
www.ascens-ist.eu

ASCENS
Autonomic Service-Component Ensembles

D5.3: Third Report on WP5
Verification Techniques and Security Issues

Grant agreement number: 257414
Funding Scheme: FET Proactive
Project Type: Integrated Project
Latest version of Annex I: Version 2.2 (30.7.2011)

Lead contractor for deliverable: UJF-VERIMAG
Author(s): Saddek Bensalem (UJF-Verimag), Michele Boreale (UDF),
Jacques Combaz (UJF-Verimag), Rocco De Nicola (IMT), Jan Kofroň
(CUNI), Gianluca Mezzetti (UNIPI), Pavel Parı́zek (CUNI), Francesco
Tiezzi (IMT)

Reporting Period: 3
Period covered: October 1, 2012 to September 30, 2013
Submission date: November 8, 2013
Revision: Final
Classification: PU

Project coordinator: Martin Wirsing (LMU)
Tel: +49 89 2180 9154
Fax: +49 89 2180 9175
E-mail: wirsing@lmu.de

Partners: LMU, UNIPI, UDF, Fraunhofer, UJF-Verimag, UNIMORE,
ULB, EPFL, VW, Zimory, UL, IMT, Mobsya, CUNI

D5.3: Third Report on WP5 (Final) November 8, 2013

Executive Summary

This document summarizes the work performed in Year 3 targeted to develop new techniques and
theories to support the design and the implementation of correct and reliable service components (SC)
and service component ensembles (SCE). We have worked in several different directions in order to
get closer to our goal. Our contributions can be grouped into the following main directions: (1) We
have presented a recent work that aim at providing models and tools for the quantitative assessment
of the correct functioning of distributed systems. (2) We proposed two approaches for network-aware
evaluation of reputations systems, at the design stage and at implementation/deployment stage. (3) We
have proposed a model-driven security approach for SCE. The developed framework guarantees au-
tomated verification and implementation of secure information flow systems with respect to specific
definition of non-interference. (4) We have presented a new method for the verification of timed
systems. It consists in adapting the compositional verification approach, developed in D-Finder, to
timed system. The main challenge was to be able to capture the relations between the local timing of
the components induced by their interactions. (5) We introduced a framework for verification of dy-
namic systems based on nominal automata, for which we investigated several fundamental theoretical
questions. (6) Finally, we designed and implemented support for automated verification of jDEECo
applications with the Java Pathfinder model checker.

ASCENS 2

D5.3: Third Report on WP5 (Final) November 8, 2013

Contents

1 Introduction 5

2 Quantitative Distributed Models of Confidentiality and Trust 7
2.1 Worst- and average-case privacy breach in randomization mechanisms 7
2.2 Asymptotic risk analysis for trust and reputation systems 9

3 Network-Aware Analysis of Reputation Systems 11
3.1 A stochastic verification methodology . 13
3.2 A network-aware evaluation environment . 14

4 Model-driven Information Flow Security for Component-Based Systems 16
4.1 Information Flow Security . 17
4.2 Verification . 21
4.3 Application . 23
4.4 Conclusion . 25

5 Verification of Timed Systems 25

6 Towards Nominal Automata Model Checking 31

7 jDEECo Verification 32

8 Conclusion and Future Work 34

ASCENS 3

D5.3: Third Report on WP5 (Final) November 8, 2013

ASCENS 4

D5.3: Third Report on WP5 (Final) November 8, 2013

1 Introduction

Our goal in WP5 is to develop new techniques and the underlying theories to support the design and
the implementation of correct and reliable service components (SCs) and service component ensem-
bles (SCEs). We are working in several directions. The first one deals with correctness on the level of
a service component, considering in particular non-functional properties like resource-awareness. The
second deals with correctness of ensembles of service components mainly focusing on constructive
techniques. Given the particular importance of security in ensembles, the third will address the prob-
lem of building secure ensembles. Finally, we work on techniques to check if a SC implementation
complies with a high-level specification. In year 3, we have worked on the three tasks:

1. In Task T5.2 Verification of Service Component Ensembles, we worked on:

• Compositional Invariant Generation for Timed Systems. In this task we address the state-
explosion problem inherent to model-checking timed systems with a great number of
components. The main challenge is to obtain pertinent global timing constraints from
the timings in the components alone. To this end, we make use of auxiliary clocks to
automatically generate new invariants, which capture the constraints induced by the syn-
chronizations between components. The method has been implemented as an extension of
the D-Finder tool [BBSN08] and successfully experimented on several case studies.

• Towards Nominal Automata Model Checking. Standard automata-based techniques in soft-
ware verification do not scale up to manage Ensembles with massive numbers of compo-
nents, operating in open and non-deterministic environments, and dynamically adapting to
new requirements and environmental conditions. To deal with the that, we exploit nominal
techniques to abstract the unbounded set of entities that may occur during a computation.
We developed a foundational model for context-free nominal languages allowing to dis-
pose and to reuse resources, and proved fundamental results about expressiveness, closure
under union, concatenation and intersection, and, finally, decidability of the emptiness
problem.

2. In Task T5.3 Security Policies and Access Control, we worked on:

• Quantitative Distributed Models of Confidentiality and Trust. Trust and reputation sys-
tems are decision support tools used to drive parties’ interactions on the basis of parties’
reputation. In such systems, parties rate with each other after each interaction. Reputa-
tion scores for each ratee are computed via reputation functions on the basis of collected
ratings. In this work, we propose a general framework based on Bayesian decision the-
ory for the assessment of such systems, with respect to the number of available ratings.
Given a reputation function g and n independent ratings, one is interested in the value of
the loss a user may incur by relying on the ratee’s reputation as computed by the system.
To this purpose, we study the behavior of both Bayes and frequentest risk of reputation
functions with respect to the number of available observations. We provide results that
characterize the asymptotic behavior of these two risks, describing their limits values and
the exact exponential rate of convergence. One result of this analysis is that decision func-
tions based on Maximum-Likelihood are asymptotically optimal. We also illustrate these
results through a set of numerical simulations.

• Network-Aware Analysis of Reputation Systems. We addressed the design and the imple-
mentation of reputation systems using KLAIM, a network-aware coordination language
equipped with a formal semantics. The proposed approach can be conveniently extended

ASCENS 5

D5.3: Third Report on WP5 (Final) November 8, 2013

to SCEL as KLAIM mechanisms are at the basis of SCEL. To check the system at design
time, we enrich KLAIM specifications with stochastic aspects using STOKLAIM, and ver-
ify them against desired properties expressed by the stochastic logic MOSL using the tool
SAM. Once a design is verified, it can be implemented using the proposed framework
NEVER (Network-aware EValuation Environment for Reputation systems), which allows
to describe, to implement, and to evaluate a reputation system while taking into account
real-world implementation details and the network environment where they have to be de-
ployed. Our approach distinguishes itself amongst existing ones as it evaluates the system
through experiments on real networks rather than simulations based on models that ab-
stract from many details. In this way, given a specific network environment, we can study
the system behavior to find the configuration that better meets the system requirements
by tuning its parameters. Moreover, since we consider reputation systems at implementa-
tion level, the analyzed systems could be then directly used in the corresponding end-user
applications.

• Model-driven Information Flow Security for SCE. We propose a framework for informa-
tion flow security in component-based systems, which follows the model-driven security
approach. The security policy is defined and verified from the early steps of the system
design. In this work, two kinds of non-interference properties are formally introduced and
for both of them, sufficient conditions that ensure and simplify the automated verification
are proposed. The verification is compositional: it checks independently the behavior of
every atomic component and their communications and coordinations. The benefit of the
approach is illustrated through an application to secure heterogeneous distributed systems.

3. For Task T5.4 Verification of SCs implementation compliance with high-level specification, we
worked on the design and the implementation of a support for automated verification of jDEECo
applications with the Java Pathfinder (JPF) model checker. Our work in this direction consists
of two steps: (1) making the jDEECo runtime framework amenable to practical verification
with JPF and (2) implementing support for checking specific properties relevant to jDEECo
applications.

Relation to Other Work Packages

This year, we mainly strengthened collaborations with WP7 by applying our verification and validation
techniques to the three case studies of the project (see Deliverable JD3.1). WP5 has also the following
relations to other work packages of the project as explained as follows.

• We used the SCEL language developed in WP1 for specifying network-aware reputation sys-
tems (see Section 3).

• Work Packages 2 and 5 have BIP as a common language for expression of SCEs and their
analysis. However, even if BIP has been extended to reconfigurable architectures, verification
and validation tools for BIP models are currently restricted to static architectures.

• We currently see no interaction with WP3.

• We developed a simulation framework for adaptation patterns proposed in WP4, which has been
applied to e-Mobility case study (see Deliverable JD2.2).

• We have started or completed the integration of several verification and validation tools such as
BIP, jSAM, MESSI, FACPL, or Gimple.

ASCENS 6

D5.3: Third Report on WP5 (Final) November 8, 2013

• As mentioned above, we had interactions with WP7 when applying the techniques proposed in
WP5 to case studies (see Deliverable JD3.1).

• We contributed to the Ensemble Development Life Cycle (EDLC) of ASCENS proposed in
WP8, by the integration of techniques proposed in WP5 (see D8.3). The ASCENS EDLC also
clarifies which techniques can be used at design time and which ones at runtime.

2 Quantitative Distributed Models of Confidentiality and Trust

Information-hiding systems, understood in a broad sense as means to protect sensitive information
(users’ personal data and identities, keys, passwords,...), and reputation systems, employed as deci-
sion support tools in a variety of contexts (e-commerce, social networks), are at the core of today’s
distributed computing. As a matter of fact, these systems are most often designed and deployed with-
out any formal guarantee of correctness. In this section, we review some recent work that aims at
providing models and tools for the quantitative assessment of the correct functioning of these sys-
tems. A unifying trait of our treatment is an extensive use of Bayesian reasoning to formalize the
flows of probabilistic information involved in both Trust and Confidentiality evaluation. This section
is based on the papers [BB12] and [BC13]. A more detailed discussion follows.

2.1 Worst- and average-case privacy breach in randomization mechanisms

In a variety of contexts, randomization is regarded as an effective means to conceal sensitive informa-
tion. For example, anonymity protocols like Crowds [RR] or the Dining Cryptographers [DC] rely on
randomization to “confound” the adversary as to the true actions undertaken by each participant. In
the fields of Data Mining and Privacy, techniques have been proposed by which datasets containing
personal information that are released for business or research purposes are perturbed with noise, so as
to prevent an adversary from re-identifying individuals or learning sensitive information about them –
see e.g. Dwork’s Differential Privacy [DP] and references therein. In both secret-key and public-key
cryptography, noise can be inserted into the plaintext so as to make the resulting ciphertext hard to
distinguish from purely random data.

In the last few years, interest in the theoretical principles underlying randomization-based informa-
tion protection has been steadily growing. Two major areas have by now clearly emerged: Quantitative
Information Flow (QIF) [BCP09, KS10, BPP11b, BPP11a, CPP08a, CPP08b, Smith] and Differential
Privacy (DP) [DP, DMNS, McS, Talwar, Fried, SKG, Ghosh, KAS, Kifer]. As discussed in [BK11],
QIF is mainly concerned with quantifying the degree of protection offered against an adversary trying
to guess the whole secret; DP is rather concerned with protection of individual bits of the secret, pos-
sibly in the presence of background information, like knowledge of the remaining bits. The areas of
QIF and DP have grown separately for some time: only recently researchers have begun investigating
the relations between these two notions [AAC+a, AAC+b, AAC+c, BK11].

Our work is an attempt at distilling and systematizing the notions of security breach underlying QIF

and DP. We view a randomization mechanism as an information-theoretic channel with inputs inX and
outputs in Y . The starting point of our treatment is a semantical notion of breach. Assume X is a finite
set of items containing the secret information X , about which the adversary has some background
knowledge or belief, modeled as a prior probability distribution p(x). Consider a predicate Q ⊆ X –
in a dataset about individuals, one may think of Q as gender, or membership in a given ethnical group
etc. The mere fact that X is in Q or not, if ascertained, may convey sensitive information about X .
Henceforth, any observation y ∈ Y that causes a significant change in the adversary’s posterior belief
about X ∈ Q must be regarded as dangerous. In probabilistic terms, Q is a breach if, for some prior

ASCENS 7

D5.3: Third Report on WP5 (Final) November 8, 2013

probability on X , the posterior probability of Q after interaction with the randomization mechanism
exhibits a significant change, compared to its prior probability. We decree a randomization mechanism
as secure at level ε, if it exhibits no breach of level > ε, independently of the prior distribution on the
set of secret data X . The smaller ε, the more secure the mechanism. This simple idea, or variations
thereof, has been proposed elsewhere in the Data Mining literature – see e.g. [EGS]. Here, we are
chiefly interested in analyzing this notion of breach according to the following dimensions.

1. Worst- vs. average-case security. In the worst-case approach, one is interested in bounding the
level of any breach, independently of how likely the breach is. In the average-case, one takes
into account the probability of the observations leading to the breach.

2. Single vs. repeated, independent executions of the mechanism.

3. Expected utility of the mechanism and its asymptotic behavior. Utility can be formally defined
as the average loss incurred by a user when mistaking the noisy answer reported by the mech-
anism with the “true” answer. This of course depends on both the number of observations and
on a user-defined loss function – typically some distance on the space of possible answers.

To offer some motivations for the above list, we observe that worst-case is the type of breach con-
sidered in DP, while average-case is the type considered in QIF. In the worst-case scenario, another
issue we consider is resistance to background information. In the case of DP, this is often stated in
the following terms [DP]: Regardless of external knowledge, an adversary with access to the sanitized
database draws the same conclusions whether or not my data is included.We investigate how this kind
of resistance relates to the notion of privacy breach we consider, which also intends to offer protection
against arbitrary background knowledge.

Concerning the second point, a scenario of repeated observations seems to arise quite naturally in
many applications. For example, in a sensor networks scenario, an attacker can easily gather multiple
observations related to an individualThe same is true in a scenario of anonymity networks compris-
ing corrupted nodes. For another example, in a de-anonymization scenario similar to [NS], [BPP11a]
shows that gathering information about a target individual can be modeled as collecting multiple ob-
servations from a certain randomization mechanism. Again, an online, randomized data-releasing
mechanism might offer users the possibility of asking the same query a number of times, thus poten-
tially allowing an adversary to remove enough noise to learn valuable information about the secret.
This is an instance of the composition attacks well known in the context of DP, where they are thwarted
by allotting each user or group of users a privacy budget that limits the overall number of queries to
the mechanism.In general, one would like to assess the security of a mechanism in these situations. In
particular, one would like to determine exactly how fast the level of any potential breach grows, as the
number n of independent observations grows.

The third point, concerning utility, has been the subject of intensive investigation lately – see the
related work paragraph. Here, we are interested in studying the growth of expected utility in the model
of Ghosh et al. [Ghosh] as the number of independent observations grows, and to understand how this
is related to security. In summary, the main results we obtain are the following.

1. In the scenario of a single observation, both in the average and in the worst case, we characterize
the security level (absence of breach above a certain threshold) of the randomization mechanism
in a simple way that only depends on certain row-distance measures of the underlying matrix.

2. We prove that our notion of worst-case security is stronger than DP. However, we show the two
notions coincide when one confines to background information that factorizes as the product of
independent measures over all individuals. This, we think, sheds further light on resistance of
DP against background knowledge.

ASCENS 8

D5.3: Third Report on WP5 (Final) November 8, 2013

3. In the scenario of repeated, independent observations, we determine the exact asymptotic growth
rate of the (in)security level, both in the worst and in the average case.

4. In the scenario of repeated, independent observations, we determine the exact asymptotic growth
rate of any reasonable expected utility.

A problem left open by our study is the exact relationship between our average-case security
notion and the maximum leakage considered in QIF – see e.g. [KS10]. We would also like to apply
and possibly extend the results of the present paper to the setting of de-anonymization attacks on
dataset containing micro-data. [NS] has shown that the effectiveness of these attacks depends on
certain features of sparsity and similarity of the dataset, which roughly quantify how difficult it is to
find two rows of the dataset that are similar. The problem can be formalized in terms of randomization
mechanisms with repeated observations – see [BPP11a] for some preliminary results on this aspect.
Then the row-distance measures considered in our work appear to be strongly related to the notion of
similarity, and might play a crucial role in the formulation of a robust definition of dataset security.

The definitions of semantic security investigated involve a quantification over all possible priors.
In certain contexts, however, it may be sensible to put constraints on the form of the prior: one case
we have considered is independent participation of individuals to a database. Another possibility
is to assume lower bounds on the entropy of the prior. Indeed, certain proofs obtained here - and
elsewhere in the literature - exploit in a crucial way the existence of low entropy priors, where most
of the probability mass is concentrated on very few elements. In several application scenarios (e.g.
secret-key cryptography), such priors are unrealistic and could be ruled out. This would be in the line
of work in entropic security, see e.g. [DS05].

2.2 Asymptotic risk analysis for trust and reputation systems

Trust and reputation systems are used as decision support tools for different applications in several
contexts. Probably the best known applications are related to e-commerce: well-known examples in
this context are the auction site eBay and the online shop Amazon, [JIB]. Trust management systems
are used in many other contexts and applications, where huge amount of data related to reputations
of peers are usually available, such as ad-hoc networks [NCL], P2P networks [XL, WV] and sensor
networks [BXE07].

The idea at the base of trust and reputation systems is to let users of the system, the raters, rate the
provided services, or rates, after each interaction. Then other users or the parties themselves may use
aggregate ratings to compute reputation scores for a given party: such values are used to drive parties’
interactions. This approach to trust managing is referred to as computational trust. Whereas traditional
credential-based approaches [EFLR, NT] rely on access control policies and/or use of certificates for
evaluating parties’ trustworthiness, in computational trust parties’ trustworthiness is evaluated by on
the basis of the parties’ past behavior.

In our work, we focus on probabilistic trust [JI, Desp, MMH], which represents a specific ap-
proach to computational trust. The basic postulate of probabilistic trust is that the behavior of each
party can be modeled as a probability distribution, belonging to a given family, over a certain set of
interaction outcomes – success/failure being the simplest case. Once this postulate is accepted, the
task of computing reputation scores boils down to inferring the true distribution’s parameters for a
given party. Information about party’s past behavior is used for parameters inference: rating values
are treated as statistical data.

The most prominent aspect of a reputation system is how decisions are computed on the basis
of the observed data. We use the term decision in a broad sense here, meaning e.g. whether or
not a given system should be deemed trusted, or decide what is the most likely outcome of the next

ASCENS 9

D5.3: Third Report on WP5 (Final) November 8, 2013

interaction. We will refer to this element of the system as the decision function or strategy. One
example of decision function is the Maximum Likelihood (ML) rule from Statistics, which, given a
set of specified possible behaviors, picks up the one whose induced distribution on the observations
is most similar to the observed, empirical one. The Bayesian Maximum A Posteriori (MAP) rule is
similar, but a prior probability on the set of possible behaviors is also taken into account.

The potential usefulness and applicability of probabilistic trust is by now demonstrated by a va-
riety of tools that have been experimentally tested in several contexts. One important example is the
work on the TRAVOS system [TPJL]. On the contrary, there are very few analytical results on the be-
havior of such systems – with the notable exception of the work by Sassone and collaborators [SNK]
(see [BC13] for a discussion of the relationship between our work and theirs). Examples of questions
that could be addressed analytically are: How do we quantify the confidence in the decisions calcu-
lated by the system? And how is this confidence related to such parameters as decision strategy and
number of available ratings? Is there an optimal strategy that maximizes confidence as more and more
information becomes available?

In our work, we address the above questions, and propose a framework to analyze probabilistic
trust systems based on Bayesian decision theory [Rob, Berg, LHG]. A prominent aspect of this ap-
proach is the use of probability distributions to model prior beliefs on the set of possible parties’
behaviors. However, we also consider confidence measures that dispense with such prior beliefs. We
study the behavior of trust and reputation systems relying on the concept of loss function: this defines
the loss incurred by a user when the decision computed by the mechanism is not the correct (or “true”)
one. We quantify confidence in the system in terms of risk quantities based on expected (a.k.a. Bayes)
and worst-case loss. We study the behavior of these quantities with respect to the available informa-
tion, that is the number of available rating values. Our results allow to characterize the asymptotic
behavior of probabilistic trust systems. In particular, we show how to determine the limit value of
both Bayes and worst risks, and the exact exponential rate of convergence, in the case of independent
and identically distributed (i.i.d) observations. Indeed, given a decision framework, it is important to
establish not only the limit of the Bayes and worst-case risk functions, denoted respectively as rn and
wn, as the number n of available ratings grows; but also how fast this limit is approached. The concept
of rate is important for two reasons. Firstly, it is desirable to distinguish between reputation functions
with different rates, as a reputation function with a high rate may require considerably less observa-
tions in order to achieve an improvement of the risks value, compared to a reputation function with a
low rate. Secondly, knowledge of the rate will allow us to obtain quick and accurate estimations of the
risk functions rn and wn depending on n. The main results we obtain can be described as follows.

1. The best achievable rate of convergence to the minimum values of any decision function, for
both Bayes and worst risks, is bounded above by R, where R , minθ 6=θ′ C(pθ; pθ′) is the least
Chernoff Information between any pair of distinct distributions pθ and pθ′ in the given family
F = {p(·|θ)|θ ∈ Θ}. More formally, assume lim rn exists. Then

• lim rn ≥ r∗

• if lim rn = r∗ then rate(rn) ≤ R if defined.

Similarly for the worst risks wn and w∗.

2. Both MAP and ML are asymptotically optimal decision functions. Such functions achieve mini-
mum loss value and maximum rate of convergence, that means that, in these cases, limn r

n = r∗

and moreover rate(rn) = R. Similarly for wn.

In essence, the above results can be summarized by saying that, under an optimal decision function,
rn behaves as ≈ r∗ + 2−nR, and wn as ≈ w∗ + 2−nR. In our discussion, we also describe the form

ASCENS 10

D5.3: Third Report on WP5 (Final) November 8, 2013

of the (optimal) prediction function for the next observation o, given past observation on: as expected,
given on, one has to first identify the underlying distribution pθ and then report as an answer the
observation o that maximizes pθ(o).

We also discuss the probability that the loss deviates from its minimal value above a prescribed
threshold ε. These results apply to the case of ML or MAP decision functions, and do not depend on
the set of parameters Θ, but only on the number n of observations and the threshold value fixed for
the loss. Fix any θ ∈ Θ and assume On is a n-sequence of random variables i.i.d. given θ, that is
Oi ∼ p(·|θ). Let ε, γ > 0. Then:

• considering the KL-loss function L(θ; θ′) , D(p(·|θ)||p(·|θ′))1

Pr(L(θ; g(On)) > ε) ≤ (n+ 1)|O|2−nε

• considering the norm-1 loss function L(θ; θ′) , ||p(·|θ)− p(·|θ′)||1

Pr(L(θ; g(On)) > γ) ≤ (n+ 1)|O|2
γ2

2 ln 2

We complement these theoretical results with set of numerical simulations.
Future research directions include the extension of our framework to different data models, with

rating values released in different ways. In [BC13], we briefly discuss a possible refinement of the
observation and rating mechanism that takes into account possible raters’ mis-behavior. We would
like to take into account the case in which each rater is characterized by a (unobservable, possibly
malicious) bias, which can lead him to under- or over-evaluate its interactions with the rates. In order
to do that, we have to introduce a refined data generation model, where the probability of observing a
given rating value does not depend solely on the behavior of the rate, but also on the unobservable bias.
We argue that a data-model with hidden variables is well-suited to model this kind of scenario; this
naturally prompts the use of Expectation-Maximization (EM) algorithm [Barb] to practically perform
parameter estimation in this context. The EM algorithm can be used for efficiently implementing the
decision functions we have considered. Another issue is how to evaluate the fitness of the model to the
data actually available; and, in general, how to assess the trade-off between tractability and accuracy
of the model.

3 Network-Aware Analysis of Reputation Systems

In ensemble-like systems, as those considered in the ASCENS project, parties are likely to be discon-
nected from their preferred security infrastructures and/or may have no trusted information about their
partners. Therefore, they have to rely on a specific apparatus to build up relationships of trust among
each other. For this purpose, we have seen in different areas of ICT an increasing use of trust and
reputation systems, from e-commerce to different forms of open computer networking (such as P2P,
ad-hoc, or sensor networks).

In order to establish such trust relationships, parties in a reputation system rate each other (e.g.,
after completing an interaction) and use aggregated ratings about a given party to derive a reputation
score, i.e. a collective measure of trustworthiness based on the ratings from the members of a commu-
nity. Such value is used when deciding whether to interact with specific partners. Thus, by relying on
reputation systems, parties can adapt their behavior to the environment in which they are operating.

Parties of a reputation system can interact and exchange ratings by relying on a networked trust
infrastructure, graphically depicted in Figure 1. The rating server collects the ratings from system’s

1Recall that D(p(·|θ)||p(·|θ′)) is defined as
∑
o p(o|θ) log(

p(o|θ)
p(o|θ′)).

ASCENS 11

D5.3: Third Report on WP5 (Final) November 8, 2013

Network

Rating serverParty 1

Party 2

Party 3 Party 4

Party n

Resources Ratings

. . .

Figure 1: Infrastructure of a reputation system

parties and makes them publicly available. A party can be a client, a provider, or both, and may
require/offer different kinds of resources (CPU, disk space, files, services, etc.). Whenever a party
needs a specific resource, it queries the rating server to determine the reputation of all those parties
that can offer it. Then, it selects the provider with the highest reputation score and, after the interaction,
rates the provider according to the quality of the provided resource. Thus, the use of reputation systems
should disallow parties to interact with providers that do not behave as expected.

Different kinds of reputation system, which mainly differ by the model used to aggregate ratings
when computing reputation scores, can be used on top of this general infrastructure. Indeed, due to
the widespread use of reputation systems, several models have been proposed. Thus, once a reputation
system has to be deployed in a network environment, the following issues have to be considered:

• the fitting of the model to the environment;

• the correspondence between parties behavior and their reputation;

• the impact of the initial reputation scores;

• how the reputation system should be configured in order to meet the desired behavior.

We address these issues, at two different stages of the development process, by proposing two
approaches for network-aware evaluation of reputation systems:

1. at design stage: a verification methodology for reputation systems based on stochastic analysis;

2. at implementation/deployment stage: a software framework supporting rapid prototyping of
reputation systems and analysis of their executions on given network infrastructures.

Notably, the two approaches are deemed to be network-aware because they take into account details of
the network environment where the systems have to be deployed, rather than evaluating them in iso-
lation. These analysis approaches differ from the theoretical one described in Section 2.2 not only for
the network-awareness aspect, but also for the use of specific software tools to support the evaluation.

Both approaches relies on KLAIM [DFP98], a network aware coordination language equipped with
a formal semantics. The coordination mechanism of KLAIM is based on multiple tuple-spaces, which
enable to effectively model and program distributed systems operating in open and non-deterministic
environments. In particular, with respect to other coordination languages, KLAIM has the additional
advantages of being equipped with a formal semantics, of being supported by a runtime environment
and a number of tools for performing systems analysis and, most importantly, of offering the possi-
bility of modelling explicit localities and thus supporting network-aware programming of distributed

ASCENS 12

D5.3: Third Report on WP5 (Final) November 8, 2013

applications. It is also worth noticing that KLAIM mechanisms are at the basis of the SCEL language
[DFLP11, DLPT13], thus the proposed approaches can be conveniently extended to SCEL.

Another common point between the two proposals is the use of a probabilistic approach for com-
puting reputation scores. The basic postulate of probabilistic trust [Gam88] is that party’s behavior
can be modeled as a probability distribution over a given set of interaction outcomes.

3.1 A stochastic verification methodology

Our methodology [CDT13c] consists of the following three steps:

1. We model the considered reputation system with KLAIM. Specifically, we provide a ‘schema’
specification that is parametric w.r.t. the reputation model used to determine the parties’ rep-
utation (and w.r.t. other parameters of the system). The specification of the given system is
obtained by appropriately instantiating the parameters of the generic specification.

2. We enrich the specification with stochastic aspects, using STOKLAIM [DKL+07], the stochastic
extension of KLAIM, and formally express the desired properties using the stochastic logic
MOSL [DKL+07].

3. We check the properties of interest against the STOKLAIM specification by means of the analysis
tool SAM [Lor10].

To demonstrate feasibility and effectiveness of our proposal, we have specified and analyzed two
models of reputation systems, namely the Beta model [JI02] and a model based on maximum likeli-
hood estimation (ML model) [DA04].

The results of some simulation runs of the STOKLAIM specifications, performed by using SAM,
are reported in Figure 2 (we refer the interested reader to [Cel13] for an account of the stochastic
specifications and for other analysis results). The chart presents the trend of the reputation of a given
party in the system and the error made by the reputation model in the computation of reputation scores.
In the chart, an horizontal line denotes the true party’s behavior. The x-axis reports the numbers of
rating values used to compute reputation scores. The y-axis reports both the reputation scores and the
error made. As measure of the error we used the Norm-1 distance between probability distributions.
Our choice of the error measure follows by the study presented in [BC13]. From simulation data
shown in Figure 2, we observe that in general the ML model performs better than the Beta model if
we consider the computed reputation score. Indeed the reputation score computed by the ML model
is always closer to the true party’s behavior than the reputation score computed by the Beta model.
Such evaluation does not give us a complete information about models performances. Indeed looking
at the error introduced by the models, we observe that the ML model does not perform always better
than the Beta model. In particular, with a low number of ratings, the ML model tends to calculate
reputation values that significantly underestimate or overestimate the party’s behavior (this is reflected
by an high error). Instead, the reputation trend results from the average of values obtained from many
simulation runs and, hence, hides such error information.

We have also analyzed some properties of these reputation systems by formalizing them as MOSL
formulae that can be checked over the STOKLAIM specification by means of the SAM tool. As an
example, we have considered the property “the reputation of sparty i converges to its actual behavior
within time t” that is expressed in MOSL by the following formula

tt >U≤t(〈“reputationConverged”, sparty i〉@srating → tt)

This is an until formula2 of the form tt >U≤tΦ, which is satisfied by all the runs that reach within t
time units a state satisfying Φ. In this case, formula Φ relies on the consumption operator 〈T 〉@s →

2Notably, tt and > are the state formula and the action formula always satisfied, respectively.

ASCENS 13

D5.3: Third Report on WP5 (Final) November 8, 2013

0 20 40 60 80
Number of Ratings

0

0.1

0.2

0.3

0.4

0.5

R
ep

ut
at

io
n/

Er
ro

r

Behavior [θ = 0.2]
BETA
ML
Norm-1 BETA
Norm-1 ML

Figure 2: Reputation and error trends for a party with behavior θ = 0.2 and no initial ratings assigned

“the reputation of sparty i converges to its actual behavior within time t”

Initials Ratings Beta Model ML Model

0 0.696688528852 0.651790070646

2 0.404763836437 0.692622253392

4 0.200094638272 0.402222414274

Table 1: Satisfaction probability for party’s behavior θ = 0.9 and time t = 50

Φ′, which is satisfied whenever a tuple matching template T is located at s and the remaining part
of the system satisfies Φ′ (in this case Φ′ simply is tt). Hence, the formula is satisfied if a tuple
〈“reputationConverged”, sparty i〉 is stored in the node srating, which happens when the rating
server computes a provider’s reputation score that is equal to the provider’s behavior up to a given
error δ. The model checking analysis has been then performed by estimating the total probability of
the set of runs satisfying such formula, the maximal time t has been set to 50 seconds and the error
δ to 0.05. In Table 1 some analysis results are reported. We consider a party with behavior θ = 0.9
and the presence of 0, 2 or 4 initial ratings that fix parties’ initial reputation to 0.5. We observe that in
presence of no ratings value at the start of the system, the Beta model achieves better results. Indeed,
the satisfaction probability of the formula for the Beta is higher than that for the ML model. Instead,
with 2 or 4 initial ratings ML model performs better than Beta model.

3.2 A network-aware evaluation environment

We have developed a software tool, called NEVER (Network-aware EValuation Environment for
Reputation systems) [CDT13a], for describing, implementing, evaluating reputation systems while
taking into account real-word implementation details of such systems and of the network environment
where they have to be deployed.

More specifically, on the one hand, we provide a framework for rapidly developing Java-based
implementations of reputation system models and for easily configuring different networked execu-
tion environments on top of which the systems will run. On the other hand, we have developed a
tool that automatically performs experiments on the reputation system implementations according to

ASCENS 14

D5.3: Third Report on WP5 (Final) November 8, 2013

y

x

y

x

ReputationModelRating

Binary
Rating

Beta
Model

ML
Model

.

.

.

.

.

.

Reputation Models Library

Experiment Manager

ACTIVATE GET EXPERIMENT
DATA

Configuration
parameters

.properties INPUT

NEVER

y

x

OUTPUT

Evaluation
results

Network
Infrastructuring

Support

Klava net

1.0
0.875
0.8888888888888
0.9
0.9090909090909
0.9166666666666
0.9230769230769
0.9285714285714

1.0
0.875
0.8888888888888
0.9
0.9090909090909
0.9166666666666
0.9230769230769
0.9285714285714

1.0
0.875
0.8888888888888
0.9
0.9090909090909
0.9166666666666
0.9230769230769
0.9285714285714

Figure 3: NEVER architecture and workflow

user-specified parameters; this enables the study of their behavior while executing on given network
infrastructures. The main novelty of this approach, with respect to other proposals in the literature with
a similar aim, is that it allows the evaluation of implemented reputation systems through experiments
on real networks, rather than performing simulation of models of reputation systems that abstract from
many details. In this way, given a specific network environment, we can study the system behavior to
find the configuration that better meets the system requirements by tuning its parameters (reputation
model, response timeouts, resource quality evaluation, ratings aging, etc.). Moreover, since we con-
sider reputation systems at implementation level, the analyzed systems could be then directly used in
the corresponding end-user applications.

The architecture and the workflow of NEVER is graphically depicted in Figure 3. The NEVER
tool consists of three main components: (1) the experiment manager, (2) the network infrastructuring
support, and (3) the reputation models library.

The experiment manager is the component playing the main role, because it is in charge of man-
aging the execution of each experiment. An experiment consists of a user-specified number of runs,
each run performed with the same configuration. The number of runs and their duration, together with
other experiments characteristics, are defined by users through configuration parameters.

The network infrastructuring support provides the libraries (i.e., classes and interfaces) required to
create and set up the network implementing the general infrastructure graphically depicted in Figure 1.
In particular, this component of the tool relies on KLAVA [BDP02], a Java library that provides the
run-time support for KLAIM actions within Java code. In fact, since the network infrastructure is
designed using KLAIM, the use of KLAVA permits a straightforward implementation of such network.
Each element of the infrastructure is a node hosted by a (possibly remote and/or virtual) machine.
The NEVER tool takes as input the addresses of the hosting machines and automatically activates the
nodes forming the wanted network infrastructure.

The reputation models library acts as a framework allowing the user to define the trust and repu-
tation models under evaluation. The library is a Java package containing a number of abstract classes
and interfaces necessary to implement the models. In this way, the NEVER tool is customizable
and extendible by the user. Specifically, a reputation model is defined by a class implementing the
ReputationModel interface and, possibly, a class extending the abstract class Rating. The for-

ASCENS 15

D5.3: Third Report on WP5 (Final) November 8, 2013

mer class defines how reputation scores are computed, which rating values are used by the system and
how parties in the system evaluate interactions. The latter class defines the kind of rating values and
how to manage them. Thus, the addition of new reputation models to NEVER can be achieved by
implementing ReputationModel and, if necessary, by extending Rating.

At the end of the required experiment runs, data are analyzed and provided as output, both in form
of textual files and charts. In [CDT13b], we show how NEVER works by means of experimental data
obtained through the evaluation of some of the implemented models. As an example, Figure 4 reports
a chart produced as output by NEVER showing the reputation trends of four parties with respect to
the number of available ratings for each of them.

Notably, given a limited number of physical machines at our disposal, we have performed our
experiments by using virtual machines running on the IMT installation of the Zimory Enterprise
Cloud [Gmb13].

Figure 4: Reputation trend of four parties

4 Model-driven Information Flow Security for Component-Based Sys-
tems

Systems and software conceived nowadays knows a continuous increase. Information protection and
secure information flow between these systems is paramount and represent a great design challenge.
Model driven security (MDS) [BDL06] is an innovative approach that tend to solve system-level se-
curity issues by providing an advanced modeling process representing security requirements at a high
level of abstraction. Indeed, MDS guarantees separation of concerns between functional and security
requirements, from early phases of the system development till final implementation.

Information flow security can be ensured using various mechanisms. Amongst the first approaches
considered, ones find access control mechanisms [SSM98, Kuh98], that allow protecting data confi-
dentiality by limiting access to data to be read or modified only by authorized users. Unfortunately,
these mechanisms have been proven incomplete and limited since only by preventing the direct ac-
cess to data, indirect (implicit) information flows are still possible given rise to the so called covert

ASCENS 16

D5.3: Third Report on WP5 (Final) November 8, 2013

channels [SQSL05]. As an alternative, non-interference has been studied as a global property to cha-
racterize and to develop techniques ensuring information flow security. Initially defined by Goguen
and Meseguer [JAJ82], non-interference ensures that the system’s secret information does not affect
its public behavior.

In this work, we adapt the Model driven security (MDS) [BDL06]approach to develop a component-
based framework, named secBIP, that guarantees automated verification and implementation of se-
cure information flow systems with respect to specific definition of non-interference. In general,
component-based frameworks allow the construction of complex systems by composition of atomic
components with communication and coordination operators. That is, systems are obtained from uni-
tary atomic components that can be independently deployed and composed with other components.
Component-based frameworks are usually well adopted for managing key issues for functional design
including heterogeneity of components, distribution aspects, performance issues, etc. Nonetheless,
the use of component-based frameworks is also beneficial for establishing information flow security.
Particularly, the explicit system architecture allows tracking easily intra and inter-components infor-
mation flow.

The secBIP framework is built as an extension of the BIP [BBB+11] framework encompassing
information flow security. secBIP allows to create systems that are secure by construction if certain
local conditions hold for composed components. The secBIP extension includes specific annotations
for classification of both data and events. Thanks to the explicit use of composition operators in BIP,
the information flow is easily tracked within models and security requirements can be established in a
compositional manner, first locally, by checking the behavior of atomic components and then globally,
by checking the communication and coordination inter-components.

Information flow security has been traditionally studied separately for language-based models
[SS01, SV98] (see also the survey [SM03]) and trace-based models [McC88, McL94, ZL97, Man00].
While the former mostly focus on verification of data-flow security properties in programming lan-
guages, the latter is treating security in event-based systems. In secBIP, we achieve a useful com-
bination between both aspects, data-flow and event-flow security, in a single semantics model. We
introduce and distinguish two types of non-interference, respectively event non-interference and data
non-interference. For events, non-interference states that the observation of public events should not
allow to deduce any information about the occurrence of secret events. For data, it states that there is
no leakage of secret data into public ones.

The rest of our contribution is structured as follows. Subsection 4.1 formally introduces the se-
curity extension and we provide the two associated definitions of non-interference, respectively for
data flows and event flows. Next, in subsection 4.2 we formally establish non-interference based on
unwinding relations and we provide sufficient conditions that facilitate its automatic verification. In
subsection 4.3, we provide a use-case as illustrative example. Subsection 4.4 concludes and presents
some lines for future work.

4.1 Information Flow Security

We explore information flow policies [DD77, BLP76, JAJ82] with focus on the non-interference prop-
erty. In order to track information we adopt the classification technique and we define a classification
policy where we annotate the information by assigning security levels to different parts of secBIP
model (data variables, ports and interactions). The policy describes how information can flow from
one classification with respect to the other.

As an example, we can classify public information as a Low (L) security level and secret (confi-
dential) information as High (H) security level. Intuitively High security level is more restrictive than
Low security level and we denote it by L ⊆ H . In general, security levels are elements of a security

ASCENS 17

D5.3: Third Report on WP5 (Final) November 8, 2013

domain, defined as follows:

Definition 1 (security domain) A security domain is a lattice of the form 〈S,⊆,∪,∩〉 where:

• S is a finite set of security levels.

• ⊆ is a partial order ”can flow to” on S that indicates that information can flow from one security
level to an equal or a more restrictive one.

• ∪ is a ”join” operator for any two levels in S and that represents the upper bound of them.

• ∩ is a ”meet” operator for any two levels in S and that represents the lower bound of them.

As an example we consider the set S = {L,M1,M2, H} of security levels that are governed by
the ”can flow to” relation L ⊆ M1, L ⊆ M2, M1 ⊆ H and M2 ⊆ H . M1 and M2 are incomparable
and we note M1 *M2 and M1 +M2. This security domain is graphically illustrated in figure 5.

H

M2

L

M1

Figure 5: Security domain

We briefly recall the definition of BIP models. For a detailed description the reader can refer
to [BBB+11]. We assume that the system is represented by a set of atomic componentsBi, 1 ≤ i ≤ n,
interacting through multiparty interactions (i.e. synchronizations between two or more components).
Each component Bi defines an interface consisting of communication ports associated with variables,
and its behavior is given by an automaton whose transitions τ are labelled by ports, are guarded by
boolean expressions gτ on variables, and updates values of variables according to functions fτ . An
interaction a between components Bi, i ∈ I ⊆ {1, . . . , n}, is defined as a subset of ports such that it
has at most one port of each components, i.e. a = {pi}i∈I . Moreover, an interaction a can be guarded
by a boolean conditionGa on the variables associated to its ports, and may assigns new values to these
variables according to a function Fa. Given a set of interactions γ, we denote by C = γ(B1, . . . Bn)
the composition of B1, . . . , Bn with respect to interactions γ. In the composite component C, transi-
tions of atomic components Bi are executed synchronously according to interactions γ, that is, if for
an interaction a = {pi}i∈I of γ the guard Ga evaluates to true and all components Bi enable transi-
tions τi labelled by pi, then a can execute if C which corresponds to the synchronous execution of all
transitions τi after execution of transfer function Fa. A detailed formalization of the model provided
in [BBB+11]. In the following, we write X (resp. P) for the set of all variables (resp. ports) defined
in all atomic components (Bi)i=1,n of C. We also writeQC (resp. Q0

C) for the set of states of C (resp.
initial states of C). A security assignment for C with respect to a security domain 〈S,⊆,∪,∩〉 assigns
security levels to variables, ports and interactions in a consistent way. It is defined as follows.

Definition 2 (security assignment) A security assignment for component C is a mapping σ : X ∪
P ∪ γ → S that associates security levels to variables, ports and interactions such that, moreover,
the security levels of ports matches the security levels of interactions, that is, for all a ∈ γ and for all
p ∈ a it holds σ(p) = σ(a).

ASCENS 18

D5.3: Third Report on WP5 (Final) November 8, 2013

In atomic components, the security levels considered for ports and variables allow to track intra-
component information flows and control the intermediate computation steps. Moreover, inter-components
communication, that is, interactions with data exchange, are tracked by the security levels assigned to
interactions.

Let σ be a security assignment for C.
For a security level s ∈ S, we define γ ↓σs the restriction of γ to interactions with security level at

most s that is formally, γ ↓σs= {a ∈ γ | σ(a) ⊆ s}.
For a security level s ∈ S, we define w|σs the projection of a trace w ∈ γ∗ to interactions with

security level lower or equal to s. Formally, the projection is recursively defined on traces as ε|σs = ε,
(aw)|σs = a(w|σs) if σ(a) ⊆ s and (aw)|σs = w|σs if σ(a) 6⊆ s. The projection operator |σs is naturally
lifted to sets of traces W by taking W |σs = {w|σs | w ∈W}.

For a security level s ∈ S, we define the equivalence ≈σs on states of C. Two states q1, q2 are
equivalent, denoted by q1 ≈σs q2 iff (1) they coincide on variables having security levels at most s
and (2) they coincide on control locations having outgoing transitions labeled with ports with security
level at most s.

We are now ready to define the two notions of non-interference.

Definition 3 (event non-interference) The security assignment σ ensures event non-interference of
γ(B1, . . . , Bn) at security level s iff,

∀q0 ∈ Q0
C : TRACES(γ(B1, . . . , Bn), q0)|σs = TRACES((γ ↓σs)(B1, . . . , Bn), q0)

Event non-interference ensures isolation/security at interaction level. The definition excludes the
possibility to gain any relevant information about the occurrences of interactions (events) with strictly
greater (or incomparable) levels than s, from the exclusive observation of occurrences of interactions
with levels lower or equal to s. That is, an external observer is not able to distinguish between the case
where such higher interactions are not observable on execution traces and the case these interactions
have been actually statically removed from the composition. This definition is very close to Rushby’s
[Rus92] definition for transitive non-interference. But, let us remark that event non-interference is not
concerned about the protection of data.

L

L

H

H

L

comp3

comp2
comp1

l1

l2

l3
l5

b2

c1

a2

c2

b2

d2

a1

b1

a2

l6

l7

d3

b3
b3

b1

c1

a1

d2

c2
d3

l4

Figure 6: Example for event non-interference.

Example 1 Figure 6 presents a simple illustrative example for event non-interference. The model
consists of three atomic components compi,i=1,2,3. Different security levels have been assigned to
ports and interactions: comp1 is a low security component, comp2 is a high security component, and

ASCENS 19

D5.3: Third Report on WP5 (Final) November 8, 2013

comp3 is mixed security component. The security levels are represented by dashed squares related to
interactions, internal ports and variables. As a convention, we apply high (H) level for secret data
and interactions and low(L) level for public ones. The set of traces is represented by the automaton in
figure 7 (a). The set of projected execution traces at security level L is represented by the automaton
depicted in figure 7 (b). This set is equal to the set of traces obtained by restricted composition, that
is, using interaction with security level at most L and depicted in figure 7 (c). Therefore, this example
satisfies the event non-interference condition at level L.

a1a2

b1c2

l1l1l1

l3l1l1

l2l2l1

c1

a1a2

b1c2

a1a2

d2d3

b2b3

l3l1l2

l1l1l1

(a)

l1l1l2

l3l1l1 l2l2l2

l2l2l1

a1a2

b1c2

a1a2

l3l1l2

l1l1l1

(b)

l1l1l2

l3l1l1 l2l2l2

l2l2l1
τc1

c1 c1

c1

b1c2b1c2
d2d3

τ

τ

(c)

Figure 7: Sets of traces represented as automata.

Definition 4 (data non-interference) The security assignment σ ensures data non-interference of
C = γ(B1, . . . , Bn) at security level s iff,

∀q1, q2 ∈ Q0
C : q1 ≈σs q2 ⇒

∀w1 ∈ TRACES(C, q1), w2 ∈ TRACES(C, q2) : w1|σs = w2|σs ⇒

∀q′1, q′2 ∈ QC : q1
w1−→
C

q′1 ∧ q2
w2−→
C

q′2 ⇒ q′1 ≈σs q′2

Data non-interference provides isolation/security at data level. The definition ensures that, all
states reached from initially indistinguishable states at security level s, by execution of arbitrary but
identical traces whenever projected at level s, are also indistinguishable at level s. That means that
observation of all variables and interactions with level s or lower excludes any gain of relevant infor-
mation about variables at higher (or incomparable) level than s. Compared to event non-interference,
data non-interference is a stronger property that considers the system’s global states (local states and
valuation of variables) and focus on their equivalence along identical execution traces (at some security
level).

Example 2 Figure 8 presents an extension with data variables of the previous example from fig-
ure 6. We consider the following two traces w1 = 〈a1a2,b2b3, c2b1, d2d3, c1, a2a1〉 and w2 =

ASCENS 20

D5.3: Third Report on WP5 (Final) November 8, 2013

〈a1a2, b2b3, c2b1, c1, a2a1〉 that start from the initial state ((l1, u = 0, v = 0), (l4, x = 0, y =
0), (l6, z = 0, w = 0)). Although the projected traces at level L are equal, that is, w1|σL = w2|σL =
〈a1a2, c2b1, c1, a1a2〉, the reached states by w1 and w2 are different, respectively ((l2, u = 4, v =
2), (l5, x = 3, y = 2), (l6, z = 1, w = 1)) and ((l2, u = 4, v = 2), (l5, x = 2, y = 2), (l7, z = 1, w =
0)) and moreover non-equivalent at low level L. Hence, this example is not data non-interferent at
level L.

L

L

H

H

w: low

z: highL

u: low

v: high

y=y+1

u=0
v=0

[y>0]

x: low

y: high

u=u+2

x=x+1

y=0
x=0

v=v+1

y=y+x
v=2v

w=w+1x=x+1

comp1
comp3

comp2

z=x

z=0
w=0

l1

l2

l3

l4

l5

b2

a2 b2a1

b1

c2
c1

d2

c1

c2

a1

b3

d3
b1

d2

d3
b3a2

l6

l7

Figure 8: Example for data non-interference.

Definition 5 (secure component) A security assignment σ is secure for a component γ(B1, . . . , Bn)
iff it ensures both event and data non-interference, at all security levels s ∈ S.

4.2 Verification

The verification technique of non-interference proposed for secBIP models is using the so-called un-
winding conditions. This technique was first introduced by Goguen and Meseguer for the verification
of transitive non-interference for deterministic systems [JAJ82]. The unwinding approach reduces the
verification of information flow security to the existence of certain unwinding relation. This relation
is usually an equivalence relation that respects some additional properties on atomic execution steps,
which are shown sufficient to imply non-interference. In the case of secBIP, the additional properties
are formulated in terms of individual interactions/events and therefore easier to handle.

Let C = γ(B1, . . . , Bn) be a composite component and let σ be a security assignment for C.

Definition 6 (unwinding relation) An equivalence ∼s on states of C is called an unwinding relation
for σ at security level s iff the two following conditions hold:

1. local consistency
∀q, q′ ∈ QC : ∀a ∈ γ : q

a−→
C
q′ ⇒ σ(a) ⊆ s ∨ q ∼s q′

2. output and step consistency

∀q1, q2, q′1 ∈ QC : ∀a ∈ γ :

q1 ∼s q2 ∧ q1
a−→
C
q′1 ∧ σ(a) ⊆ s⇒

∃q′2 ∈ QC : q2
a−→
C
q′2∧

∀q′2 ∈ QC : q2
a−→
C
q′2 ⇒ q′1 ∼s q′2

ASCENS 21

D5.3: Third Report on WP5 (Final) November 8, 2013

The existence of unwinding relations is tightly related to non-interference. The following two
theorems formalize this relation for the two types of non-interference defined. Let C be a composite
component and σ a security assignment.

Theorem 1 (event non-interference) If an unwinding relation ∼s exists for the security assignment
σ at security level s, then σ ensures event non-interference of C at level s.

Theorem 2 (data non-interference) If the equivalence relation ≈σs is also an unwinding relation for
the security assignment σ at security level s, then σ ensures data non-interference of C at level s.

The two theorems above can be used to derive a practical verification method of non-interference
using unwinding. We provide hereafter sufficient syntactic conditions ensuring that indeed the un-
winding relations ∼s and ≈s exist on the system states. These conditions aim to efficiently simplify
the verification and reduce it to local constrains check on both transitions (inter-component verifica-
tion) and interactions (intra-component verification). Especially, they give an easy way to automate
the verification.

Definition 7 (security conditions) Let C = γ(B1, . . . , Bn) be a composite component and let σ be
a security assignment. We say that C satisfies the security conditions for security assignment σ iff:

(i) the security assignment of ports, in every atomic component Bi is locally consistent, that is:

– for every pair of causal transitions:

∀τ1, τ2 ∈ Ti : τ1 = `1
p1−→ `2, τ2 = `2

p2−→ `3 ⇒

`1 6= `2 ⇒ σ(p1) ⊆ σ(p2)

– for every pair of conflicting transitions:

∀τ1, τ2 ∈ Ti : τ1 = `1
p1−→ `2, τ2 = `1

p2−→ `3 ⇒

`1 6= `2 ⇒ σ(p1) ⊆ σ(p2)

(ii) all assignments x := e occurring in transitions within atomic components and interactions are
sequential consistent, in the classical sense:

∀y ∈ use(e) : σ(y) ⊆ σ(x),

where use(e) denotes the set of variables involved in an expression e

(iii) variables are consistently used and assigned in transitions and interactions, that is,

∀τ ∈ ∪ni=1Ti ∀x, y ∈ X : x ∈ def(fτ), y ∈ use(gτ) ⇒

σ(y) ⊆ σ(pτ) ⊆ σ(x)

∀a ∈ γ ∀x, y ∈ X : x ∈ def(Fa), y ∈ use(Ga) ⇒

σ(y) ⊆ σ(a) ⊆ σ(x),

where def(F) denotes the set of variables modified by a function F .

ASCENS 22

D5.3: Third Report on WP5 (Final) November 8, 2013

(iv) all atomic components Bi are port deterministic:

∀τ1, τ2 ∈ Ti : τ1 = `1
p−→ `2, τ2 = `1

p−→ `3 ⇒

(gτ1 ∧ gτ2) is unsatisfiable

The first family of conditions (i) is similar to Accorsi’s conditions [AL12] for excluding causal
and conflicting places for Petri net transitions having different security levels. Similar conditions
have been considered in [FG01, FGF09] and lead to more specific definitions of non-interferences
and bisimulations on annotated Petri nets. The second condition (ii) represents the classical condition
needed to avoid information leakage in sequential assignments. The third condition (iii) tackles covert
channels issues. Indeed, (iii) enforces the security levels of the data flows which have to be consistent
with security levels of the ports or interactions (e.g., no low level data has to be updated on a high level
port or interaction). Such that, observations of public data would not reveal any secret information.
Finally, conditions (iv) enforces deterministic behavior on atomic components.

The relation between the syntactic security conditions and the unwinding relations is precisely
captured by the following theorem.

Theorem 3 (unwinding theorem) Whenever the security conditions hold, the equivalence relation
≈σs is an unwinding relation for the security assignment σ, at all security level s.

The following corollary is the immediate consequence of theorems 1, 2 and 3.

Corollary 1 Whenever the security conditions hold, the security assignment σ is secure for the com-
ponent C.

4.3 Application

We illustrate the secBIP framework to handle information flow security issues for a typical example,
the web service reservation system introduced in [HV06]. A businessman, living in France, plans
to go to Berlin for a private and secret mission. To organize his travel, he uses an intelligent web
service who contacts two travel agencies: The first agency, AgencyA, arranges flights in Europe and
the second agency, AgencyB, arranges flights exclusively to Germany. The reservation service obtains
in return specific flight information and their corresponding prices and chooses the flight that is more
convenient for him.

In this example, there are two types of interference that can occur, (1) data-interference since
learning the flight price may reveal the flight destination and (2) event interference, since observing
the interaction with AgencyB can reveal the destination as well. Thus, to keep the mission private, the
flight prices and interactions with AgencyB have to be kept confidential.

The modeling of the system using secBIP involves two main distinct steps: first, functional re-
quirements modeling reflecting the system behavior, and second, security annotations enforcing the
desired security policy. The model of the system has four components denoted: Travel A and Travel B
who are instances from the same component and correspond respectively to AgencyA and AgencyB,
and components Reservation and Payment. To avoid figure 9 cluttering, we did not represent the inter-
actions with Travel A component. Search parameters are supplied by a user through the Reservation
component ports dests and dates to which we associate respectively variables (from, to) and dates.
Next, through search interaction, Reservation component contacts Travel B component to search for
available flights and obtains in return a list L of specific flights with their corresponding prices. There-
after, Reservation component selects a ticket ti from the list L and requests the Payment component
to perform the payment.

ASCENS 23

D5.3: Third Report on WP5 (Final) November 8, 2013

n
ca

,n
co

,p
ri

ce
,i

d
 :

 H
ig

h

re
fu

se
d

p
ay

_
re

q
u
es

t
tr

ea
t

id
n
ca
,n
co
,p
ri
ce

ap
p
ro

v
ed

p
ay

P
a
y
m
e
n
t

L

L
L

L
L

H
H

H
H

H
H

H

fr
o
m

,t
o
,d

at
es

,L
,L

[i
]

:
L

o
w

,i
d
,n

ca
,n

co
,p

ri
ce

 :
 H

ig
h

H
L

L
H

H

n
ew

_
p
ay

_
re

q
u
es

t

re
fu

se
d

y
es

p
ay

fl
y
_
li

st
se

le
ct

_
fl

y
p
ay

_
re

q
u
es

t
ap

p
ro

v
ed

p
ay

d
el

v
_
ti

ck
et

L
p
ri
ce

n
o

n
ca
,n
co
,p
ri
ce

id

cancel

p
ay

_
re

q
u
es

t
re

fu
se

d
ap

p
ro

v
ed

se
ar

ch

fr
o
m
,t
o

d
a
te
s

d
at

es

d
es

ts

ca
n

ce
l

treat

p
ay

ap
p
ro

v
ed

re
fu

se
d

p
ay

_
re

q
u
es

t

d
el

v
_
ti

ck
et

T
r
a
v
e
l_
A

se
ar

ch
d
el

v
_
ti

ck
et

se
le

ct
_
fl

y

cancel treat

tr
ea

t
fl

y
_

li
st

ac
ce

p
t

se
le

ct
_
fl

y

d
el

v
_
ti

ck
et

se
ar

ch

T
r
a
v
e
l_
B

ca
n

ce
l

fl
y

_
li

st
ac

ce
p
t

se
le

ct
_

fl
y

ac
ce

p
t

fl
y

_
li

st
se

ar
ch

R
e
s
e
r
v
a
ti
o
n

n
ew

_
p
ay

_
re

q
u
es

t
d
es

ts
d
at

es
n
o

y
es

L
,L

[i
]

:
L

o
w

l 1
l 2

l 4
l 3

t i

l 9

l 1
2

l 1
4

l 1
0

l 1
1

ac
ce

pt
l 1

3

t i

l 4
l 5

l 6
l 7

l 8
t i

l 3l 2l 1

l 3
l 2

l 1
l 5 l 6

l 4 l 7

t i

t i
t i

:H
ig

h

Figure 9: Reservation Web Service composition

ASCENS 24

D5.3: Third Report on WP5 (Final) November 8, 2013

All the search parameters from, to, dates, as well as the flights list L are set to low since users
are not identified while sending these queries. Other sensitive data like the selected flight ti, the price
variable p and the payment parameters (identity id, credit card variable cna and code number cno)
are set to high. Internal ports dests and dates as well as search, fly list, accept interactions are set
to low since these interactions (events) do not reveal any information about the client private trip.
However, the select fly interaction must be set to high since the observation of the selection event
from AgencyB allow to deduce deduce the client destination. In the case of a selected flight from
AgencyA, the select fly interaction could be set to low since, in this case, the destination could not
be deduced just from the event occurrence.

We recall that any system can be proven non-interferent iff it satisfies the syntactic security con-
ditions from definition 7. Indeed, these conditions hold for the system model depicted in Figure
9. In particular, it can be easily checked that all assignments occurring in transitions within atomic
component as well as within interactions are sequentially consistent. For example, at the select fly
interaction we assign a low level security item from the flight list L to a high security level variable
ti, formally ti = L[i]. Besides, the security levels assignments to ports exclude inconsistencies due to
causal and conflicting transitions, in all atomic components.

4.4 Conclusion

We present a model driven security framework to secure component-based systems. We formally
define two types of non-interference, respectively event and data non-interference. We provide a set of
sufficient syntactic conditions formulated to simplify non-interference verification. These conditions
are extensions of security typed language rules applied to our model. The use of our framework has
been demonstrated to secure a web service application.

5 Verification of Timed Systems

We addressed the problem of state-explosion inherent to model-checking of timed systems built from
large number of components. Our solution consists in adapting the compositional verification ap-
proach of [BBSN08] to timed systems. The main challenge was to be able to capture the relations
between the local timing of the components induced by their interactions. Without them the pro-
posed compositional analysis proved to be too weak for verifying even simple systems. The proposed
relations take the shape of equalities between the clocks of components used for expressing their tim-
ing constraints. We proved the soundness of the proposed approach, and successfully applied it to
academic examples and non trivial case studies.

Compositional methods in verification have been developed to cope with state explosion. Gen-
erally based on divide-and-conquer principles, compositional methods attempt to break monolithic
verification problems into smaller sub-problems by exploiting either the structure of the system or of
the property to verify, or both. Compositional reasoning can be used in different flavors, e.g. de-
ductive verification, assume-guarantee reasoning [MC81, Jon83, Pnu84], contract-based verification
[Ecdar, LLHSS], compositional generation, etc. Nonetheless, compositional verification has not been
very successfully applied to timed systems. The most used tools for the verification of such systems
are based on symbolic state space exploration, using efficient data structures and exploration tech-
niques. Few attempts have been made however for exploiting compositionality principles but they
remain marginal in the research literature. Nowadays, it is generally admitted that the difficulty for
using compositional reasoning is inherently due to the synchronous model of time. Time progress
hides continuous synchronization of all the components of the system. Getting rid of such synchro-
nization is necessary for analyzing independently different parts of the system (or of the property) but

ASCENS 25

D5.3: Third Report on WP5 (Final) November 8, 2013

also extremely problematic when attempting to re-compose the partial verification results.
We proposed a different approach for exploiting compositionality for analysis of timed systems.

We developed a novel compositional method for the generation of invariants for timed systems. In
contrast to exact reachability analysis, invariants are symbolic approximations of the set of reachable
states of the system. We show that quite precise invariants can be computed compositionally, from
the separate analysis of the components in the system and from their composition glue. This method
is sound for verification of safety properties, that is, if a given property can be deduced from the
invariants computed for the system, then the system is guaranteed to satisfy that property. However,
the method is not complete, that is, it may be not able to prove certain properties even if they are
satisfied by the system.

Our Compositional Verification Method. The compositional method we propose here is based on
the verification rule (VR) from [BBSN08]. Assume that a system consists of n components Bi inter-
acting by means of an interaction set γ, and that the system property of interest is Φ. If components Bi,
respectively interactions γ, can be locally characterized by means of invariants CI (Bi), respectively
II (γ), and if Φ can be proved to be a logical consequence of the conjunction of the local invariants,
then Φ is a global invariant. This is what the rule below synthesizes.

`
∧
i

CI (Bi) ∧ II (γ)→ Φ

‖γBi |= �Φ
(VR)

In the rule (VR), the symbol ` is used to underline that the logical implication can be effectively
proved (for instance with an SMT solver) and the notation B |= �Φ is to be read as “Φ holds in every
reachable state of B”.

The key idea behind the compositional generation method is to use additional history clocks in
order to track the timing of interactions between different components. History clocks allow to de-
couple the analysis for components and for their composition. On component level, history clocks are
used to capture and expose the local timing constraints relevant to their interactions. At composition
level, extra constraints on history clocks are enforced due to simultaneity of interactions and to the
synchrony of time progress.

Timed Systems. In our framework, the components are timed automata [AD94] and systems are
compositions of timed automata with respect to n-ary interactions. Timed automata represent the
behavior of components. They have control locations and transitions between these locations. Tran-
sitions may have timing constraints, which are defined on clocks. Clocks can be reset and/or tested
along with transition execution. Formally, a timed automaton is tuple (L, l0, A, T,X, tpc) where L is
a finite set of control locations, l0 is an initial control location, A a finite set of actions, X is a finite
set of clocks, T ⊆ L× (A×C × 2X)×L is finite set of transitions labeled with actions, guards, and a
subset of clocks to be reset, and tpc : L→ C assigns a time progress condition3 to each location. C is
the set of timing constraints which are predicates on the clocks X defined by the following grammar:

C ::= true | false | x#ct | x− y#ct | C ∧ C

with x, y ∈ X , # ∈ {<,≤,=,≥, >} and ct ∈ Z. Time progress conditions are restricted to con-
junctions of constraints as x ≤ ct. For simplicity, we assume that at each location l the guards of the
outgoing transitions imply the time progress condition tpc(l) of l.

3To avoid confusion with invariant properties, we prefer to adopt the terminology of “time progress condition” instead
of “location invariants”.

ASCENS 26

D5.3: Third Report on WP5 (Final) November 8, 2013

A timed automaton is a syntactic structure whose semantics is based on continuous and syn-
chronous time progress. That is, a state is given by a control location paired with real-valued assign-
ments of the clocks. From a given state, a timed automaton can let time progresses when permitted
by the time progress condition of the corresponding location, or execute a (discrete) transition if its
guard evaluates to true. The effect of time progress of δ > 0 is to increase synchronously all the
clocks by the the real value δ. Executions of transitions are instantaneous, that is, they keep values
of clocks unchanged except the ones that are reset (i.e. assigned to 0). Because of their continuous
semantics, timed automata have in general infinite state spaces. However, they admit finite symbolic
representations of their state spaces called zone graph [ACD+92, Alu99, HNSY94, YPD94], in which
equivalent assignments of clocks are grouped in a single (symbolic) state call zone having the shape
of timing constraints defined previously. That is, the reachable states of a timed automata corresponds
to a finite number of configurations (lj , ζj), 1 ≤ j ≤ m, where for all j, lj is a control location and ζj
is a timing constraint.

Examples of timed automata are provided by Figure 10. For instance, components Workeri,
i ∈ {1, 2}, are implemented by similar timed automata, consisting of two control locations li1 and li2
and two transitions: a transition from li1 to li2 labelled by action bi and having timing constraint y ≥ 8,
and a transition from li2 to li1 having action di and resetting clock y. By convention non displayed
guards of transitions and time progress conditions of locations are true .

lc0

lc1x ≤ 4

lc2

x ≥ 8
x := 0

a, x = 4
x:=0

c
x :=
0

a

c

Controller

l11

l12

b1,
y1 ≥ 8

d1,
y1 := 0

b1

d1

Worker1

l21

l22

b2,
y2 ≥ 8

d2,
y2 := 0

b2

d2

Worker2

Figure 10: A composition of three timed automata.

In our framework, components interact by means of strong synchronization between their actions.
The synchronizations are specified in the so called interactions as sets of actions. An interaction can
involve at most one action of each component. Given n components (i.e. timed automata) Bi =
(Li, li0, A

i, T i, Xi, tpci), 1 ≤ i ≤ n, and a set of interactions γ, we denote by γ(B1, . . . ,Bn) the
composition of components Bi with respect to interactions γ. States of the composition γ(B1, . . . ,Bn)
are combinations of the states of the components Bi. In γ(B1, . . . ,Bn), a component Bi can execute an
action ai only as part of an interaction α ∈ γ, ai ∈ α, that is, along with the execution of all the actions
participating to α, which corresponds to the usual notion of multi-party interaction. Notice that for a
component Bi of a composition γ(B1, . . . ,Bn), the application of interactions γ can only restrict its
reachable states. That is, the reachable states of Bi when executed in the composition γ(B1, . . . ,Bn)
are included in the reachable states of Bi executed alone (i.e. as a single timed automata). This
property is essential for building our compositional verification method, presented below.

Components and Interaction Invariants. To give a logical characterization of a system S =
γ(B1, . . . ,Bn) we use invariants. An invariant Φ is a state property which holds in every reachable

ASCENS 27

D5.3: Third Report on WP5 (Final) November 8, 2013

state of S, in symbols, S |= �Φ.
Component invariants CI (Bi) characterize the reachable states of components Bi when considered

alone. Such invariants can easily be computed from the zones of the corresponding timed automata.
More precisely, given the reachable (symbolic) states (lj , ζj), 1 ≤ j ≤ m, of component Bi, the
invariant for Bi is defined by: ∨

1≤j≤m
lj ∧ ζj ,

where we abuse of notation and use lj for the predicate that holds whenever Bi is at location lj . Notice
that zones ζj are timing constraints, that is, predicates on clocks. Notice also that invariants CI (Bi)
still hold for the composed system S = γ(B1, . . . ,Bn), but are only over approximations of the states
reached by each component Bi in S. For example, the component invariants for Controller , Worker1
and Worker2 of Figure 10 are as follows:

CI (Controller) = (lc0 ∧ x ≥ 0) ∨ (lc1 ∧ x ≤ 4) ∨ (lc2 ∧ x ≥ 0)

CI (Worker i) = (li1 ∧ yi ≥ 0) ∨ (li2 ∧ yi ≥ 8).

Interaction invariants II (γ) are induced by the synchronizations and have the form of global con-
ditions involving control locations of components. In previous work, we have considered boolean
conditions [BBSN08] as well as linear constraints [SBL12] for II (γ). For instance, such invariants
exclude configurations such that lc1∧ li2, that is, they establish ¬

(
lc1∧(l12∨ l12)

)
. Interaction invariants

are not the main purpose of this work, interested readers should refer to [BBSN08] and [SBL12] for
detailed presentations.

A safety property of interest for example of Figure 10 is absence of deadlocks. A necessary
condition for deadlock freedom is that a can synchronize with b1 or b2 when the controller is at lc1
and the workers are at li1, that is, Φ = lc1 ∧ l11 ∧ l21 =⇒ y1 − x ≥ 4 ∨ y2 − x ≥ 4. Even if Φ holds
in S, it cannot be proved by applying (VR) using only component invariants CI (Bi) and interaction
invariant II (γ). A counter example is given by lc1 ∧ l11 ∧ l21 and x = y1 = y2 = 0, which satisfies the
invariant CI (Controller) ∧ CI (Worker1) ∧ CI (Worker2) ∧ II (γ)4 but violate property Φ, that is,
CI (Controller)∧CI (Worker1)∧CI (Worker2)∧ II (γ) 6=⇒ Φ. One problem is that the proposed
invariants cannot relate values of clocks of different components according to their synchronizations
(e.g. synchronous reset of clocks).

Adding History Clocks. To strengthen computed invariants, we proposed to equip each component
Bi (and later, interactions) with history clocks: one clock hai per action of ai of Bi. A history clock
hai is reset on all transitions executing ai. Notice that since there is no timing constraint involving
history clocks, the behavior of the components remain unchanged after the addition of the history
clocks, which shown in [LA]. They are only introduced for establishing properties. Each time an
interaction α ∈ γ is executed, all the history clocks corresponding to the actions participating in α are
reset synchronously, and then become identical at the next state (until another interaction is executed).
Moreover, history clocks of actions of the last executed interaction α are necessarily lower than the
ones of actions not participating in α, since they are the last being reset. This is captured by the
following invariant:

E(γ) =
∨
α∈γ

((∧
ai,aj∈α
ak /∈α

hai = haj ≤ hak
)
∧ E(γ 	 α)

)
,

4Notice that interaction invariants cannot exclude lc1 ∧ l11 ∧ l21 since it is a reachable configuration.

ASCENS 28

D5.3: Third Report on WP5 (Final) November 8, 2013

where γ	α = {β \α | β ∈ γ∧β 6⊆ α}. It can be shown that E(γ) is an invariant of the system [LA].
For example of Figure 10, invariant E(γ) is given by:

E(γ) = (ha = hb1 ≤ hb2 ∨ ha = hb2 ≤ hb1) ∧ (hc = hd1 ≤ hd2 ∨ hc = hd2 ≤ hd1).

Component invariants for example of Figure 10 including the history clocks are as follows:

CI (Controllerh) = lc0 ∨ (lc1 ∧ x ≤ 4 ∧ (ha = hc ≥ 8 + x ∨ x = hc ≤ ha)) ∨
(lc2 ∧ x = ha ∧ (hc ≥ ha + 12 ∨ hc = ha + 4))

CI (Workerhi) = (y = hdi ∧ l
i
1 ∧ hdi ≤ hbi) ∨ (li2 ∧ hdi ≥ 8 + hbi).

Such invariants proved to be sufficient for stating deadlock-freedom for a similar example involving
only one worker, but are too weak for establishing deadlock-freedom with two workers. When interac-
tions are conflicting on shared action ai, the proposed invariants for history clock hai always consider
that any of these interactions can execute. For instance, in example of Figure 10 our invariants cannot
capture the fact that if action a of Controller synchronizes with b1 of Worker1, then the following
execution of action c of Controller can only synchronize with d1 of Worker1 (it cannot synchronize
with d2 of Worker2).

Handling Conflicting Interactions. We developed a general way for computing stronger invariants
relating execution of the interactions. The principle is to add again history clocks hα for each the
interaction α of γ, and to reset hα each time α is executed by the means of an additional component
and adequate synchronizations. A full description of this approach can be found in [LA]. For an action
ai of component Bi, we define the separation constraint S(γ, ai) as:

S(γ, ai) =
∧

α,β∈γ | ai∈α,β
α 6=β

| hα − hβ |≥ δai ,

where δai is a lower bound of the time elapsed between two consecutive executions of ai in Bi, which
can be statically computed from the timed automata of Bi. It can be shown [LA] that separation
constraints S(γ, ai) are invariants of the system, that is, the following is an invariant of the system:

S(γ) =
∧

1≤i≤n

∧
ai∈Ai

S(γ, ai).

Invariant E(γ) can be rewritten using additional history clocks as follows:

E(γ) =
∧

1≤i≤n

∧
ai∈Ai

hai = minα3aihα.

This corresponds to the intuition that the history clock of an action ai equals the history clock of the
last executed interaction α involving ai, which is the one having hα minimal.

Experimental Results. We have developed a prototype in Scala implementing the approach. It takes
as input components Bi, interactions γ, and a global safety property Φ, and checks whether the system
satisfy Φ. To this end, it first computes the invariants proposed above, using PPL [PPL]. Then it
generates Z3 [Z3W] Python code to check the satisfiability of the following formula:∧

1≤i≤n
CI (Bi) ∧ II (γ) ∧ E(γ) ∧ S(γ) ∧ ¬Φ. (1)

ASCENS 29

D5.3: Third Report on WP5 (Final) November 8, 2013

Notice that when γ has no conflicting interactions we can simply use the initial form for E(γ) and
discard S(γ). If (1) is not satisfiable then the system is guaranteed to satisfy Φ (i.e. our approach is
sound). Otherwise, Z3 returns an assignment of the variables satisfying (1) and corresponding to a
global state of the system that violates property Φ. Since we use over-approximations (i.e. invariants)
instead of the exact behavior of the system, this state may be not reachable and Φ may actually hold
in the system.

We experimented the approach on several classical examples, namely the Train-Gate-Controller
(TGC), the Fischer mutual exclusion protocol, and the Temperature-Control-System (TCS). We com-
pared our prototype implementation with Uppaal [Upp]. Uppaal is a widely used model-checker for
timed systems implementing symbolic reachability of parallel composition of timed automata using
zones. We measured execution times for verifying properties of interest for these examples, i.e. mu-
tual exclusion for TGC and Fischer and deadlock-freedom for TCS (see Table 2). Experimental results
shown that Uppaal is subject to state-explosion when increasing the number of components, which
happened with TCS for 16 components or more, and with Fischer for 14 components or more. In
contrast, our prototype managed to verify TCS even for 124 components in less than 20 seconds. We
believe that such compositional approach is very interesting for systems composed of large number of
identical components (e.g. swarms of robots) since in this case we reuse already computed invariants
following incremental approaches of [BGL+11].

Model & Size Time/Space

Property Our prototype Uppaal

1 0m0.156s/2.6kB+140B 0ms/8 states

Train Gate Controller & 2 0m0.176s/3.2kB+350B 0ms/13 states

mutual exclusion 64 0m4.82s/530kB+170kB 0m0.210s/323 states

124 0m17.718s/700kB+640kB 0m1.52s/623 states

2 0m0.144/3kB 0m0.008s/14 states

Fischer & 4 0m0.22s/6.5kB 0m0.012s/156 states

mutual exclusion 6 0m0.36s/12.5kB 0m0.03s/1714 states

14 0m2.840s/112kB no result in 4 hours

1 0m0.172s/840B+60B 0m0.01s/4 states

Temperature Controller & 8 0m0.5s/23kB+2.4kB 11m0.348s/57922 states

absence of deadlock 16 0m2.132s/127kB+9kB no result in 6 hours

124 0m19.22s/460kB+510kB no result in 6 hours

Table 2: Experimental results for model-checking tool Uppaal and our prototype tool.

Conclusion. We have presented a compositional verification method for systems subject to timing
constraints. It relies on invariants computed separately from system components and their interactions.
This method is sound for verification of safety properties, that is, it can be used to prove that the
system cannot reach an undesirable configuration. We believe that it is suited to check correctness of

ASCENS 30

D5.3: Third Report on WP5 (Final) November 8, 2013

coordinations within distributed systems, usually implemented by communication protocols relying
on time. Its applicability in the project has been related in Deliverable JD3.1, in which we considered
an ensemble of robots and devices coordinating in real-time to build consistent knowledge and to
achieve safe behavior.

6 Towards Nominal Automata Model Checking

The application of automata-based techniques in software verification dates back to Büchi [Büc60]
and Elgot [Elg61]. Later, Vardi and Wolper [VW86] emphasised the relevance of automata-based
techniques in verifying temporal properties of programs by reducing logical validity to emptiness of
Büchi automata: checking validity is reduced to checking the emptiness of the language of a finite
automaton. The study of automata models and their classical properties, especially emptiness, is
therefore essential in developing the verification machinery for passing from system specification to
model-checking.

However, standard automata-based techniques do not scale up to manage Ensembles. Ensem-
bles represent the future generation of software-intensive systems, dealing with massive numbers of
components, featuring complex interactions among components, with humans and other systems, op-
erating in open, non-deterministic environments, and dynamically adapting to new requirements, tech-
nologies and environmental conditions.

The following example shows the way dynamic entities may be plugged into a computation of
SCEL, the ASCENS core language developed in WP1. The code snippet below describes the discovery
and the invocation of a remote service:

fresh(n).
qry(service, aService, ?u)@P.
put(invoke, aService, v, self, n)@u.
get(result, aService, ?x, n)@self.Pc

Here, the name n is a unique session token issued from the runtime environment. The service u to be
invoked is searched on the knowledge among all the ones satisfying predicate P . Both n and u are
fresh names (i.e. that are not currently used) plugged into the computation, taken from set that are
very huge (as the set of tokens) or dynamically changing (as the set of the services available at the
moment).

We exploit nominal techniques [GP02] to deal with this setting, abstracting the unbounded set
of entities that may occur during a computation as an infinite alphabets, the symbols of which are
indistinguishable.

Consider the following ML-like script, implementing part of an abstract dispatcher of tasks on
sockets.

let rec exec() =
if(...)

let socket = newsocketfromenv();
send(socket);
exec();
release(socket);

else ...

When the function exec invokes the newsocketfromenv function, the execution environment
yields a fresh socket, so to guarantee an exclusive access. Then the action send occurs (we omit it
below), the function exec gets recursively called and eventually the socket is released. An example

ASCENS 31

D5.3: Third Report on WP5 (Final) November 8, 2013

of trace generated during a run is
new(s1)new(s2)new(s3) . . . release(s3)release(s2)release(s1).
Now, forgetting the actions new, release and only keeping the names of the sockets (taken from an
infinite alphabet), we get a word of the form wwR (wR means the reverse word of w), where the
symbols in w are all different.

The language {wwR} is intuitively context-free and involves an unbound number of resources,
that are all different.

Then, to reason about properties of resource usage patterns we need to investigate automata-based
models that deal with unbound number of resources and recognise context-free languages. The litera-
ture reports on regular automata over infinite alphabet and on their recognizers [KF94, BDFZ, Bol11].
Also context-free languages over infinite alphabet have been investigated in [CK98, BKL11, Par12,
PP04]. However the latter models do not have a fine-grained control of freshness that permits to tell
apart an unbound number of resources nor to reuse a resource when not used any-more. Hence we pro-
pose PSNA, enriched pushdown automata specifically designed to address these issues. Preliminary
to that we introduce and study a regular model for nominal languages: Finite State Nominal Automata
(FSNA). Our results show that FSNA are not closed under complement and (full) concatenation, but
they are closed under union and also under intersection, provided that reuse is forbidden. We compare
the expressive power of our approach with respect to related works in the literature: without reuse
our class of regular languages includes that of Usage Automata (UA) [BDFZ] and is incomparable
with Variable Automata (VFA) [GKS10] and Finite-memory Automata (FMA) [KF94]. When reuse
is allowed, instead, VFA and FMA languages are included in our class.

We propose Pushdown Nominal Automata (PSNA) as a novel model for context-free nominal lan-
guages, including the one of [CK98] and expressing, e.g. the traces wwR above. The results show that
our model is more expressive of the one in [CK98] because it can deal with traces wwR where the
restriction that the resources of w being different is relaxed at wish, yet keeping freshness. Even with-
out reuse, our model is more powerful than Usages [BDFZ], while, when this constraint is relaxed,
it is also more expressive than quasi context-free languages (QCFL) [CK98]. We studied formal lan-
guages properties, proving that PSNA are only closed under union, a restricted form of concatenation
and, more interestingly, when reuse is inhibited, under intersection with FSNA.

Back to the main goal of verification, in particular about proving safety properties, our results
show that the model-checking problem for PSNA is decidable since it is decidable their emptiness
problem, provided that the reuse is inhibited.

7 jDEECo Verification

jDEECo is a Java-based implementation of the DEECo component model [BGH+12] runtime frame-
work. It allows for convenient management and execution of jDEECo components and ensem-
ble knowledge exchange. DEECo is, in turn, a software-engineering refinement of the SCEL con-
cepts [BGH+12].

The main tasks of the jDEECo runtime framework are providing access to the knowledge repos-
itory, storing the knowledge of all the running components, scheduling execution of component pro-
cesses (either periodically or when a triggering condition is met), and evaluating membership of the
running ensembles and, in the positive case, carrying out the associated knowledge exchange (also
either periodically or when triggered). In general, the jDEECo runtime framework allows both local
and distributed execution; currently, the distribution is achieved on the level of knowledge repository.

We designed and implemented support for automated verification of jDEECo applications with
the Java Pathfinder model checker (JPF) [JPFa]. This work consists of two main steps: (1) making the
jDEECo runtime framework amenable to practical verification with JPF and (2) implementing support

ASCENS 32

D5.3: Third Report on WP5 (Final) November 8, 2013

for checking specific properties relevant to jDEECo applications. First we provide a brief introduction
to JPF and then we describe the two main steps.

Java Pathfinder (JPF) is a highly customizable verification framework for Java programs. The core
of JPF is a special JVM that supports non-deterministic thread scheduling choices, non-deterministic
data choices (for input values), backtracking, and state matching. Using these mechanisms, JPF sys-
tematically explores the state space of a given program, in particular all possible thread interleavings,
and looks for specific errors such as assertion violations and deadlocks. During the state space traver-
sal, JPF makes thread scheduling non-deterministic choices at (i) bytecode instructions that access
global data (e.g., fields of shared heap objects) and (ii) synchronization primitives (locking, calls of
the wait() method, etc). JPF has limited support for Java reflection and other library classes that use
native methods (e.g., file I/O and networking).

6Seite

jDEECo: inside look

6Lausanne 2013

JVM

Knowledge Repository

Process /Ensemble
Scheduling

C1 E1 C2 ……

Figure 11: jDEECo: Look inside

7Seite

jDEECo+JPF: inside look

7Lausanne 2013

JPF

Specialized Knowledge
Repository

Specialized Process
/Ensemble Scheduling

C1 E1 C2 …

JP
F

B
ac

kt
ra

ck
in

g

JPF-LTL

Figure 12: jDEECo + JPF

The main goal in our effort to make the jDEECo framework (Fig. 11) amenable to verification with
JPF was to enable systematic traversal of all possible interleavings of sessions executed by component
processes, while at the same time mitigating state explosion, i.e. limit the number of unnecessary
thread scheduling choices in the state space. We apply JPF to a local version of the jDEECo runtime
framework, whose development started in the previous year, in order to precisely verify the concrete

ASCENS 33

D5.3: Third Report on WP5 (Final) November 8, 2013

behavior of jDEECo. We do not perform abstraction of any kind. The architecture of the local version
being subject to verification is in Fig. 12. Due to the fact that JPF has limited support for native
methods (especially reflection), the verification process works as follows. First, all components and
ensembles forming the jDEECo application that are subject to verification are serialized into a file.
Then, JPF is run on the program consisting of the local version of the jDEECo runtime framework
and the given application. Runtime loads all the components and ensembles from the file without the
use of reflection, and then starts all the component processes. Note that JPF interprets every action
performed by the runtime, starting with the loading of components from the file, up to the finish of the
application, and searches for errors. To mitigate state explosion, we configured JPF such that it makes
thread scheduling choices at the beginning of each session. This is sufficient in order to let JPF check
all interleavings of sessions, because each session makes only a single atomic modification of the
knowledge. Components interact only through modifications of the global knowledge. We disabled
thread choices at all other places inside the jDEECo framework (e.g., field accesses in classes that
implement the knowledge repository). Even though component processes are periodic, JPF does not
have to model the periods (real time), because it just has to explore all interleavings of actions that may
influence the future behavior of multiple threads. Our solution is to use a thread scheduler that ignores
periods and limit the number of iterations of each process by (N*H)/P + 1, where P is the period of
a given process, H is the length of one hyperperiod, and N is the number of hyperperiods for which
the given application should be tested. The user has to define the number of hyperperiods because this
value is typically application-specific. Upon reaching an error state (e.g., an assertion violation), JPF
prints the full counterexample, which includes the path leading to the error state and snapshot of the
current state. A limitation of this approach is that JPF explores an over-approximation of the set of
possible thread interleaving because it does not model periods, and therefore it may report spurious
errors that cannot happen in any feasible interleaving of the processes with respect to specific periods.

In the second step of our work, we focused on checking properties of two kinds: temporal behavior
of jDEECo applications and data consistency. This includes assertions over values stored in the know-
ledge repository (e.g., the assertion “battery.level > 0” for a component representing a car) and LTL
formulas. An example of a LTL formula is “G(follower near leader => F follower at destination)”
for the Convoy demo application, which is a part of the jDEECo distribution. Temporal behavior of the
jDEECo applications is interesting because component processes make small steps and it is not clear
whether the process will reach the goal state. Atomic propositions in LTL formulas may contain path
expressions, arithmetic operators, and logical operators. JPF can search for assertion violations out of
the box, so we just had to implement checking of the LTL formulas using JPF. Our solution is based on
JPF-LTL [JPFb], which is a third-party extension to JPF that supports checking of LTL formulas. In
order to support checking LTL formulas over jDEECo applications, we modified the implementation
of JPF-LTL to enable seamless integration into the jDEECo framework and created a new module for
jDEECo. The module evaluates atomic propositions based on the content of knowledge repository
and stores the current value of each proposition. LTL formulas are checked on-the-fly during the state
space traversal by JPF. The process works as follows. When the knowledge repository is updated by
some process, our module at the jDEECo side evaluates all atomic propositions and gives the list of
satisfied propositions to JPF. At the JPF side, it is then checked whether the LTL formula still holds.

8 Conclusion and Future Work

This year, the most of our efforts were dedicated to security policies and access control. We were in-
terested in privacy of randomization mechanisms, which are used in existing anonymity protocols like
Crowds or the Dining Cryptographers to “confound” the adversary as to the true actions undertaken by
each participant. We analyzed both worst-case and average-case privacy of such mechanisms. We also

ASCENS 34

D5.3: Third Report on WP5 (Final) November 8, 2013

proposed techniques for the design and the implementation of reputation systems, which are involved
in a variety of context such as e-commerce, social networking, etc. Most of the time, such systems are
deployed without any formal guarantee of correctness. We analyzed how reputation systems behave
asymptotically, and how they converge to their asymptotic behavior, using both Bayesian decision
theory and stochastic model-checker SAM. For next year we plan to investigate the use of reputation
systems to deal with the load balancing issue in an autonomic Cloud environment. Our methodology
would help in verifying the effectiveness of different reputation based strategies used to address node
selection. A basic problem in such environments is indeed to select the Cloud node capable of success-
fully executing the incoming application. We also want to extend existing frameworks to different data
models taking into account the case in which each rater is characterized by a (unobservable, possibly
malicious) bias which can lead him to under- or over-evaluate its interactions with the rates.

Regarding security policies, we proposed a framework for information flow security in component-
based systems, in which the security policies are checked early in the design following model-based
approaches. We introduced a compositional verification method for non-interference properties. We
plan to further extend this work in two directions. First, we are investigating additional security
conditions allowing to relax the non-interference property and control where downgrading can occur.
Second, we are working towards the implementation of a complete design flow for secure systems
based on secBIP. As a first step, we shall implement the verification method presented for annotated
secBIP models. Then, use these models for generation of secure implementations, that is, executable
code where the security properties are enforced by construction, at the generation time.

In addition to security and access control, we also completed the verification techniques proposed
for the verification of ensembles as explained as follows. We first focused on systems with bounded
and static architectures. We extended the verification technique of D-Finder [BBSN08] to encompass
timing constraints of components. As shown by the experimental results, and due to its composi-
tional nature, the proposed method scales better to large systems than existing symbolic exploration
algorithms such as the ones used in the tool Uppaal [Upp]. One possible extension of this work is to
add the support of urgency types [BS00], which we think are more convenient for expressing timing
constraints than location invariants. Another extension could be to include invariants on data to have
better results for verifying scheduling policies for tasks based systems.

To address dynamic architectures, we developed foundational models using nominal techniques
for resource management, and proved several theoretical results. These research are not complete yet,
in particular when the disposal and the reuse of resources are allowed. Also, automata are useful when
developing verification algorithms, but they cannot be easily used for specifying system, indeed the
connection between SCEL and our automata has to be investigated. The effectiveness of our automata
has to be validated by showing that the dynamic behavior of the ASCENS case studies can be modelled
using our automata.

Finally, we worked towards the verification of service component implementation code by adding a
support for jDEECo applications to the Java Pathfinder model checker. Our primary goal for the future
is to improve scalability of the verification process. The current approach does not scale well, because
each transition in the program state space between two thread choices consists of many bytecode
instructions (up to hundreds of thousands), and therefore it takes JPF a very long time to interpret all
these instructions (and process such a long transition). A possible solution is to create a simple model
(abstraction) of the jDEECo framework that will be analyzed by JPF together with a given application.
We will also evaluate our verification approach on larger case studies.

ASCENS 35

D5.3: Third Report on WP5 (Final) November 8, 2013

References

[AAC+a] M. S. Alvim, M. E. Andrés, K. Chatzikokolakis, P. Degano, C. Palamidessi. Differential
Privacy: on the trade-off between Utility and Information Leakage. In: FAST 2011, LNCS,
7140,2011.

[AAC+b] M. S. Alvim, M. E. Andrés, K. Chatzikokolakis, C. Palamidessi. Quantitative Information
Flow and Applications to Differential Privacy. FOSAD VI, LNCS 6858: 211-230, 2011.

[AAC+c] M. S. Alvim, M. E. Andrés, K. Chatzikokolakis, C. Palamidessi. On the relation between
Differential Privacy and Quantitative Information Flow. ICALP (2) 2011: 60-76, 2011.

[ACD+92] Rajeev Alur, Costas Courcoubetis, David L. Dill, Nicolas Halbwachs, and Howard Wong-
Toi. An implementation of three algorithms for timing verification based on automata
emptiness. In RTSS, pages 157–166, 1992.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

[AL12] Rafael Accorsi and Andreas Lehmann. Automatic information flow analysis of business
process models. In Proceedings of the 10th international conference on Business Process
Management, BPM’12, pages 172–187. Springer-Verlag, 2012.

[Alu99] Rajeev Alur. Timed automata. In Proceedings of the 11th International Conference on
Computer Aided Verification (CAV), LNCS, pages 8–22. Springer, 1999.

[Barb] D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press,
2012.

[BB12] M. Boreale, M. Paolini. Worst- and average-case privacy breaches in randomization me-
chanisms. IFIP TCS 2012, LNCS 7604:72-86, 2012.

[BBB+11] Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Combaz, Mohamad Jaber,
Thanh-Hung Nguyen, and Joseph Sifakis. Rigorous component-based design using the
BIP framework. IEEE Software, Special Edition – Software Components beyond Pro-
gramming – from Routines to Services, 28(3):41–48, 2011.

[BBSN08] Saddek Bensalem, Marius Bozga, Joseph Sifakis, and Thanh-Hung Nguyen. Composi-
tional verification for component-based systems and application. In Proceedings of the 6th
International Symposium on Automated Technology for Verification and Analysis, ATVA
’08, pages 64–79, Berlin, Heidelberg, 2008. Springer-Verlag.

[BC13] Michele Boreale and Alessandro Celestini. Asymptotic risk analysis for trust and repu-
tation systems. In SOFSEM: Theory and Practice of Computer Science, volume 7741 of
Lecture Notes in Computer Science, pages 169–181. Springer, 2013.

[BCP09] C. Braun, K. Chatzikokolakis, C. Palamidessi. Quantitative Notions of Leakage for One-
try Attacks. Proc. of MFPS 2009, Electr. Notes Theor. Comput. Sci. 249: 75-91, 2009.

[BDFZ] Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari, and Roberto Zunino. Model
checking usage policies. To appear in Math. Stuct. Comp. Sci., abridged version in TGC
2008, vol 5474 LNCS (2009).

ASCENS 36

D5.3: Third Report on WP5 (Final) November 8, 2013

[BDL06] David Basin, Jrgen Doser, and Torsten Lodderstedt. Model driven security: from uml
models to access control infrastructures. ACM Transactions on Software Engineering and
Methodology, 15, 2006.

[BDP02] L. Bettini, R. De Nicola, and R. Pugliese. Klava: a Java Package for Distributed and
Mobile Applications. Software - Practice and Experience, 32(14):1365–1394, 2002.

[Berg] Berger J. O. Statistical Decison Theory and Bayesian Analysis. Springer, 1985.

[BGH+12] Tomas Bures, Ilias Gerostathopoulos, Vojtech Horky, Jaroslav Keznikl, Jan Kofron,
Michele Loreti, and Frantisek Plasil. Language Extensions for Implementation-Level
Conformance Checking. ASCENS Deliverable D1.5, 2012.

[BGL+11] Saddek Bensalem, Andreas Griesmayer, Axel Legay, Thanh-Hung Nguyen, Joseph
Sifakis, and Rongjie Yan. D-finder 2: Towards efficient correctness of incremental de-
sign. In Mihaela Gheorghiu Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev
Joshi, editors, NASA Formal Methods, volume 6617 of Lecture Notes in Computer Sci-
ence, pages 453–458. Springer, 2011.

[BK11] G. Barthe, B. Köpf. Information-theoretic Bounds for Differentially Private Mechanisms.
In 24rd IEEE Computer Security Foundations Symposium, CSF 2011, 191-204, 2011.
IEEE Computer Society.

[BKL11] M. Bojańczyk, Bartek Klin, and Slawomir Lasota. Automata theory in nominal sets, 2011.
http://www.mimuw.edu.pl/˜sl/PAPERS/lics11full.pdf.

[BLP76] E. D. Bell and J. L. La Padula. Secure computer system: Unified exposition and multics
interpretation, 1976.

[Bol11] Benedikt Bollig. An automaton over data words that captures EMSO logic. In Joost-
Pieter Katoen and Barbara König, editors, CONCUR 2011, volume 6901 of LNCS, pages
171–186. Springer, 2011.

[BS00] Sébastien Bornot and Joseph Sifakis. An algebraic framework for urgency. Inf. Comput.,
163(1):172–202, 2000.

[BPP11a] M. Boreale, F. Pampaloni, M. Paolini. Quantitative Information Flow, with a View. ES-
ORICS 2011, LNCS 6879:588-604, 2011.

[BPP11b] M. Boreale, F. Pampaloni, M. Paolini. Asymptotic information leakage under one-try
attacks. FoSSaCS 2011, LNCS 6604:396-410, 2011. Full version to appear on MSCS
available at http://rap.dsi.unifi.it/˜boreale/Asympt.pdf.

[Büc60] J Richard Büchi. Weak second-order arithmetic and finite automata. Mathematical Logic
Quarterly, 6(1-6):66–92, 1960.

[BXE07] A. Boukerch, L. Xu, and K. EL-Khatib. Trust-based security for wireless ad hoc and
sensor networks. Computer Communications, 30(11-12):2413 - 2427, 2007.

[CDT13a] Alessandro Celestini, Rocco De Nicola, and Francesco Tiezzi. Network-Aware Evalua-
tion Environment for Reputation Systems. In IFIPTM, volume 401 of IFIP Advances in
Information and Communication Technology, pages 231–238. Springer, 2013.

ASCENS 37

http://www.mimuw.edu.pl/~sl/PAPERS/lics11full.pdf
http://rap.dsi.unifi.it/~boreale/Asympt.pdf

D5.3: Third Report on WP5 (Final) November 8, 2013

[CDT13b] Alessandro Celestini, Rocco De Nicola, and Francesco Tiezzi. Network-Aware Evalua-
tion Environment for Reputation Systems. Technical Report CSA #5/2013, IMT Institute
for Advanced Studies Lucca, 2013. Available at http://eprints.imtlucca.it/
1537/.

[CDT13c] Alessandro Celestini, Rocco De Nicola, and Francesco Tiezzi. Specifying and analysing
reputation systems with a coordination language. In SAC, pages 1363–1368. ACM, 2013.

[Cel13] Alessandro Celestini. On the analysis and evaluation of trust and reputation systems, 2013.
Phd Thesis, http://cse.lab.imtlucca.it/rep_sys_eval/thesis.pdf.

[CK98] Edward Y. C. Cheng and Michael Kaminski. Context-free languages over infinite alpha-
bets. Acta Inf., 35(3):245–267, 1998.

[CPP08a] K. Chatzikokolakis, C. Palamidessi, P. Panangaden. Anonymity protocols as noisy chan-
nels. Information and Computation 206(2-4): 378-401, 2008.

[CPP08b] K. Chatzikokolakis, C. Palamidessi, P. Panangaden. On the Bayes risk in information-
hiding protocols. Journal of Computer Security 16(5): 531-571, 2008.

[DA04] Zoran Despotovic and Karl Aberer. A Probabilistic Approach to Predict Peers’ Perfor-
mance in P2P Networks. In CIA, volume 3191 of Lecture Notes in Computer Science,
pages 62–76. Springer, 2004.

[DC] D. Chaum. The Dining Cryptographers Problem: Unconditional Sender and Recipient
Untraceability. Journal of Cryptology 1 (1): 65-75, 1988.

[DD77] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure informa-
tion flow. Commun. ACM, pages 504–513, 1977.

[Desp] Z. Despotovic and K. Aberer. A probabilistic approach to predict peers’ performance in
p2p networks. In 8th International Workshop CIA 2004.

[DFLP11] Rocco De Nicola, Gian Luigi Ferrari, Michele Loreti, and Rosario Pugliese. A language-
based approach to autonomic computing. In FMCO, volume 7542 of Lecture Notes in
Computer Science, pages 25–48. Springer, 2011.

[DFP98] Rocco De Nicola, Gian Luigi Ferrari, and Rosario Pugliese. KLAIM: A Kernel Language
for Agents Interaction and Mobility. Trans. on Software Engineering, 24(5):315–330,
1998.

[DKL+07] Rocco De Nicola, Joost-Pieter Katoen, Diego Latella, Michele Loreti, and Mieke
Massink. Model checking mobile stochastic logic. Theor. Comput. Sci., 382(1):42–70,
2007.

[DLPT13] R. De Nicola, M. Loreti, R. Pugliese, and F. Tiezzi. SCEL: a language for autonomic
computing. Technical Report, January 2013. http://rap.dsi.unifi.it/scel/
pdf/SCEL-TR.pdf.

[DMNS] C. Dwork, F. McSherry, K. Nissim, A. Smith. Calibrating Noise to Sensitivity in Private
Data Analysis. Proc. of the 3rd IACR Theory of Cryptography Conference, 2006.

[DP] C. Dwork. Differential Privacy. ICALP 2006. LNCS, 4052: 1-12, 2006.

ASCENS 38

http://eprints.imtlucca.it/1537/
http://eprints.imtlucca.it/1537/
http://cse.lab.imtlucca.it/rep_sys_eval/thesis.pdf
http://rap.dsi.unifi.it/scel/pdf/SCEL-TR.pdf
http://rap.dsi.unifi.it/scel/pdf/SCEL-TR.pdf

D5.3: Third Report on WP5 (Final) November 8, 2013

[DS05] Y. Dodis and A. Smith. Entropic Security and the encryption of high-entropy messages.
Theory of Cryptography Conference (TCC), LNCS 3378:556-577, 2005.

[Ecdar] A. David, K. G. Larsen, A. Legay, M. H. Møller, U. Nyman, A. P. Ravn, A. Skou, and
A. Wasowski. Compositional verification of real-time systems using Ecdar. STTT, 2012.

[EFLR] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. Spki certificate
theory. IETF RFC, 1999.

[EGS] A. Evfimievski, J. Gehrke, R. Srikant. Limiting Privacy Breaches in Privacy Preserving
Data Mining. Proc. of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, 2003.

[Elg61] Calvin C Elgot. Decision problems of finite automata design and related arithmetics.
Transactions of the American Mathematical Society, 98(1):21–51, 1961.

[FG01] Riccardo Focardi and Roberto Gorrieri. Classification of security properties (part i: Infor-
mation flow). In Revised versions of lectures given during the IFIP WG 1.7 International
School on Foundations of Security Analysis and Design on Foundations of Security Anal-
ysis and Design: Tutorial Lectures, FOSAD ’00, pages 331–396, London, UK, UK, 2001.

[FGF09] Simone Frau, Roberto Gorrieri, and Carlo Ferigato. Formal aspects in security and trust.
chapter Petri Net Security Checker: Structural Non-interference at Work, pages 210–225.
Berlin, Heidelberg, 2009.

[Fried] A. Friedman, A. Shuster. Data Mining with Differential Privacy. Proceedings of the
16th ACM SIGKDD international conference on Knowledge discovery and data mining
(KDD), 2010.

[Gam88] Diego Gambetta. Trust: Making and Breaking Cooperative Relations, chapter 13: Can
We Trust Trust?, pages 213–237. Basil Blackwell, 1988.

[Ghosh] A. Ghosh, T. Roughgarden, M. Sundararajan. Universally utility-maximizing privacy
mechanisms. In STOC 2009, 351-360, 2009.

[GKS10] Orna Grumberg, Orna Kupferman, and Sarai Sheinvald. Variable automata over infinite
alphabets. In Adrian Horia Dediu, Henning Fernau, and Carlos Martı́n-Vide, editors,
LATA, volume 6031 of LNCS, pages 561–572. Springer, 2010.

[Gmb13] Zimory GmbH. Zimory Enterprise Cloud, 2013. Web site: http://www.zimory.de.

[GP02] M.J. Gabbay and A.M. Pitts. A new approach to abstract syntax with variable binding.
Formal aspects of computing, 13(3):341–363, 2002.

[Haz05] Philip Hazel. Pcre: Perl compatible regular expressions, 2005. http://www.pcre.
org/pcre.txt.

[HNSY94] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic
model checking for real-time systems. Inf. Comput., 111(2):193–244, June 1994.

[HV06] Dieter Hutter and Melanie Volkamer. Information flow control to secure dynamic web
service composition. In In International Conference on Security in Pervasive Computing,
pages 196–210. Springer, LNCS, 2006.

ASCENS 39

http://www.zimory.de
http://www.pcre.org/pcre.txt
http://www.pcre.org/pcre.txt

D5.3: Third Report on WP5 (Final) November 8, 2013

[JAJ82] Goguen Joseph Amadee and Meseguer Jos. Security policy and security models. In
Proceedings of 1982 Symposium on Security and Privecy. IEEE Computer Society Press,
pages 11–20, 1982.

[JI02] Audun Jøsang and Roslan Ismail. The beta reputation system. In Bled Conference on
Electronic Commerce, 2002.

[JI] A. Jøsang and R. Ismail. The beta reputation system. In Proceedings of Bled eCommerce
Conference, 2002.

[JIB] A. Jøsang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for online
service provision. Decision Support Systems, 43(2):618-644, 2007.

[Jon83] Cliff B. Jones. Specification and design of (parallel) programs. pages 321–332, 1983.

[JPFa] Java PathFinder.
http://babelfish.arc.nasa.gov/trac/jpf/.

[JPFb] JPF-LTL: An extension to JPF for checking LTL.
https://bitbucket.org/michelelombardi/jpf-ltl.

[KAS] S. P. Kasiviswanathan, A. Smith . A note on differential privacy: Defining resistance on
arbitrary side information. http://arxiv.org/abs/0803.3946, 2008.

[KF94] M. Kaminski and N. Francez. Finite-memory automata. TCS, 134(2):329–363, 1994.

[Kifer] D. Kifer, A. Machanavajjhala. No Free Lunch in Data Privacy. SIGMOD 2011: 77-88,
2011.

[KS10] B. Köpf, G. Smith. Vulnerability Bounds and Leakage Resilience of Blinded Cryptogra-
phy under Timing Attacks. CSF 2010: 44-56, 2010.

[Kuh98] D. Richard Kuhn. Role based access control on mls systems without kernel changes. In
In Proceedings of the ACM Workshop on Role Based Access Control, pages 25–32, 1998.

[LA] S. Bensalem M. Bozga J. Combaz L. Astefanoaei, S. Ben Rayana. Compositional in-
variant generation for timed systems. Technical Report TR-2013-5, Verimag Research
Report.

[LHG] S. Lacoste-Julien, F. Husz’ar, and Z. Ghahramani. Approximate inference for the losscal-
ibrated bayesian. In Proceedings of AISTATS, 2011.

[LLHSS] S.-W. Lin, Y. Liu, P.-A. Hsiung, J. Sun, and J. S. Dong. Automatic generation of provably
correct embedded systems. In Proceedings of ICFEM, 2012.

[Lor10] Michele Loreti. SAM: Stochastic Analyser for Mobility, 2010. Available at http:
//rap.dsi.unifi.it/SAM/.

[Man00] Heiko Mantel. Possibilistic definitions of security - an assembly kit. In Proceedings of the
13th IEEE workshop on Computer Security Foundations, CSFW ’00, pages 185–. IEEE
Computer Society, 2000.

[MC81] Jayadev Misra and Kanianthra Mani Chandy. Proofs of networks of processes. page
4:417426, 1981.

ASCENS 40

http://babelfish.arc.nasa.gov/trac/jpf/
https://bitbucket.org/michelelombardi/jpf-ltl
http://rap.dsi.unifi.it/SAM/
http://rap.dsi.unifi.it/SAM/

D5.3: Third Report on WP5 (Final) November 8, 2013

[McC88] Daryl McCullough. Noninterference and the composability of security properties. In
Proceedings of the 1988 IEEE conference on Security and privacy, SP’88, pages 177–
186. IEEE Computer Society, 1988.

[McL94] John McLean. A general theory of composition for trace sets closed under selective inter-
leaving functions. In Proceedings of the 1994 IEEE Symposium on Security and Privacy,
SP ’94, pages 79–. IEEE Computer Society, 1994.

[McS] F. McSherry. Privacy Integrated Queries. Proceedings of the 2009 ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD) 2009.

[MMH] L. Mui, M. Mohtashemi, and A. Halberstadt. A computational model of trust and reputa-
tion. In Proceedings of HICSS, 2002., pages 2431-2439, jan. 2002.

[NCL] C. T. Nguyen, O. Camp, and S. Loiseau. A bayesian network based trust model for
improving collaboration in mobile ad hoc networks. In RIVF, 2007, pages 144 151, 2007.

[NS] A. Narayanan, V. Shmatikov. Robust De-anonymization of Large Sparse Datasets. Proc.
of IEEE Symposium on Security and Privacy, 2008.

[NT] B.C. Neuman and T. Ts’o. Kerberos: an authentication service for computer networks.
Communications Magazine, IEEE, 32(9):33-38, sept. 1994.

[Par12] Pawel Parys. Higher-order pushdown systems with data. In Marco Faella and Aniello
Murano, editors, GandALF, volume 96 of EPTCS, pages 210–223, 2012.

[Pnu84] Amir Pnueli. In transition from global to modular temporal reasoning about programs.
page 123144, 1984.

[PP04] D. Perrin and J.E. Pin. Infinite words: automata, semigroups, logic and games, volume
141 of Pure and Applied Mathematics. Elsevier, 2004.

[PPL] PPL. http://bugseng.com/products/ppl/.

[Rob] C. P. Robert. The Bayesian Choice. Springer, 2001.

[RR] M. K. Reiter, A. D. Rubin. Crowds: Anonymity for Web Transactions. ACM Trans. Inf.
Syst. Secur. 1(1): 66-92, 1998.

[Rus92] John Rushby. Noninterference, transitivity, and channel-control security policies. Tech-
nical report, dec 1992.

[SBL12] Marius Bozga Saddek Bensalem, Benoit Boyer and Axel Legay. Incremental generation
of linear invariants for component-based systems. Technical Report TR-2012-15, Verimag
Research Report, 2012.

[SKG] S. R. Ganta, S. P. Kasiviswanathan, A. Smith. Composition Attacks and Auxiliary Infor-
mation in Data Privacy. Proceedings of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining (KDD), 2008.

[SM03] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security. IEEE
Journal on selected areas in communications, 21(1), 2003.

[Smith] G. Smith. On the Foundations of Quantitative Information Flow. FoSSaCS 2009, LNCS
5504: 288-302, 2009.

ASCENS 41

http://bugseng.com/products/ppl/

D5.3: Third Report on WP5 (Final) November 8, 2013

[SNK] V. Sassone, M. Nielsen, and K. Krukow. Towards a formal framework for computational
trust.Formal Methods for Components and Objects, LNCS 4:175-184, 2007.

[SQSL05] Jianjun Shen, Sihan Qing, Qingni Shen, and Liping Li. Covert channel identification
founded on information flow analysis. In Proceedings of the 2005 international confer-
ence on Computational Intelligence and Security - Volume Part II, CIS’05, pages 381–
387. Springer-Verlag, 2005.

[SS01] Andrei Sabelfeld and David Sands. A per model of secure information flow in sequential
programs. Higher Order Symbol. Comput., 14(1):59–91, March 2001.

[SSM98] Ravi Sandhu, Ravi S, and Qamar Munawer. How to do discretionary access control using
roles, 1998.

[SV98] Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-threaded im-
perative language. In Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’98, pages 355–364. ACM, 1998.

[Talwar] F. McSherry, K. Talwar. Mechanism Design via Differential Privacy. Proceedings Annual
IEEE Symposium on Foundations of Computer Science (FOCS), 2007.

[TPJL] W. T. L. Teacy, J. Patel, N. R. Jennings, and M. Luck. Coping with inaccurate reputation
sources: Experimental analysis of a probabilistic trust model. In AAMAS, 2005.

[Upp] Uppaal. http://www.uppaal.org/.

[VW86] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic program
verification. In LICS, pages 332–344. IEEE Computer Society, 1986.

[WV] Y. Wang and J. Vassileva. Trust and reputation model in peer-to-peer networks. In P2P,
2003, pages 150-157.

[XL] L. Xiong and L. Liu. Peertrust: supporting reputation-based trust for peer-to-peer elec-
tronic communities. IEEE TKDE, 16(7):843-857, july 2004.

[YPD94] Wang Yi, Paul Pettersson, and Mats Daniels. Automatic verification of real-time commu-
nicating systems by constraint-solving. In FORTE, pages 243–258, 1994.

[Z3W] Z3. http://research.microsoft.com/en-us/um/redmond/projects/
z3/.

[ZL97] A. Zakinthinos and E. S. Lee. A general theory of security properties. In Proceedings of
the 1997 IEEE Symposium on Security and Privacy, SP ’97, pages 94–. IEEE Computer
Society, 1997.

ASCENS 42

http://www.uppaal.org/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/

	Introduction
	Quantitative Distributed Models of Confidentiality and Trust
	Worst- and average-case privacy breach in randomization mechanisms
	Asymptotic risk analysis for trust and reputation systems

	Network-Aware Analysis of Reputation Systems
	A stochastic verification methodology
	A network-aware evaluation environment

	Model-driven Information Flow Security for Component-Based Systems
	Information Flow Security
	Verification
	Application
	Conclusion

	Verification of Timed Systems
	Towards Nominal Automata Model Checking
	jDEECo Verification
	Conclusion and Future Work

