAR model in Section 3.2 are relevant
to every one of these three goals. In this section, we present the self-* objectives derived for these
three goals. The self-* objectives are presented as autonomy requirements chunks (see Section 2.4).

For the Provide Zimory Cloud goal we derived the following self-* objectives:

• Self-Optimizing 5: If certain SCPis are no longer required, they may shut down along with
their hosting virtual machines to save energy.

– Assisting system goals: Provide Zimory Cloud

– Actors: SCPis, virtual machines

– Targets: SCPis shut down

– Scenario: If a SCPi is in idle mode during a certain interval of time, then it can au-
tonomously shut down. If a hosting virtual machine detects that it is not running any
SCPis for a certain period of time, it can autonomously shut down.

• Self-Optimizing 6: If the computational load in a SCPe is relatively high, due to overloaded
application executions, the SCPe may start new SCPis along with the hosting virtual machines
(if necessary) to reduce the computational overload.

– Assisting system goals: Provide Zimory Cloud

– Actors: SCPe, SCPis, virtual machines, applications

– Targets: SCPis started,

– Scenario: If a SCPe detects a high computational load in the entire ensemble of SCPis,
i.e., all the engaged SCPis run heavy application executions, then it may start new SCPis.
If there is a lack of virtual machines that can host SCPis, then such machines can be started
as well.

For the Provide SCP goal we derived the following self-* objectives:
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• Self-Configuring 1: Each SCPi is aware about changes in its hosting SCPe - new SCPis can be
added to the hosting SCPe or other can voluntarily leave of shut down. A SCPi should adapt
itself to take into consideration both the newly available resources and recently disappeared
resources provided by other SCPis.

– Assisting system goals: Provide SCP

– Actors: SCPe, SCPis, applications

– Targets: SCPis updated on changes in resource availability

– Scenario: If a SCPi detects absence of a previously active SCPi it stops collaborating
with that SCPi, i.e., it stops all the joint operations on applications execution and data
transferring. Moreover, the active SCPi may need to reconsider the resource availability
and eventually reschedule the controllable application executions to cope with the new
situation. If a SCPi detects presence of a new SCPi that recently joined the SCPe, it shall
reconsider the resource availability and eventually it may ask this new SCPi share part of
the computational workload.

• Self-optimizing 1: If a SCPi reaches its capacity (e.g., consistent high CPU load or swapping
due to high memory usage), it may transfer some of the computational load to another SCPi
from the same SCPe.

– Assisting system goals: Provide SCP

– Actors: SCPe, SCPis, resources, applications

– Targets: application executions shared among SCPis

– Scenario: If a SCPi detects high resource usage (consistent high CPU load or high swap-
ping) it may ask another SCPi to take over some of the application executions.

• Self-optimizing 2: If the communication latency within a SCPe is relatively high, due to over-
loaded links in the network, the SCPe may engage new SCPis to reduce the communication
traffic.

– Assisting system goals: Provide SCP

– Actors: SCPe, SCPis, communication

– Targets: low communication latency

– Scenario: If a SCPi detects high communication latency while communicating with an-
other SCPi, it may start collaborating with other SCPis to reduce the data transfer with the
initial SCPi and consecutively, reduce the communication latency.

• Self-optimizing 3: If the communication latency within a SCPe is relatively high, due to over-
loaded links in the network, the SCPe may reduce the load transfer within the SCPe itself.

– Assisting system goals: Provide SCP

– Actors: SCPe, SCPis, communication, transferred data

– Targets: low communication latency

– Scenario: If a SCPi detects high communication latency while communicating with an-
other SCPi, it may reduce the amount of transferred data.

• Self-Optimizing 4: If SCPis are no longer required, the hosting SCPe may reconfigure to en-
gage the idle SCPis in computational processes.
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– Assisting system goals: Provide SCP

– Actors: SCPe, SCPis, applications

– Targets: SCPis involved in application executions

– Scenario: If a SCPi stays in idle mode for a specific period of time, it may request from
other SCPis to take over some of the ongoing application executions.

For the Provide Application goal we derived the following self-* objectives:

• Self-Healing: If a SCPi fails or is shut down, the applications executing on it must be made
available on another SCPi in the SCPe hosting those SCPis.

– Assisting system goals: Provide Application

– Actors: SCPe, SCPis, applications

– Targets: applications transferred for execution to other SCPis

– Scenario: If a SCPi fails or is shut down while performing application executions, other
SCPis shall detect the SCPi failure and shall take over the application executions carried
by the failed SCPi.

• Self-Configuring 2: A SCPi is aware about the performance of the hosted applications. If an
application is slowing down due to a lack of resources, this application can be distributed among
different SCPis (run/resumed in parallel) if the application itself supports distributed execution.

– Assisting system goals: Provide Application

– Actors: SCPe, SCPis, application, resources

– Targets: application distributed for execution to other SCPis

– Scenario: If a SCPi detects low performance in application executions due to a lack of
resources, the SCPi may request other SCPis to take over some of the hosted application
executions, which will eventually release resources in the initial SCPi and improve the
performance of its still hosted applications.

In addition to the self-* objectives derived from the context-specific GAR model, more self-* objec-
tives might be derived from the constraints associated with the targeted system goal. Note that the
analysis step in Figure 1 (see Section 2.3) uses the context-specific GAR model and elaborates on
both system goal and constraints associated with that goal. Often environmental constraints introduce
factors that may violate the system goals and self-* objectives will be required to overcome those
constraints. Actually, such constraints might represent obstacles to the achievement of a goal. Con-
structing self-* objectives from goal constraints can be regarded as a form of constraint programming,
in which a very abstract logic sentence describing a goal with its actors and targets (it may be written
in a natural language as well) is extended to include concepts from constraint satisfaction and system
capabilities that enable the achievement of the goal. In ARE, the capabilities are actually abstractions
of system operations that need to be performed to maintain the goal fulfillment along with constraint
satisfaction. In this approach, we need to query the provability of the targeted goal, which contains
constraints, and then if the system goal cannot be fulfilled due to constraint satisfaction, a self-* ob-
jective is derived as an assistive system goal preserving both the original system’s goal targets and
constraint satisfaction.

An example demonstrating this process can be deriving self-* objectives from the Service Level
Agreement (SLA) constraints (see Section 3.1). SLA may impose constraints on application exe-
cution, e.g., certain number of active SCPis, certain latency between the communicating SCPis, or
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Figure 4: Science Clouds Goals Model with Self-* Objectives Assisting System Goals from Level 3

restrictions on processing power or on memory [SRA+11]. In this exercise, we derived the following
self-* objectives copying with the SLA constraints:

• Self-Engaging-SCPis: A SCPe formed for the execution of a certain application may need a
certain number of involved SCPis.

– Assisting system goals: Provide SCP

– Actors: SCPe, SCPis, application

– Targets: exact number of SCPis

– Scenario: If an application requires an exact number of SCPis to run, then SCPe shall
engage the exact number of SCPis needed for the execution of that application.

• Self-Tuning-Latency: A SCPe formed for the execution of a certain application may need a
certain latency between the communicating SCPis needed for the execution of that application.
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– Assisting system goals: Provide SCP

– Actors: SCPe, SCPis, application, communication

– Targets: latency

– Scenario: If an application requires a certain communication latency between the SCPis
engaged to run that application, then each one of these SCPis shall maintain its commu-
nication latency by either speed up the communication (by applying the self-* objective
Self-Optimizing 3) or slow it down (by introducing certain delay before sending the data
packages).

• Self-Tuning-CPU-Usage: A SCPi executing a certain application might be restricted by maxi-
mum CPU power allowed to this application.

– Assisting system goals: Provide SCP

– Actors: SCPi, application

– Targets: CPU power

– Scenario: If an application is consuming more CPU power than the maximum allowed,
then the hosting SCPi should slow down the application execution to minimize the CPU
usage.

• Self-Tuning-Memory-Usage: A SCPi executing a certain application might be restricted by
maximum memory allowed to this application.

– Assisting system goals: Provide SCP

– Actors: SCPi, application

– Targets: memory

– Scenario: If an application is consuming more memory than the maximum allowed, then
the hosting SCPi should enforce lower memory use by this application.

Figure 4 depicts the Science Clouds Goals Model (shown in Figure 3), but enriched with the self-
* objectives described above. As shown, these self-* objectives (depicted in gray color) inherit the
system goals they assist by providing behavior alternatives with respect to these system goals. Note
that, due to the ”inheritance” relationship, the targets of the assisted system goals are kept in all of
those self-* objectives. Note that the Science Clouds system switches to one of the assisting self-*
objectives when alternative autonomous behavior is required (e.g., an SCPi fails to perform).

3.4 Knowledge Representation for Science Clouds with KnowLang

The next step after deriving the autonomy requirements per system goal is their specification with
KnowLang. Note that the autonomy requirements carry all the necessary information that needs to
be represented as knowledge for Science Clouds. Therefore, by specifying the captured self-* objec-
tives we build the necessary knowledge model for Science Clouds, which is the ultimate goal of this
exercise. Recall that specifying with KnowLang goes over a few phases [12]:

1. Initial knowledge requirements gathering - involves domain experts to determine the basic no-
tions, relations and functions (operations) of the domain of interest.

2. Behavior definition - identifies situations and behavior policies as ”control data” helping to
identify important self-adaptive scenarios.
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3. Knowledge structuring - encapsulates domain entities, situations and behavior policies into
KnowLang structures like concepts, properties, functionalities, objects, relations, facts and
rules.

By applying the ARE approach to capture the autonomy requirements for Science Clouds, we actually
perform the first two phases, as described above. This makes the resulting knowledge model very
efficient and relevant and without any unnecessary knowledge details, which was a major problem in
our previous knowledge models for the ASCENS case studies. Recall that KnowLang [VHM+12]
is exclusively dedicated to knowledge specification where knowledge is specified as a Knowledge
Base (KB) comprising a variety of knowledge structures, e.g., ontologies, facts, rules, and constraints.
Here, in order to specify the autonomy requirements for Science Clouds, the first step is to specify
the KB representing the cloud, SCPes, SCPis, applications, etc. To do that, we need to specify on-
tology structuring the knowledge domains of the cloud. Note that these domains are described via
domain-relevant concepts and objects (concept instances) related through relations. To handle explicit
concepts like situations, goals, and policies, we grant some of the domain concepts with explicit state
expressions (a state expression is a Boolean expression over ontology) [VHM+12]. Note that being
part of the autonomy requirements, knowledge plays a very important role in the expression of all the
autonomy requirements: autonomicity, knowledge, awareness, monitoring, adaptability, dynamicity,
robustness, resilience, and mobility outlined by GAR (see Section 2.3).

3.4.1 Science Cloud Ontology

Figure 5, depicts a graphical representation of the Cloud Thing concept tree relating most of the con-
cepts within the Science Cloud Ontology (SCCloud). Note that the relationships within a concept tree
are ”is-a” (inheritance), e.g., the Latency concept is a Phenomenon and the Action concept is a Knowl-
edge and consecutively Phenomenon, etc. Most of the concepts presented in Figure 5 were derived
from the Science Clouds Goals Model (see Figure 4). Other concepts are considered as ”explicit”
and were derived from the KnowLang’s multi-tier specification model [VHM+12]. The following

Figure 5: Science Clouds Ontology: Cloud Thing Concept Tree

is a sample of the KnowLang specification representing two important concepts: the SCP concept
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and the Application concept (partial specification only). As specified, the concepts in a concept tree
might have properties of other concepts, functionalities (actions associated with that concept), states
(Boolean expressions validating a specific state), etc. The IMPL specification directive refers to the
implementation of the concept in question, i.e., in the following example SCPImpl is the software
implementation (presuming a C++ class) of the SCP concept.
// Science Cloud Platform
CONCEPT SCP {
CHILDREN {}

PARENTS { SCCloud.Thing..Cloud_Platform }
STATES {
STATE Running { this.PROPS.platform_API. STATES.Running AND this.PROPS.platform_Library.STATES.Running }
STATE Executing { IS_PERFORMING(this.FUNCS.runApp) }
STATE Observing { IS_PERFORMING(this.FUNCS.runApp) AND SCCloud.Thing..Application.PROPS.initiator=this }
STATE Down { NOT this.STATES.Running }
STATE Overloaded { this.STATES.OverloadedCPU OR this.STATES.OverloadedStorage OR this.STATES.OverloadedMemory }
STATE OverloadedCPU { SCCloud.Thing..Metric.CPU_Usage.VALUE > 0.95 }
STATE OverloadedMemory { SCCloud.Thing..Metric.Memory_Usage.VALUE > 0.95 }
STATE OverloadedStorage { SCCloud.Thing..Metric.Hard_Disk_Usage.VALUE > 0.95 }
STATE ApplicationTransferred { LAST_PERFORMED(this, this.FUNCS.transferApp) }
STATE InCommunication { this.FUNCS.hasActiveCommunication }
STATE InCommunicationLatency { this.STATES.InCommunication AND this.FUNCS.getCommunicationLatency >0.5 }
STATE InLowTrafic { this.FUNCS.getDataTrafic <= 0.5 }
STATE Started { LAST_PERFORMED(this, this.FUNCS.start) }
STATE Stopped { LAST_PERFORMED(this, this.FUNCS.stop) }

}
PROPS {
PROP platform_API { TYPE {SCCloud.Thing..API} CARDINALITY {1} }
PROP platform_Library { TYPE {SCCloud.Thing..Library} CARDINALITY {1} }
PROP platform_CPU { TYPE {SCCloud.Thing..CPU} CARDINALITY {1} }
PROP platform_Memory { TYPE {SCCloud.Thing..Memory} CARDINALITY {1} }
PROP platform_Storage { TYPE {SCCloud.Thing..Data_Storage} CARDINALITY {1} }
PROP platform_Applications { TYPE {SCCloud.Thing..Application} CARDINALITY {*} }

}
FUNCS {
FUNC run { TYPE { SCCloud.Thing..Action.RunSCP } }
FUNC down { TYPE { SCCloud.Thing..Action.StopSCP } }
FUNC runApp { TYPE { SCCloud.Thing..Action.RunApplication } }
FUNC startApp { TYPE { SCCloud.Thing..Action.StartApplication } }
FUNC stopApp { TYPE { SCCloud.Thing..Action.StopApplication } }
FUNC transferApp { TYPE { SCCloud.Thing..Action.TransferApplication } }
FUNC startNewCommunication { TYPE { SCCloud.Thing..Action.StartCommunication } }
FUNC stopNewCommunication { TYPE { SCCloud.Thing..Action.StopCommunication } }
FUNC hasActiveCommunication { TYPE { SCCloud.Thing..Action.HasActiveCommunication } }
FUNC getCommunicationLatency { TYPE { SCCloud.Thing..Action.GetCommunicationLatency } }
FUNC getDataTraffic { TYPE { SCCloud.Thing..Action.GetTraffic } }

}
IMPL { SCCloud.SCPImpl }

}

// Science Cloud Application
CONCEPT Application {
CHILDREN {}

PARENTS { SCCloud.Thing..Software }
STATES {
STATE Running { PERFORMED(this.FUNCS.Started) AND NOT PERFORMED(this.FUNCS. Stopped) }
STATE Started { LAST_PERFORMED(this, this.FUNCS.start) }
STATE Stopped { LAST_PERFORMED(this, this.FUNCS.stop) }

}
PROPS {
PROP needed_CPU_Power { TYPE {SCCloud.Thing..CPU_Power} CARDINALITY {1} }
PROP needed_Memory { TYPE {SCCloud.Thing..Capacity} CARDINALITY {1} }
PROP needed_Storage { TYPE {SCCloud.Thing..Storage} CARDINALITY {1} }
PROP distributiveness { TYPE {Boolean} CARDINALITY {1} }
PROP requiredSCPis { TYPE {Integer} CARDINALITY {1} }
PROP requiredLatency { TYPE { SCCloud.Thing..Latency } CARDINALITY {1} }
PROP initiator { TYPE {SCCloud.Thing..SCP} CARDINALITY {1} }

}
FUNCS { }
IMPL { SCCloud.ApplicationImpl }

}

As mentioned, the states are specified as Boolean expressions. For example, the state Executing is true
while the SCP is performing the runApp function. The KnowLang operator IS PERFORMING evalu-
ates actions and returns true if an action is currently performing. Similarly, the operator LAST PERFORMED
evaluates actions and returns true if an action is the last successfully performed action by the concept
realization. A concept realization is an object instantiated from that concept, e.g., a SCP instance
(SCPi). A complex state might be expressed as a Boolean function of other states. For example, the
Running state is expressed as a Boolean function of two other states, particularly, states of concept’s
properties, e.g., the SCP is running if both its API and Library are running:
STATE Running { this.PROPS.platform\_API.STATES.Running AND this.PROPS.platform\_Library.STATES.Running }
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States are extremely important to the specification of goals (objectives), situations, and policies. For
example, states help the KnowLang Reasoner determine at runtime whether the system is in a partic-
ular situation or a particular goal (objective) has been achieved. Note that to specify some of the SCP
states, we used metrics. Metrics are special KnowLang constructs [VHM+12] that may handle the
monitoring autonomy requirements (see Section 3.2).

STATE OverloadedCPU { SCCloud.Thing..Metric.CPU_Usage.VALUE > 0.95 }

The Cloud Thing concept tree (see Figure 5) is the main concept tree of the SCCloud Ontology. Note
that due to space limitations, Figure 5 does not show all the concept tree branches. Moreover, some
of the concepts in this tree are ”roots” of other trees. For example, the Action concept, expressing the
common concept for all the actions that can be realized by the cloud, is the root of the concept tree
shown in Figure 6. As shown, actions are grouped by subsystem (or part) they are associated with.
For example, the SCP actions are: RunSCP, StopSCP, LeaveSCPe, and JoinSCPe.

Figure 6: Science Clouds Ontology: Cloud Action Concept Tree

Note that in the KnowLang specification models, in addition to concepts we also specify concept
instances, which are considered as objects and are structured in object trees. The latter are a concep-
tualization of how objects existing in the world of interest (e.g., Science Clouds) are related to each
other. The relationships in an object tree are based on the principle that objects have properties, where
the value of a property is another object, which in turn also has properties [VHM+12]. Therefore, the
object trees are the realization of concepts in the ontology domain (e.g., Science Clouds). To better
understand the relationship between concepts and objects, we may think of concepts as similar to the
OOP classes and objects as instances of these classes. For example, the SCP concept might be re-
garded as a class and the SCPis as SCP ”instances” of that class. In this exercise, we specified a few
exemplar SCPis as object trees, which we do not present here due to space limitations.

3.4.2 Autonomicity

To specify the self-*objectives (autonomicity requirements), we use goals, policies, and situations
[VHM+12]. These are defined as explicit concepts in KnowLang and for the Cloud Ontology (SC-
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Cloud) we specified them under the concepts Virtual entity->Phenomenon->Knowledge (see Figure
5). Figure 7, depicts a concept tree representing the specified Science Clouds goals. Note that most of
these goals were directly interpolated from the goals models (see Section 3.1) and more specifically,
from the goals model for self-* objectives assisting the Science Clouds goals from Level 3 (see Section
3.3).

Figure 7: Science Cloud Ontology: Cloud Goal Concept Tree

KnowLang specifies goals as functions of states where any combination of states can be involved.
A goal has an arriving state (Boolean function of states) and an optional departing state (another
Boolean function of states) [VHM+12]. A goal with departing state is more restrictive, i.e., it can be
achieved only if the system departs from the specific goal’s departing state.

The following code samples present the specification of two simple goals. Note that their arriving
and departing states can be either single SCP states or Boolean functions involving more than one
state. Recall that the states used to specify these goals are specified as part of the SCP concept.
//
//==== Cloud Goals ===============================================================================
//
CONCEPT_GOAL Self-optimizing_1 {
SPEC {

DEPART { SCP.STATES.OverloadedCPU }
ARRIVE { SCP.STATES.ApplicationTransferred AND NOT SCP.STATES.OverloadedCPU }

}
}
CONCEPT_GOAL Self-optimizing_3 {
SPEC {

DEPART { SCP.STATES.InCommunicationLatency }
ARRIVE { SCP.STATES.InLowTrafic AND NOT SCP.STATES.InCommunicationLatency }

}
}

According to the KnowLang semantics, in order to achieve specified goals (objectives), we need
to specify policies triggering actions that will eventualy change the system states, so the desired ones,
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required by the goals, will become effective [VHM+12]. All the policies in KnowLang descend
from the explicit Policy concept. Note that policies allow the specification of autonomic behavior
(autonomic behavior can be associated with self-* objectives). As a rule, we need to specify at least
one policy per single goal, i.e., a policy that will provide the necessary behavior to achieve that goal.
Of course, we may specify multiple policies handling same goal (objective), which is often the case
with the self-* objectives and let the system decides which policy to apply taking into consideration
the current situation and conditions.

The following is a formal presentation of a KnowLang policy specification [VHM+12]. Note that
policies (Π) are specified as individual concepts providing behavior (often concurrent). A policy π has
a goal (g), policy situations (Siπ), policy-situation relations (Rπ), and policy conditions (Nπ) mapped
to policy actions (Aπ) where the evaluation of Nπ may eventually (with some degree of probability)

imply the evaluation of actions (denoted with Nπ
[Z]→ Aπ (see Definition 2). A condition is a Boolean

function over ontology (see Definition 4), e.g., the occurrence of a certain event.

Def. 1 Π := {π1, π2, ...., πn}, n ≥ 0 (Policies)

Def. 2 π :=< g, Siπ, [Rπ], Nπ, Aπ,map(Nπ, Aπ, [Z]) > (Policy)

Aπ ⊂ A,Nπ
[Z]→ Aπ (Aπ - Policy Actions)

Siπ ⊂ Si, Siπ := {siπ1 , siπ2 , ...., siπn}, n ≥ 0 (Siπ - Policy Situations)
Rπ ⊂ R,Rπ := {rπ1 , rπ2 , ...., rπn}, n ≥ 0 (Rπ-Policy-Situation Relations)
∀rπ ∈ Rπ • (rπ :=< siπ, [rn], [Z], π >) , siπ ∈ Siπ
Siπ

[Rπ ]→ π → Nπ (Policy situations may imply the policy they are related to)

Def. 3 Nπ := {n1, n2, ...., nk}, k ≥ 0 (Policy Conditions)

Def. 4 n := be(O) (Condition - Boolean Expression over Ontology)

Policy situations (Siπ) are situations that may trigger (or imply) a policy π, in compliance with the

policy-situations relations Rπ (denoted with Siπ
[Rπ ]→ π), thus implying the evaluation of the policy

conditions Nπ (denoted with π → Nπ)(see Definition 2). Therefore, the optional policy-situation
relations (Rπ) justify the relationships between a policy and the associated situations (see Definition
2). In addition, the self-adaptive behavior requires relations to be specified to connect policies with
situations over an optional probability distribution (Z) where a policy might be related to multiple
situations and vice versa. Probability distribution is provided to support probabilistic reasoning and
to help the KnowLang Reasoner choose the most probable situation-policy ”pair”. Thus, we may
specify a few relations connecting a specific situation to different policies to be undertaken when the
system is in that particular situation and the probability distribution over these relations (involving
the same situation) should help the KnowLang Reasoner decide which policy to choose (denoted with

Siπ
[Rπ ]→ π - see Definition 2). Hence, the presence of probabilistic beliefs at both mappings and

policy relations justifies the probability of policy execution, which may vary with time.
The following is a specification sample showing a simple policy called ReduceCPUOverhead - as

the name says, this policy is intended to reduce the CPU overhead of a SCPi. As shown, the policy
is specified to handle the goal Self-Opimizing 1 and is triggered by the situation HighCPUUsage.
Further, the policy triggers conditionally (the CONDITONS directive requires that a SCPi is executing
an application) the execution of a sequence of actions.
CONCEPT_POLICY ReduceCPUOverhead {
SPEC {

POLICY_GOAL { SCCloud.Thing..Self-Optimizing_1 }
POLICY_SITUATIONS { SCCloud.Thing..HighCPUUsage }
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POLICY_RELATIONS { SCCloud.Thing..Policy_Situation_1 }
POLICY_ACTIONS {SCCloud.Thing..Action.StartCommunication, SCCloud.Thing..Action.TransferApplication,

SCCloud.Thing..Action.StopCommunication }
POLICY_MAPPINGS {
MAPPING {
CONDITIONS { SCCloud.Thing..SCP.STATES.Executing }
DO_ACTIONS { SCCloud.Thing..SCP.Action.StartCommunication, SCCloud.Thing..SCP.Action.TransferApplication,

SCCloud.Thing..SCP.Action.StopCommunication }
}

}
}

}

As mentioned above, policies are triggered by situations. Therefore, while specifying policies han-
dling system objectives, we need to think of important situations that may trigger those policies. These
situations shall be eventually outlined by the scenarios of the ARE Requirements Chunks (see Sec-
tion 3.3). A single policy requires to be associated with (related to) at least one situation, but for
polices handling self-* objectives we eventually need more situations. Actually, because the policy-
situation relation is bidirectional, it is maybe more accurate to say that a single situation may need
more policies, those providing alternative behaviors or execution paths from that situation. The fol-
lowing code represents the specification of the HighCPUUsage situation, used for the specification of
the ReduceCPUOverhead policy.
//
//==== Cloud Situations ===============================================================================
//
CONCEPT_SITUATION HighCPUUsage {
CHILDREN {}
PARENTS { SCCloud.Thing..Situation}
SPEC {

SITUATION_STATES { SCCloud.Thing..SCP.STATES.OverloadedCPU}
SITUATION_ACTIONS { SCCloud.Thing..Action.TransferApplication, SCCloud.Thing..Action.SlowDownApplication,

SCCloud.Thing..Action. StopApplication }
}

}

As shown, the situation is specified with states and possible actions. To consider a situation effective
(the system is currently in that situation), its associated states must be respectively effective (evaluated
as true). For example, the situation HighCPUUsage is effective if the SCP state OverloadedCPU is ef-
fective. The possible actions define what actions can be undertaken once the system falls in a particular
situation. For example, the HighCPUUsage situation has three possible actions: TransferApplication,
SlowDownApplication, and StopApplication. The following code represents another policy intended
to handle the HighCPUUsage situation. In this policy, we specified three MAPPING sections, which
introduce three possible alternative execution paths.
CONCEPT_POLICY AIReduceCPUOverhead {
SPEC {
POLICY_GOAL { SCCloud.Thing..Self-Optimizing_1 }
POLICY_SITUATIONS { SCCloud.Thing..HighCPUUsage }
POLICY_RELATIONS { SCCloud.Thing..Policy_Situation_2 }
POLICY_ACTIONS { SCCloud.Thing..Action.SlowDownApplication, SCCloud.Thing..Action. StopApplication }
POLICY_MAPPINGS {

MAPPING {
CONDITIONS { SCCloud.Thing..SCP.STATES.Executing }
DO_ACTIONS { SCCloud.Thing..Action. SlowDownApplication }
PROBABILITY {0.5}

}
MAPPING {
CONDITIONS { SCCloud.Thing..SCP.STATES.Executing }
DO_ACTIONS { SCCloud.Thing..Action. StopApplication }
PROBABILITY {0.4}

}
MAPPING {
CONDITIONS { SCCloud.Thing..SCP.STATES.Executing }
DO_ACTIONS { GENERATE_NEXT_ACTIONS(SCCloud.Thing..SCP) }
PROBABILITY {0.1}

}
}

}
}

Recall that situations are related to policies via relations [VHM+12]. The following code demonstrates
how we related the HighCPUUsage situation to two different policies: ReduceCPUOverhead and
AIReduceCPUOverhead.
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//
//==== Cloud Relations ===============================================================================
//
RELATIONS {
RELATION Policy_Situation_1 {

RELATION_PAIR { SCCloud.Thing..HighCPUUsage, SCCloud.Thing..ReduceCPUOverhead } PROBABILITY {0.5}
}
RELATION Policy_Situation_2 {

RELATION_PAIR { SCCloud.Thing..HighCPUUsage, SCCloud.Thing..AIReduceCPUOverhead} PROBABILITY {0.4}
}

}

As specified, the probability distribution gives initial designer’s preference about what policy should
be applied if the system ends up in the HighCPUUsage situation. Note that at runtime, the KnowL-
ang Reasoner maintains a record of all the action executions and re-computes the probability rates
every time when a policy has been applied. Thus, although initially the system will apply the Re-
duceCPUOverhead policy (it has the higher probability rate of 0.5), if that policy cannot achieve
its goal due to action fails (e.g., the communication link with another SCPi is broken and applica-
tion transfer is not possible), then the probability distribution will be shifted in favor of the AIRe-
duceCPUOverhead policy and the system will try to apply that policy. Note that in this case both
policies share the same goal.

Probability distribution at the level of situation-policy relation can be omitted, presuming the re-
lationship will not change over time. It is also possible to assign probability distribution within a
policy where the probability values are set at the level of action execution, e.g., see the specification
of the AIReduceCPUOverhead policy above. As specified, the AIReduceCPUOverhead policy is in-
tended to handle the HighCPUUsage situation by providing alternative execution paths with similar
probability distribution. Here, probabilities are recomputed after every action execution, and thus the
behavior change accordingly. Moreover, to increase the goal-oriented autonomicity, in this policy’s
specification, we used the special KnowLang operator GENERATE NEXT ACTIONS, which will au-
tomatically generate the most appropriate actions to be undertaken by the SCP. The action generation
is based on the computations performed by a special reward function implemented by the KnowLang
Reasoner. The KnowLang Reward Function (KLRF) observes the outcome of the actions to compute
the possible successor states of every possible action execution and grants the actions with special
reward number considering the current system state (or states, if the current state is a composite state)
and goals. KLRF is based on past experience and uses Discrete Time Markov Chains [EG05] for
probability assessment after action executions [VHM+12].

Note that when generating actions, the GENERATE NEXT ACTIONS operator follows a sequen-
tial decision-making algorithm where actions are selected to maximize the total reward. This means
that the immediate reward of the execution of the first action, of the generated list of actions, might
not be the highest one, but the overall reward of executing all the generated actions will be the highest
possible one. Moreover, note that, the generated actions are selected from the predefined set of actions
(e.g., the possible Cloud actions - see Figure 6). The principle of the decision-making algorithm used
to select actions is as follows:

1. The average cumulative reward of the reinforcement learning system is calculated.

2. For each policy-action mapping, the KnowLang Reasoner learns the value function, which is
relative to the sum of average reward.

3. According to the value function and Bellman optimality principle1, is generated the optimal
sequence of actions.

1The Bellman optimality principle: If a given state-action sequence is optimal, and we were to remove the first state and
action, the remaining sequence is also optimal (with the second state of the original sequence now acting as initial state).
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3.4.3 Monitoring

The monitoring autonomy requirement is handled via the explicit Metric concept [VHM+12]. In
general, a self-adaptive system has sensors that connect it to the world and eventually help it listen
to its internal components. These sensors generate raw data that represent the physical characteristics
of the world. In our approach, we assume that cloud sensors are controlled by a software driver
(e.g., implemented in C++) where appropriate methods are used to control a sensor and read data
from it. By specifying a Metric concept we introduce a class of sensors to the KB and by specifying
objects, instances of that class, we represent the real sensor. KnowLang allows the specification of
four different types of metrics [VHM+12]:

• RESOURCE - measure resources like capacity;

• QUALITY - measure qualities like performance, response time, etc.;

• ENVIRONMENT - measure environment qualities and resources;

• ENSEMBLE - measure complex qualities and resources where the metric might be a function of
multiple metrics both of RESOURCE and QUALITY type.

The following is a specification of metrics mainly used to assist the specification of states in the
specification of the SCP concept (see Section 3.4.1).
//Cloud Metrics
CONCEPT_METRIC CPU_Usage {
SPEC { METRIC_TYPE { RESOURCE } METRIC_SOURCE { CPU.Usage }
DATA { DATA_TYPE { Number } VALUE { 0.00 } }

} }
CONCEPT_METRIC Memory_Usage {
SPEC { METRIC_TYPE { RESOURCE } METRIC_SOURCE { Memory.Usage }
DATA { DATA_TYPE { Number } VALUE { 0.00 } }

} }
CONCEPT_METRIC Hard_Disk_Usage {
SPEC { METRIC_TYPE { RESOURCE } METRIC_SOURCE { HDD.Usage }
DATA { DATA_TYPE { Number } VALUE { 0.00 } }

} }

4 KnowLang Implementation

The KnowLang Toolset is a comprehensive development environment that delivers a powerful combi-
nation of KnowLang notation and KnowLang tools such as Text Editor, Visual Editor, Grammar Com-
piler, Parser, Consistency Checker and KB Compiler. Currently, we fully implemented the KnowL-
ang’s Text Editor, Grammar Compiler and Parser, and we still need to complete the implementation of
the Visual Editor, KB Compiler and Consistency Checker.

4.1 KnowLang Toolset

The KnowLang Toolset provides a suitable development environment for knowledge representation
(KR) where we can write KR specifications in the KnowLang notation by using both text editing
and visual modeling tools and check for the syntactical integrity and consistency of the KR mod-
els. The KnowLang Toolset organizes its tools in five distinct components (or modules) such as
KnowLang Editor (combines both the Text Editor and Visual Editor), Grammar Compiler, KnowL-
ang Parser, Consistency Checker and KB Compiler. These components are linked together to form
a special KnowLang Specification Processor that checks and compiles the KR models specified in
KnowLang into KnowLang Binary (see Figure 8). As shown, the KnowLang Binary is the output of
the KnowLang Toolset and it is practically a compiled form of the specified KB (Knowledge Base),
which is operated by the KnowLang Reasoner. Note that the KnowLang Reasoner (see Section 4.2)
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is a distinct KnowLang component intended to be integrated within the systems using knowledge rep-
resentation with KnowLang, but it also can be integrated in the KnowLang Toolset where it can be
used for testing and behavior analysis. Figure 8 presents an abstract view of the KnowLang Toolset

Figure 8: KnowLang Specification Processor: Operational View

where we can break the operations down by operation type. Thus, we can have groups of components
performing the following operations:

• data source group (KnowLang Editor + KnowLang Grammar Compiler): prepare the input data
(grammar and specification);

• analysis group (KnowLang Parser + Consistency Checker): depend on the source language;

• synthesis group (KnowLang KB Compiler) depend on the target language (synthesis).

Note that operations that analyze the specification code to compute its properties are classified as
analysis group, and operations involved in producing the KnowLang Binary are classified as synthesis
group. Thus, all the operations related to lexical analysis, syntax analysis, and semantic analysis
belong to the analysis group, and the generation of the compiled KB is considered synthesis. This kind
of operational division shows that the KnowLang Toolset is designed with a view toward changing the
output target. This involves implementation of other KB compilers (re-implementation of the synthesis
part) for other reasoners (recall that the KnwoLang Binary is intended to be used by the KnowLang
Reasoner. Note that although we can also re-implement both analysis and data-source parts of the
toolset, this is difficult to achieve without changing the synthesis part, because the latter depends on
the intermediate code generated by the analysis part.

4.1.1 KnowLang Editor

The main functions of the KnowLang Editor module (see Figure 9) are to start the KnowLang Frame-
work’s Graphical User Interface (GUI) and to load the KnowLang Toolset’s structures into memory,
including the compiled and serialized KnowLang Grammar’s structures. This helps the KnowLang
Framework process knowledge models written in KnowLang. The KnowLang Editor module was
designed as an application front-end that allows users to interact with the KnowLang Toolset. This
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module comprises GUI components intended to provide a user-friendly environment to the users.
By using these GUI components, the users are able to load, save, edit, and create KnowLang spec-
ifications in both text and graphical formats. For these operations, the module not only exposes a
user-friendly GUI, but also implements the needed functionality. Moreover, the GUI components help
users check the consistency of KnowLang specifications and compile (or serialize) in binary format
the corresponding KB. In addition, if the KnowLang grammar needs to be recompiled2, that module
exposes the needed GUI. Note that in order to perform these operations, the KnowLang Editor module
calls components implementing the needed functionality. The KnowLang Editor module implements
and delegates to these modules a generic error-handling strategy allowing for handling critical and
non-critical specification errors all over the toolset.

Figure 9: KnowLang Editor

4.1.2 KnowLang Grammar Compiler

This module includes classes intended to work with the KnowLang grammar. It embeds the func-
tionality and data structures needed to parse the KnowLang grammar and to build internal KnowLang
grammar structures needed by the KnowLang Parser module. The KnowLang Grammar module pro-
vides a set of logically consistent classes which work cooperatively to:

• compute the First and Follow sets [Lou97] for the KnowLanf BNF grammar [Vas12];

2In its future releases the KnowLang framework may possibly be extended with new features, including extending
the multi-tier model to include new structures. Grammar recompilation is needed if we modify the KnowLang multi-tier
specification model.
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• prepare an SLR(1) (Simple parsing where the input is processed from Left to right and a
Rightmost derivation is produced by using 1 symbol of look ahead) [Lou97] parsing table for
KnowLang based on the computed First and Follow sets. The grammar input is accepted upon
reduction by the production
KnowLang-Spec→ bof Knowledge-Spec eof
where shift-reduce conflicts are resolved in favor of shifting and reduce-reduce conflicts do not
appear.

Note that the parsing table built by the KnowLang Grammar module is used by the KnowLang Parser
module’s classes to parse KnowLang specifications by applying the SLR(1) parsing algorithm as it
is described in [Lou97]. Moreover, in the KnowLang Grammar module, we define some KnowLang
Grammar definitions like grammar terminals, some specific grammar rule tags, and some generic
functions that operate on the KnowLang grammar rules. All of those are needed by both KnowLang
Parser and KnowLang KB Compiler (see Figure 8).

4.1.3 KnowLang Parser

The KnowLang Parser module defines classes able to process formal specifications written in KnowL-
ang. Note that the parser creates intermediate data structures that are needed by the KnowLang KB
Compiler (see Figure 8) to generate the KnowLang Binary for a KnowLang specification. Figure 10
depicts a high-level UML class diagram representing the KnowLang Parser module. As shown in
Figure 10, this module embeds classes implementing functionality related to scanning, pre-parsing
and parsing of KnowLang specifications. The main classes defined by this module are designed to
provide each one of these functions. The data flow in both KnowLang Parser module and KnowLang
Consistency Checker module is as follows.

KnowLang code → scanner → pre-parser → parser → consistency checker → post-parsing data structure

Here, from the KnowLang specification code, the KnowLang Scanner produces a stream of tokens
passed to the KnowLang Pre-Parser, which prepares these tokens to be parsed by the real KnowLang
Parser. The output produced by the latter is processed by the KnowLang Consistency Checker. Note
that erroneous tokens are identified at each phase of this process. Thus, we have different kinds of
errors handled by the scanner, pre-parser, parser and consistency checker. Any one of these can stop
the compilation process if errors have been discovered. It is important to mention that the KnowL-
ang parser not only parses the KnowLang specifications, but also generates some intermediate code
by using the KnowLangIntermediateGenerator class, which is implemented by the KnowLang KB
Compiler module (see Figure 10).

There are three token classes defined by this module - KnowLangToken, KnowLangTierToken, and
KnowLangCodeToken. The first class is the base KnowLang token class. It is used by the KnowL-
angScanner class to convert a KnowLang specification into a stream of tokens and by other major
classes to read and update that stream. In addition, the KnowLangToken class is used by the classes
KnowLangScanner, KnowLangPreParser, KnowLangParser, and KnowLangConsistencyChecker to
identify the erroneous tokens operating on the token stream. Thus, the KnowLangToken class com-
prises everything needed to present the words of a KnowLang specification, including the error itself
(in case the token is erroneous). The KnowLangTierToken class is used by the KnowLang Parser
module to build a declarative specification tree where concepts along with their states, properties and
functionalities, objects and relations are added to that tree based on their evaluation. The KnowLang-
CodeToken class is used by the KnowLangParser class to generate some intermediate code needed by
the KnowLang KB Compiler module.
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Figure 10: KnowLang Parser UML Class Diagram

The KnowLangScanner class performs the so-called lexical analysis of the KnowLang specifica-
tions, i.e., it collects sequences of characters into meaningful units. The latter emerge as KnowLang-
Token instances in the scanner’s output token stream, which is held by the vsTokens [] array defined
by the CompilerDef class.

The KnowLangPreParser class receives the scanned tokens from the scanner (KnowLangScanner
class) and performs special token-consolidation operations on them (these operations are performed
by the reduceTokens() method). Some token-consolidation operations are:

• consolidate RETURNS and PARAMETERS definitions in actions - embed the type in the decla-
ration;

• consolidate the two-symbol Boolean operators (<=, >=) - initially they come from the scanner
as a sequence of two tokens each and the pre-parser joins them into one token;

• consolidate qualified names - remove the qualifiers from the token stream and embed them in the
token presenting the qualified name (use the qualifiers [] array declared in the KnowLangToken
class to embed the qualifiers).
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In addition, the pre-parser class constructs the backbone of the so-called declarative specification tree.
The latter presents the declarative evaluation of a KnowLang specification. Note that the declarative
specification tree implies the hierarchical construct of the KnowLang multi-tier specification model.

The KnowLangParser class receives the pre-parsed (consolidated) tokens from the pre-parser
(KnowLangPreParser class) and performs syntax analysis to determine the structure of the KnowLang
specification under consideration. In order to perform syntax analysis, the parser uses the SLR(1) pars-
ing table in the form of KnowLang Grammar lines and DFA (deterministic finite automaton) states,
these constructed and provided by the KnowLang Grammar module (see Figure 10). While parsing,
this class reports any token that does not conform to the KnowLang Grammar rules as being erroneous.
The KnowLang Editor module processes the erroneous tokens received by the parser as syntax errors.
Moreover, the KnowLangParser class uses an instance of the KnowLangIntrmdtGenerator class (de-
fined in the KnowLang KB Compiler module) to generate on-the-fly intermediate code data in the
form of code tokens (instances of the KnowLangCodeToken class). This intermediate code is added to
the declarative specification tree, which is initially generated by the pre-parser.

4.1.4 KnowLang Consistency Checker

This module uses both the declarative specification tree (constructed by the pre-parser and enriched by
the parser with the intermediate code - see Section 4.1.3) and the stream of parsed tokens to check the
specification for consistency errors, e.g., double definitions, name reuse, etc.. The KnowLang Consis-
tency Checker performs consistency-checking operations before and after parsing. In the first group
fall lightweight operations, which together with consistency checking do also some special work on
the declarative specification tree and on the stream of tokens (coming from the pre-parser). For exam-
ple, such an operation is checking the consistency of all the identifiers in a KnowLang specification.
This involves:

• matching identifiers with their declaration, e.g., an ontology concept or object;

• matching each object with its concept - all objects must be instantiated from a concept specified
in an ontology;

• checking for proper use of properties and functions;

• checking if two objects are instantiated from the same concept when compare.

In the second group fall consistency-checking operations, which require that a KnowLang specifi-
cation be validated by the parser before performing consistency checking on it. It is important to
mention, that the KnowLang Consistency Checker generates consistency errors. Moreover, it could
generate warnings while performing consistency-checking operations. Warnings cannot be consid-
ered as consistency errors, because they do not contradict the definitions for consistency checking, but
rather introduce uncertainty how the KnowLang Reasoner will handle specific cases. This module is
still under development.

4.1.5 KnowLang KB Compiler

Basically, this module produces the KnowLang Binary that actually is a serialized version of the
represented knowledge. The module takes the declarative tree produced by the KnowLang Parser
and checked by the KnowLang Consistency Checker and converts it into a serializable hierarchical
structure of concepts and objects. The KnowLang Binary copes with the KnowLang Reasoner, so it
can be loaded, queried and updated by that reasoner. This module is still under development and it
will be fully completed along with the implementation of the KnowLang Reasoner. This is required,
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because the KB structure must cope with multiple generic traversal functions for traversing vectors
and trees implemented by the KnowLang Reasoner. Generic traversal is achieved through pattern
matching.

4.2 KnowLang Resoner

As described in the second deliverable of WP3 [VHM+12], the KnowLang Reasoner is meant to
support reasoning about self-adaptive behavior and to provide a KR gateway for the ASK and TELL
Operators. The reasoner communicates with the system via ASK and TELL Operators (forming a
communication interface) and operates in the KR Context defined by the compiled KB (or KnwoLang
Binary), a context formed by the represented knowledge (see Figure 11). The reasoner is compiled as
a library (component) that is self-contained and communicates with the world outside via two groups
of interfaces defined by the ASK and TELL operators. This allows the reasoner run as a component
in the operational context of an ASCENS system hosting that component (see Figure 11). Currently,

Figure 11: KnowLang Reasoner

we are working on the implementation of the KnowLang Reasoner where the main effort is on the
implementation of the predefined set of ASK and TELL Operators [VHM+12]. Recall that the TELL
Operators feed the KR Context with important information driven by errors, executed actions, new
sensory data, etc., thus helping the KnowLang Reasoner update the KR with recent changes in both
the system and execution environment. The system uses ASK Operators to receive recommended
behavior where knowledge is used against the perception of the world to generate appropriate actions
in compliance to some goals and beliefs. In addition, ASK Operators may provide the system with
awareness-based conclusions about the current state of the system or the environment and ideally with
behavior models for self-adaptation. Currently, we are implementing the operational semantics of the
following TELL and ASK Operators [VHM+12]:

• TELL ERR - tells about a raised error;

• TELL SENSOR - tells about new data collected by a sensor;

• TELL ACTION - tells about action execution;

• TELL ACTION (behavior) - tells about action execution as part of behavior performance;

• TELL OBJ UPDATE - tells about a possible object update;

• TELL CNCPT UPDATE - tells about a possible concept update;
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• ASK BEHAVIOR - asks for self-adaptive behavior considering the current situation;

• ASK BEHAVIOR(goal) - asks for self-adaptive behavior to achieve certain goal;

• ASK BEHAVIOR(situation; goal) - asks for self-adaptive behavior to achieve certain goal when
departing from a specific situation;

• ASK BEHAVIOR(state) - asks for self-adaptive behavior to go to a certain state;

• ASK RULE BEHAVIOR(conditions) - asks for rule-based behavior;

• ASK CURR STATE(object) - asks for the current state of an object;

• ASK CURR STATE - asks for the current system state;

• ASK CURR SITUATION - asks for the current situation.

Note that each one of these operators is exposed as a public interface of the reasoner and can be
directly called by the hosting application.

Another major effort related to the implementation of the KnowLang Reasoner is implementing
the awareness mechanism. Here, we are implementing the distinct awareness functions as outlined
by the Pyramid of Awareness described in our 2nd WP3 deliverable [VHM+12]: raw data gathering,
data passing, filtering, conversion, assessment, projection, and learning. The learning functionality
is implemented as probability redistribution at the level of policy-situation relations along with prob-
ability redistribution at the level of action mapping within a policy definition (see the formal model
in Section 3.4.2). Recall that, these functions grouped into four groups from the awareness control
loop implemented by the reasoner. The four groups of tasks are: monitoring tasks, recognition tasks,
assessment tasks, and learning tasks.

Basically, the awareness control loop is implemented to: 1) perform monitoring by analysing the
metrics and events; 2) recognize situations, thus based on states evaluation; 3) determine the right
polices to act; and 4) redistribute the probability to change the beliefs. The awareness control loop
is implemented by following the so-called super loop architecture [KP07], which is a design pattern
usually implemented as a program structure (e.g., a function) comprising an infinite loop that performs
all the tasks of a system. The following pseudocode presents the generic implementation of the super
loop architecture.

while (true) {
Task1();
Delay_After_Task1();
Task2();
Delay_After_Task2();
....
TaskN();
Delay_After_TaskN();

}

As shown, the tasks are performed in a deterministic order with some delays between them. These
delays are optional and are intended to keep the execution of tasks within a time frame allocated for
each task. Here, the delays should be computed dynamically at runtime by considering the last exe-
cution time of each task for each loop pass. Note that task timing is important to guarantee that the
reasoned will act efficiently and meet eventual time deadlines if such exist. Thus, this architecture tar-
gets at performing all the tasks in a correct deterministic sequential order and possibly in a reasonable
amount of time.
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Moreover, this architecture helps us realize different levels of awareness exhibition and eventually
degree of awareness [VHM+12]. Recall that the levels of awareness might be related to data read-
ability and reliability, i.e., it could happen to have noisy data that must be cleaned up, which may
slow down the whole process and to keep up with the assigned task deadline the reasoner will stop
the process at certain point and data will be eventually interpreted with some degree of probability.
Moreover, this loop architecture helps us realize other levels of awareness exhibition such as early
awareness, which is supposed to be a product of one or two passes of the awareness control loop and
late awareness, which should be more mature in terms of conclusions and projections. Therefore, sim-
ilar to humans who may react to their first impression and then the reaction might shift together with
a late but better realization of the current situation, the KnowLang Reasoner relies on early awareness
to react quickly to situations when fast reaction is needed and on late awareness when more precise
thinking is required.

5 Summary and Future Goals

In the course of the third year of WP3, we continued working on the KnowLang Framework im-
plementation along with improving the efficiency in knowledge representation with KnowLang. To
find the right level of abstraction when specifying knowledge with KnowLang, in a joint project with
ESA, the European Space Agency, we developed an approach to Autonomy Requirements Engineering
(ARE). Consecutively, we used the ARE approach to build efficient and relevant knowledge models for
ASCENS. With ARE, we introduced a preliminary software engineering step to the process of Knowl-
edge Engineering. This step helped us select and refine relevant and efficient knowledge data that we
knowledge-represented with KnowLang for the ASCENS Science Clouds case study. The approach
focuses on the so-called self-* objectives, providing for self-adaptive behavior, and consecutively
centers the knowledge models around this self-adaptive behavior. This makes the knowledge repre-
sentation very efficient and specified at the right level of abstraction. Note that this was a major flaw
in our previous knowledge models, which carried unnecessary details, thus eventually overwhelming
the reasoning process.

In this 3rd year of the project, we also started implementing the KnowLang Reasoner where the
main efforts were on the implementation of the ASK and TELL Operators along with the awareness
control loop. Currently, we are implementing the operational semantics of these operators. As for the
awareness control loop, we are using a super loop architecture that helps us realize different levels
of awareness exhibition and eventually degree of awareness. Basically, this architecture introduces a
deadline to each one of the awareness loop tasks and the levels of awareness exhibition are a product
of different number of loop iterations.

Our plans for the fourth year of WP3 are mainly concerned with further development of the
KnowLang Reasoner, to finish up Task 3.3. Along with this task, we shall implement the aware-
ness prototypes (Task 3.4) based on the new knowledge representation models for the ASCENS case
studies (Task 3.2) developed with the ARE approach. This requires that we build complete knowledge
models by applying the ARE approach to the other two case studies, as we did for the Science Clouds
case study. Along with the completion of this task, we need to work in close collaboration with WP4
on the full integration of the ARE approach and SOTA. Last but not least we need to complete the
KnowLang Framework’s modules, which are still not fully implemented as described in Section 4.
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