
www.ascens-ist.eu

ASCENS
Autonomic Service-Component Ensembles

JD3.2: Software Engineering for Self-Aware SCEs
Ensemble Development Life Cycle

Grant agreement number: 257414
Funding Scheme: FET Proactive
Project Type: Integrated Project
Latest version of Annex I: Version 2.2 (30.7.2011)

Lead contractor for deliverable: LMU
Author(s): Nora Koch, Matthias Hölzl, Annabelle Klarl, Philip Mayer (LMU),
Tomas Bures (CUNI), Jaquez Combaz (UJF-Verimag), Alberto Lluch
Lafuente, Rocco De Nicola, Stefano Sebastio, Francesco Tiezzi, Andrea
Vandin (IMT), Fabio Gaducci, Valentina Monreale, Ugo Montanari (UNIPI),
Michele Loreti (UDF), Carlo Pinciroli (ULB), Mariachiara Puviani, Franco
Zambonelli (UNIMORE), Nikola Šerbedžija (Fraunhofer), Emil Vassev (UL)

Reporting Period: 3
Period covered: October 1, 2012 to September 30, 2013
Submission date: November 8, 2013
Revision: Final
Classification: PU

Project coordinator: Martin Wirsing (LMU)
Tel: +49 89 2180 9154
Fax: +49 89 2180 9175
E-mail: wirsing@lmu.de

Partners: LMU, UNIPI, UDF, Fraunhofer, UJF-Verimag, UNIMORE,
ULB, EPFL, VW, Zimory, UL, IMT, Mobsya, CUNI

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

Executive Summary

To help developers address the challenges posed by the diversity of self-* properties and the engi-
neering of adaptive behaviours, the ASCENS project has defined the ensemble development life cycle
(EDLC). In contrast to more classical software development life cycles, in order to guarantee adap-
tivity, we rely more on the feedback of runtime data to the design phases. We illustrate how the life
cycle can be instantiated using specific languages, methods and tools developed within the ASCENS
project. The examples include one scenario of each ASCENS case-study field, i.e., cloud computing,
e-mobility and swarm robotics, and show how various ASCENS languages and tools, such as SOTA,
MESSI, (j)DEECo, SCEL, jRESP, Helena and Iliad can be applied in practice.

Although verification and validation issues are part of the EDLC, they are only sketched in this
deliverable. The reader is referred for these aspects of the ensembles development life cycle to deliv-
erable JD3.1.

ASCENS 2

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

Contents

1 Introduction 5

2 Ensemble Development Life Cycle 6
2.1 Designing Self-Aware Systems . 7

2.1.1 Requirements Engineering . 7
2.1.2 Modeling and Programming . 9
2.1.3 Verification and Validation . 10

2.2 Running Self-Aware Systems . 11
2.2.1 Monitoring . 11
2.2.2 Awareness . 11
2.2.3 Self-adaptation . 12

2.3 Transitions between Design and Runtime Cycles 13
2.3.1 Deployment . 13
2.3.2 Feedback . 13

3 EDLC in the Context of the ASCENS Case Studies 15
3.1 Cloud Computing . 15

3.1.1 Requirements Engineering with SOTA . 16
3.1.2 Adaptation Patterns applied to Science Cloud 18
3.1.3 Ensembles Level Modeling with Helena . 20
3.1.4 Modeling the high-load Scenario with SCEL and SACPL 21
3.1.5 A Cooperative Approach for Distributed Task Execution in Autonomic Clouds 23
3.1.6 Mobile Cloud Computing with DEECo . 24

3.2 e-Mobility . 25
3.2.1 Applying EDLC to e-Mobility – Big Picture 25
3.2.2 Requirements Engineering with SOTA . 26
3.2.3 From SOTA to High-Level Design with Adaptation Patterns 26
3.2.4 High-Level Design – Architecture . 27
3.2.5 Modeling Computational Activities with SCEL 28
3.2.6 Adaptation via Soft-Constraints Solving and Optimization 29
3.2.7 Implementation and Deployment . 31
3.2.8 Evaluation . 32

3.3 Swarm Robotics . 33
3.3.1 Requirement Analyses . 34
3.3.2 Modeling and validation with MESSI . 35
3.3.3 SCEL Modeling and jRESP Programming 37
3.3.4 Awareness Mechanisms . 39
3.3.5 Deployment . 40

4 Conclusions 43

ASCENS 3

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

ASCENS 4

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

1 Introduction

The main aim of the ASCENS project is to tackle engineering issues, such as designing, analyzing and
control massively distributed and highly dynamic autonomic systems. One of the main challenges for
software engineers is then to find reliable methods and tools to build the complex software required
by these systems. We propose an engineering approach based on service components and ensembles
which implement self-* features.

In this deliverable we present the Ensemble Development Life Cycle (EDLC) that covers the full
design and runtime aspects of autonomic systems. It is a conceptual framework that defines a set
of phases and their interplay mainly based on feedback loops as shown in Figure 1. The life cycle
comprises a “double-wheel” and two “arrows” between the wheels providing three different feedback
loops: (1) at design time, (2) at runtime and (3) between the two of them.

Feedback loop at design time (1) enables continuous improvement of models and code due to
changing requirements and results of verification or validation. The control feedback loop at runtime
(2) implements self-adaptation based on awareness about the system and its environment. Finally,
the feedback loop between runtime and design time “wheels” (3) provides the mechanisms to change
architectural models and code on the basis of the runtime behaviour of the continuous evolving system.

Design issues of the EDLC are grouped in requirements, modeling, programming, verification and
validation phases. They comprise activities performed offline. EDLC runtime focus on monitoring,
awareness and self-adaptation of ensemble-based software systems and are performed online.

Design Runtime

Deployment Deployment

Feedback

Figure 1: Ensembles Development Life Cycle (EDLC)

We illustrate the EDLC using methods and tools, mostly developed within the ASCENS project.
Examples are SOTA for requirements engineering of awareness and adaptive issues, SCEL, Helena
and SACPL for modeling different aspects of autonomic systems and at different levels of abstractions,
SPL for monitoring, Iliad as awareness-engine, soft-constraints for adaptation, jDEECo and jRESP as
runtime frameworks. These methods and tools are specifically designed to capture the self-* features
of autonomic systems.

Structure of the deliverable. Section 2 provides an overview of the EDLC. Section 3 presents the
example scenarios of the three case studies covering offline, online and transitions between them.
Section 4 concludes and sketches our future plans in the context of EDLC.

ASCENS 5

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

2 Ensemble Development Life Cycle

The development of ensemble-based systems goes beyond addressing the classical phases of the soft-
ware development life cycle like requirements elicitation, implementation and deployment. Engineer-
ing autonomic systems has to tackle aspects like self-awareness and self-adaptation. Such properties
have to be considered from the beginning of the development process, i.e. during elicitation of the re-
quirements. We need to capture how the system should be adapted and how the system or environment
should be observed in order to make adaptation possible.

Models are usually built on top of the elicited requirements, mainly in following an iterative pro-
cess, in which also validation and verification in early phases of the development are highly recom-
mended, in order to mitigate the impact of design errors. In the literature we find several approaches
for possible architectures or reference models for adaptive and autonomic systems. A well known
approach is the MAPE-K architecture introduced by IBM [Cor05] which comprises a control loop of
four phases Monitor, Analyse, Plan, Execute. MAPE-K – in contrast to our approach – focus only on
the adaptation process at runtime and does not consider the interplay of design and runtime phases.
The second research roadmap for self-adaptive systems [dLea11] also suggests a life cycle based on
MAPE-K and proposes the use of a process modeling language to describe the self-adaptation work-
flow and feedback control loops.

The approach of Inverardi and Mori [IM10] shows foreseen and unforeseen context changes which
are represented following a feature analysis perspective. Their life cycle is also based on MAPE-K,
focusing therefore on the runtime aspects. A slightly different life cycle is presented in the work of
Brun et al. [BMSG+09] which explores feedback loops from the control engineering perspective;
feedback loops are first-class entities and comprise the activities collect, analyse, decide and act.

Bruni et al. [BCG+12a] presented a control data based conceptual framework for adaptivity. In
contrast to our pragmatic approach supporting the use of methods and tools in the development life
cycle, they provide a simple formal model for the framework based on a labelled transition system
(LTS). In addition, they provide an analysis of adaptivity in different computational paradigms, such
as context-oriented and declarative programming from the control data point of view.

Šerbedžija and Fairclough [SF09] proposes a process of adaptation that is achieved by creating a
biocybernetic loop that may operate on several, simultaneous timescales (minutes/hours/weeks/month-
s/years). In terms of architecture, they argued that a sense-analyse-react system requires middleware
with closed-loop control consisting of: (1) a tangible layer concerned with sensors and actuators, (2) a
reflective layer containing a flexible representation of the user to guide system adaptation, and (3) an
application layer representing application scenarios and the context for adaptation and evolution.

Our aim is to focus on these distinguishing characteristics of autonomic systems along the whole
development cycle. A relevant issue is then the use of modeling and implementation techniques for
adaptive and awareness features. We propose a “double-wheel” life cycle for autonomic systems to
sketch the main aspects of the engineering process as shown in Figure 1. The “first wheel” represents
the design or offline phases and the second one represents the runtime or online phases. Both wheels
are connected by the transitions deployment and feedback.

The offline phases comprise requirements engineering, modeling and programming and verifica-
tion and validation. We emphasize the relevance of mathematical approaches to validate and verify
the properties of the autonomic system and enable the prediction of the behaviour of such complex
systems. This closes the cycle providing feedback for checking the requirements identified so far or
improving the model or code.

The online phases comprise monitoring, awareness and self-adaptation. They consist of observing
the system and the environment, reasoning on such observations and using the results of the analysis
for adapting the system and providing feedback for offline activities.

ASCENS 6

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

Transitions between online and offline activities can be performed as often as needed throughout
the system’s evolution, and data acquired during monitoring at runtime are fed back to the design cycle
to provide information to be used for system redesign, verification and redeployment.

The process defined by this life cycle can be refined providing details on the involved stakeholders,
the actions they perform as well as needed input and the output they produce. A process modeling lan-
guages can be used to specify the details. We can use therefore either general workflow-oriented mod-
eling languages such as UML activity diagrams1 or BPMN2, or Domain Specific Languages (DSL)
such as the OMG standard Software and Systems Process Engineering Metamodel (SPEM)3 or the
Multi-View Process Modeling Language (MV-PML) developed by NASA [BLRV95]. However, de-
scribing the refinement and modeling process in detail goes beyond the scope of this overview paper.

Within the ASCENS project several languages, methods and tools have been developed or previ-
ously existing ones have been extended to address engineering of ensembles. The development of a
particular autonomic system will imply the selection of the most appropriate languages, methods and
tools, i.e. an instantiation of the life cycle.

2.1 Designing Self-Aware Systems

The “first wheel” representing the design or offline phases comprise requirements engineering, mod-
eling and programming and verification and validation. In ASCENS we propose a goal-oriented
requirements engineering approach for the identification and modeling of functional and adaptive re-
quirements of autonomous systems. The approach is called SOTA, which stands for “state of the
affairs”. The self-* properties identified in SOTA are then modeled as cooperating components in the
SCEL language providing a seamless transition to implementation in jRESP for example. ASCENS
focus also on the mathematical approaches to validate and verify the properties of the autonomic sys-
tem. Formal methods are used as well to predict the behaviour of such complex systems. This closes
the design cycle providing feedback for checking the requirements identified so far or improving the
model or code.

2.1.1 Requirements Engineering

Traditionally, software engineering divides requirements in two categories: functional requirements
(what the system should do) and non-functional requirements (performance, quality of service, etc.).
In the areas of adaptive and open-ended systems, both functional and non-functional requirements are
better expressed in terms of “goals” [MCY99]. A goal, in most general terms, represent a desirable
state of the affairs that an entity, that is a software component or software system, aims to achieve.

In ASCENS we propose SOTA for capturing and specifying the requirements of autonomic sys-
tems. SOTA is an extension of existing goal-oriented requirements engineering approaches that in-
tegrates elements of dynamical systems modeling to account for the general needs of dynamic self-
adaptive systems and components.

SOTA models the entities of a self-adaptive system as n-dimensional space S, with each dimension
representing a specific aspect of the current situation of the entity/ensemble and of its operational
environment. As an entity executes, its position in S changes either due to its specific actions of or
because of the dynamics of environment. Thus, we can generally see this evolution of the system as a
movement in S.

1UML website: http://www.uml.org/
2BPMN website: http://www.omg.org/spec/BPMN/2.0/
3SPEM website: http://www.omg.org/spec/SPEM/2.0/

ASCENS 7

http://www.uml.org/
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/SPEM/2.0/

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

In this context, a goal in SOTA can be expressed in terms of a specific state of the affairs to aim
for, that is, a specific point or a specific area in S which the entity or the system as a whole should try
to reach, despite the fact that external contingencies can move the trajectory farther from the goal.

Along this lines, the activity of requirements engineering for self-adaptive systems in SOTA im-
plies: (i) identifying the dimensions of the SOTA space, which means modeling the relevant infor-
mation that a system/entity has to collect to become aware of its location in such space, a necessary
condition to recognize whether it is correctly behaving and adapt its actions whenever necessary; (ii)
identifying the set of goals for each entity and for the system as a whole, which also implies identi-
fying when specific goals gets activated and any possible constraint on the trajectory to be followed
while trying to achieve such goals.

The SOTA modeling approach is very useful to understand and model the functional and adap-
tation requirements, and to check the correctness of such specifications (as described in [AZ12]).
However, when a designer considers the actual design of the system, SOTA can help identifying it is
important to identify which architectural schemes need to be chosen for the individual components
and the ensembles.

To this end, in previous work [CPZ11], we defined a taxonomy of architectural patterns for adap-
tive components and ensemble of components. At the center of our taxonomy is the idea that self-
adaptivity requires the presence of a feedback loop or control loop. A feedback loop is the part of the
system that allows for monitoring, recognizing the need for adaptation, and putting adaptation actions
in place.

However, when it comes to choosing among a variety of possible architectural schemes that can be
defied for feedback loops [CPZ11] it becomes clear that the specific characteristics of goals identified
in the requirements engineering phase directly guides the choice of specific feedback loop patterns. In
particular, the choice of a specific pattern depends on whether (and to which extent) the components
of the system have component-specific goals with different characteristics, or whether they share the
same ensemble-level goals. That is, the modeling of SOTA goals directly drives the adoption of
specific architectural patterns, thus making SOTA a very useful tool for designers.

Concerning our work on knowledge representation, one of the biggest issues was finding the right
level of abstraction and data relevance for the knowledge models specified with KnowLang. Past expe-
rience demonstrated that our knowledge models carried unnecessary details and often irrelevant data.
To meet this challenge, we used the Autonomy Requirements Engineering (ARE) [VH13] approach 4.
that intents to help engineers tackle the integration and promotion of autonomy in software-intensive
systems. ARE combines generic autonomy requirements (GAR) with goal-oriented requirements en-
gineering (GORE).

The ARE approach starts with the creation of a goals model that represents system objectives and
their interrelationships. For this, we use GORE where ARE goals are generally modeled with intrinsic
features such as type, actor, and target, with links to other goals and constraints in the requirements
model. The next step is to work on each one of the system goals along with the elicited environmental
constraints to come up with the self-* objectives providing the autonomy requirements for this partic-
ular system’s behavior. In this phase, we apply our GAR model to a system goal to derive autonomy
requirements in the form of goal’s supportive and alternative self-* objectives along with the necessary
capabilities and quality characteristics.

ARE relies on KnowLang [VHM+12] for the formal specification of the elicited autonomy re-
quirements. Therefore, we use KnowLang to record these requirements as knowledge representation
in a Knowledge Base comprising a variety of knowledge structures, e.g., ontologies, facts, rules, and
constraints. The self-* objectives are specified with special policies associated with goals, special

4ARE was developed in a joint project by Lero, the Irish Software Engineering Research Center and ESA (European
Space Agency)

ASCENS 8

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

situations, actions (eventually identified as system capabilities), metrics, etc.
ARE helped us build a knowledge representation model for the Science Cloud case study [VHBM13],

which is at the right level of abstraction and relevance, i.e., carrying all the necessary details to repre-
sent the knowledge required to process self-adaptive behavior based on awareness capabilities.

2.1.2 Modeling and Programming

To deal with adaptation and move toward the actual implementation of the self-* properties identified
in the previous section, the SCEL language [DLPT13], [DFLP11a] has been designed. It brings to-
gether programming abstractions to directly address aggregations (how different components interact
to form ensembles and systems), behaviors (how components progress) and knowledge manipula-
tion according to specific policies. SCEL specifications consist of cooperating components which, as
shown in Figure 2 below, are equipped with an interface, a knowledge repository, a set of policies, and
a process.

Figure 2: A SCEL component.

Behaviors describe how computations progress and are modeled as agents executing actions. In-
teraction is obtained by allowing components to access knowledge of components. (Self-)Adaptation
is enabled by knowledge acquisition and is implemented through process manipulation. In this way,
components can self-configure to adapt dynamically to changes in the environment, or initiate self-
healing actions to deal with system malfunctions, or install self-optimizing behaviors.

Knowledge repositories provide the high-level primitives to manage pieces of information coming
from different sources. Knowledge is represented through items containing either application data or
awareness data with the latter providing information about the external environment (e.g. monitored
sensor data) or about component status (e.g. its current location). This enables context- and self-
awareness.

Interfaces are used to make available to other components selected parts of the knowledge of each
component. An interface characterizes the component itself and can be queried to extract information
about, e.g., the status, the offered services, or the execution environment. It can be seen as providing
a set of attributes, i.e. names, acting as references to information stored in its knowledge repository.

Policies control and adapt the actions of the different components for guaranteeing accomplish-
ment of specific tasks or satisfaction of specific properties. They regulate the interaction between the
internal parts of a component (interaction policy) and with other components (authorization predi-
cate).

Aggregations describe how different entities are brought together to form components and to con-
struct the software architecture of ensembles. Components’ composition and interaction are imple-
mented by exploiting the attributes exposed in the interfaces. This form of semantics-based aggre-
gation permits defining highly dynamical ensembles, that can be structured to dynamically adapt to
changes in the environment or to evolving goals.

The language is equipped with an operational semantics that permits verification of formal prop-
erties of systems. Moreover SCEL program can rely on separate reasoning components that can be

ASCENS 9

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

invoked when decisions have to be taken. The reasoner is provided with information about the relevant
knowledge SCEL program have have access to the programs receive in exchange informed suggestions
about how to proceed.

To move toward implementation, jRESP5, a JAVA runtime environment has been developed that
provides an API that permits using in JAVA programs the SCEL’s linguistic constructs for control-
ling the computation and interaction of autonomic components, and for defining the architecture of
systems and ensembles. Its main objective is to be a faithful implementation of the SCEL program-
ming abstractions, suitable for rapid prototyping and experimentation with the SCEL paradigm. The
large use of design patterns greatly simplifies the integration of new features. These technologies
simplify the interactions between heterogeneous network components and provide the basis on which
different runtimes for SCEL programs can cooperate. It is worth noticing that the implementation of
jRESP fully relies on the SCEL’s formal semantics. This close correspondence enhances confidence
on the behaviour of the jRESP implementation of SCEL programs, once the latter have been analysed
through formal methods made possible by the formal operational semantics.

2.1.3 Verification and Validation

When dealing with complex autonomic systems one needs to face the problem of the development
and of the validation of the models used for planning and for execution control. Indeed, while it
is important for a large class of autonomic systems to integrate sensing and acting functionalities,
controlled by deliberation mechanism (e.g. planning and execution control), the actual integration
very often follows simple rules of thumb, which do not rely on any clear verification and validation
approach.

Nevertheless, the autonomy requirement of these systems keeps rising, and they need a more flexi-
ble approach to handle the used resources. These systems are deployed for increasingly complex tasks;
and it becomes more and more important to prove that they are safe, dependable, and correct. This
is particularly true for rovers used in expensive and distant missions, such as Mars rovers [BdSIY13],
that need to avoid equipment damage and minimize resource usage, but also for robots that have to
interact regularly and in close contact with humans or other robots. Consequently, we think that it
is becoming very common to require software integrators and developers to provide guarantees and
formal proofs as certification.

Formal verification is an attractive alternative to traditional methods of testing and simulation that
can be used to provide correctness guarantees. By formal verification we mean not just the traditional
notion of program verification, where the correctness of code is at question. We more broadly mean
design verification, where an abstract model of a system is checked for desired behavioural properties.
Finding a bug in a design is more cost-effective than finding the manifestation of the design flow in
the code. The ASCENS approach relies on the integration of two state-of-the-art technologies for
verification and validation, namely D-Finder [BBNS09, BGL+11] and SBIP [BBD+12]. They are
both based on BIP, a formal framework for building heterogeneous and complex component-based
systems [BBS06]. Notably, thanks to the formal operational semantics of the SCEL language outlined
in the previous section, BIP models can be obtained from static SCEL descriptions (i.e. involving only
bounded creation/deletion of components and processes) by exploring a set of transformations rules.

For further details about the application of verification and validation techniques and correspond-
ing tools the reader is referred to the ASCENS Joint Deliverable JD3.1. [Be13].

5jRESP website: http://code.google.com/p/jresp/

ASCENS 10

http://code.google.com/p/jresp/

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

2.2 Running Self-Aware Systems

The “second wheel” representing the runtime or online phases comprise monitoring, awareness and
self-adaptation. The focus of these phases are the observation of the system and the environment,
reasoning on such observations and using the results of the analysis for adapting the system, that
continuous being monitored. In addition, feedback is provided for offline activities, that will result in
an evolving system through adaptation of the requirements, models or code.

2.2.1 Monitoring

Monitoring is the activity and the mechanism used at runtime to collect data for the purpose of aware-
ness. Both individual components of an ensemble and the environment where they operate are moni-
tored.

In the double-wheel life cycle, monitoring has a dual role. The usual primary objective is to
provide information about the current state of the components and the environment to the awareness
mechanism, which incorporates this information into the decision making process. Coupled with this
is the second objective, to provide developer feedback about the behavior of the awareness mechanism,
and check whether it is executing within the intended parameter domain.

One of the technical challenges to be faced is dynamic coverage configuration, where the aware-
ness mechanism may require different information at different points. Monitoring should accommo-
date requests for information dynamically, rather than relying only on a statically configured descrip-
tion of what has to be monitored. It is also important to provide monitoring cost awareness, to make
it possible to reason on the trade off between the cost of monitoring and the benefit of awareness, and
high monitoring coverage, to accommodate the requirements of the awareness mechanism.

To support easy access to monitoring information in ASCENS, we have developed SPL [BBK+12],
a formalism that makes it possible to express conditions on performance related observations in a
compact manner. To collect the monitoring information from executing components, we use dynamic
instrumentation in DiSL [MVZ+12]. In [BBH+12], we explain how the two technologies interact in
the context of a performance aware component system.

2.2.2 Awareness

Awareness comprises the knowledge of the system and its environment as well as the reasoning mech-
anisms that an ensemble can employ at runtime. We divide the notion of awareness along three main
dimensions: expressivity (Which parts of the system and environment are represented by the aware-
ness mechanism and how detailed is this representation?), quality (How well do the conclusions of the
awareness mechanism correspond to reality?) and interface (How is the awareness mechanism con-
nected to the rest of the system?). We further classify expressivity as scope and depth which are closely
connected to the SOTA (or GEM) models [HW11]: the scope represents the dimensions of the SOTA
model that are contained in the awareness model whereas the depth corresponds to meta-information
about the SOTA model contained in the awareness mechanism. For example, if one dimension of the
SOTA model describes the location of a robot and this data is contained in the awareness model of
the robot, the location is part of the model’s scope. For physical robots this data has the property that
it can only change continuously. This kind of knowledge is typically not part of the SOTA model;
if it is explicitly represented in the awareness mechanism (e.g., in the form of logical axioms), it is
comprised in the depth of the awareness model. More details can be found in [HW14].

To enable some kinds of problem solving and adaptation in complex domains, deep awareness
mechanisms may be required, i.e., awareness mechanisms that contain meta-knowledge about the do-
main they describe. Deep models and reasoners can not only answer questions about the immediately

ASCENS 11

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

observable state of the system; since they also model underlying principles such as causality or phys-
ical properties they may, e.g., infer consequences of actions or diagnose likely causes of unexpected
events.

However, an expressive awareness mechanism is not sufficient to successfully operate in open-
ended environments: Designers usually cannot provide a complete specification of the conditions
encountered by an autonomic system at runtime and all contingencies that may arise. To perform well
in partially unknown environments and to allow flexible reactions in unforeseen situations, the aware-
ness mechanism will have to adapt its internal models to the circumstances encountered at runtime.
Therefore the awareness mechanism may often need to combine declarative reasoning with machine
learning techniques to maintain the required quality of awareness during the system’s lifetime.

The POEM language [Höl13] enables developers to specify deep logical and stochastic domain
models that describe the expected behavior of the system’s environment. System behaviors are spec-
ified as partial programs (also called, somewhat ambiguously, strategies), i.e., programs in which
certain operations are left as non-deterministic choices for the run-time system. A strategy for resolv-
ing non-determinism is called a completion. Various techniques can be used to build completions: If
precise models of the environment are available for certain situations, completions may be inferred
logically or stochastically, and planning techniques can be used to find a long-term strategy. In cases
where models cannot be provided, reinforcement learning techniques can instead be applied, and the
ensemble can behave in a more reactive manner. POEM is based on the same mathematical foun-
dations as KnowLang, therefore models developed using the Autonomy Requirements Engineering
(ARE) approach (see Sect. 2.1.1) that do not make use of the advanced features of KnowLang can
straightforwardly be translated into POEM.

The Iliad6 implementation of POEM includes various built-in reasoners for computing completions
of partial programs which can be coordinated using a blackboard system: (i) a theorem prover provides
facilities for full first-order inference and also integrates special-purpose reasoners for, e.g., temporal
and spatial reasoning; (ii) an ontology reasoner provides specialized reasoning about relationships be-
tween ontological concepts (iii) a HTN planner [NGT04] can compute long-term strategies if enough
information about the ensemble’s operating conditions is available; (iv) a hierarchical reinforcement
learning subsystem can learn completions based on either a model of the system’s environment or
purely based on information gathered at run-time without explicit knowledge about the environment.
The built-in blackboard greatly simplifies the integration of special-purpose reasoners, either at design
time or even at run time.

Iliad is integrated as knowledge repository and reasoner in jRESP and can therefore be used as
awareness engine for SCEL programs. We have also developed Hexameter7, a portable implementa-
tion of the SCEL tuple-space primitives that can be used to directly connect Iliad to programs written
in C/C++, e.g., the ARGoS swarm robotics simulator. Iliad can be used to build awareness mecha-
nisms using a range of sophisticated reasoning and learning mechanisms. Models developed using the
ARE approach can be executed using Iliad after they have been translated into POEM; once the full
KnowLang reasoner becomes available it will be possible to use ARE models directly as awareness
mechanisms.

2.2.3 Self-adaptation

Once components and ensembles have reached the awareness that there exist malfunctions, contin-
gencies, or simply performance issues that require adaptation, some form of decision making should
take place to evaluate the possibility for an adaptation action, and then such adaptation action must be

6https://github.com/hoelzl/Iliad/
7https://github.com/hoelzl/Hexameter/

ASCENS 12

https://github.com/hoelzl/Iliad/
https://github.com/hoelzl/Hexameter/

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

eventually executed.
In ASCENS we distinguish between two main classes of adaptation actions:

• Re-configuration, aka weak self-adaptation, which implies modifying some of the control pa-
rameters of a component/ensemble, and possibly adding new functions/behaviors or modifying
some of the existing ones.

• Self-expression, aka strong self-adaptation, which implies modifying the very structure of the
component or ensemble, and in particular modifying the architecture by which adaptive feed-
back loops are organized around the component or ensemble.

From a different perspective, consider a component or an ensemble architected accordingly to one
of the self-adapting patterns selected after the SOTA requirements modeling phase. Then, an action
of re-configuration simply implies the specific autonomic feedback loop(s) (better, the autonomic
managing components within) involved in such patterns to affect the parameters and behavior of the
controlled components or ensembles, yet without affecting its own specific goals and structure. On
the other hand, an action of self-expression implies that the autonomic managing components of a
feedback loops recognize that its own very structure is no longer adequate to support the changed
conditions, and re-shape itself into a new architectural pattern.

Now, given a component or an ensemble architected according to one of the self-adapting patterns
via a SOTA model, re-configuration concerns the change of parameters without changing the structure
of the feedback loops. Self-expression, in contrast, modifies the structure of the feedback loops them-
selves. To the best of our knowledge, ASCENS is the first approach in which both weak and strong
forms of self-adaptation are put at work in a unique coherent framework.

2.3 Transitions between Design and Runtime Cycles

The two cycles of EDLC are complemented by transitions from design cycle to runtime cycle and
vice versa. These transitions thus correspond to deployment and feedback activities. Further, together
with the design and runtime cycles form an overall development cycle, providing the mechanisms to
change architectural models and code on the basis of the runtime behaviour of the continuous evolving
system. This way long term system evolution is encompassed, in which monitoring data observed at
runtime are fed back to design cycle to provided basis for system redesign and redeployment.

2.3.1 Deployment

The deployment transition serves for preparing a service component application for runtime phase.
This involves installing, configuring and launching the application. The deployment may also involve
executable code generation and compilation/linking. In ASCENS, the deployment is addressed by
service-component runtime frameworks (such as jDEECo [BGH+13a] and jRESP). These frameworks
allow for distributed execution of a service component application and provide their specific means of
deployment.

2.3.2 Feedback

The feedback transition takes data collected by monitoring a running application back to the design
phase to be analyzed and used for improving corresponding components. It connects the runtime
monitoring with design. This connection is made possible by employing design methods that keep the
traceability of design decisions to code artifacts and knowledge – e.g. Invariant Refinement Method

ASCENS 13

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

(IRM) [KBP+13a], which has been specifically developed for hierarchical design of a service com-
ponent application). When used in conjunction with IRM, monitoring (a) observes the real functional
and non-functional properties of components and situation in components environment, and (b) pro-
vides observed data to the design. At design time these observed data are compared to assumptions
and conclusions captured by IRM. If a contradiction is detected, IRM is used to guide a developer to
a component or ensemble which has to be adjusted or extended, e.g. to account for an unexpected
situation encountered at runtime.

ASCENS 14

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

3 EDLC in the Context of the ASCENS Case Studies

Applying the Ensemble Development Life Cycle (EDLC) process, as defined in the previous section,
in practice is the ultimate goal of the ASCENS approach. Most of the methods, techniques and tools
were developed with a straight-forward practical deployment in mind. In the previous project years,
separate approaches where individually tested on the project case studies. For example, some of the
major concepts developed within the project, like the SOTA and SCEL approaches, have been con-
stantly fine-tuned, taking into account the feedback from the pragmatic case studies deployment. Such
a strategy made ASCENS case studies both, a source of inspiration for theoretical work and a play-
ground for testing and improving the concepts. Finally as the concepts grew mature, the ASCENS
case studies are playing a role of practical justification of the project theoretical and methodological
work. The final result is a set of generic tools that can be applied in a wide application domain, rang-
ing from robotics, cloud computing to e-mobility. The decisive outcome is to have runnig applications
that exhibit advantages (e.g. self-awareness, knowledge richness, highly dynamic configuration, au-
tonomous behavior) that can hardly be achieved with state-of-the-art technology. Last but not least it
is possible to reason, validate and verify these features using ASCENS tools.

In this section the ensemble development life cycle (EDLC) is further detailed and exemplified on
three ASCENS case studies: science cloud, e-mobility and swarm robotics. EDLC applied to each of
the case study is presented through requirements analyses, modeling, programming and deployment.
Both initial and run-time phases are taken into account. Only verification is left out of this report and
is thoroughly reported in JD3.1.

Three completely different case studies from diverse application domains were used to test the
ASCENS high-level tools. Applying the abstraction as the prime software engineering principle, a
number of generic common features that characterize each application are extracted (e.g. existence
of high number of individual entities with individual goals; existence of numerous collective goals
that require dynamic grouping, need for knowledge, awareness and collective autonomous behavior,
adaptation, robustness, etc). These features are used in requirement analyses to form knowledge bases
and to build awareness and self* features of the system elements. For requirement analyses the SOTA
methodology is applied to each of the case studies. In the swarm robotics scenario, a further prototyp-
ing tool (MESSI) was used to interface the SOTA approach and SCEL and jRESP approaches. The
modeling phase uses the SCEL language to model and express dynamism in individual vs. collective
behavior. Programming and deployment is done using jRESP and DEECo frameworks that practi-
cally map SCEL process algebra to Java programming language. Further ensemble modeling tool like
HELENA is used within science cloud, whereas Argos is used as simulation framework for swarm
robotics. The monitoring, Awareness and Self-Adaptation phases of the run time cycle are supported
by custom tools close to the run-time framework (still under development). One example of a tool to
reason about system awareness is the Iliad system, a Poem-based framework that allows monitoring of
knowledge objects within running system. With the help of Iliad, a SOTA based adaptation specified
with its goals and utilities, modeled in SCEL and implemented in jRESP, can be examined at run-time.

3.1 Cloud Computing

The cloud computing case study discussed in ASCENS centers on an autonomic cloud computing
platform; or, in other words, a distributed software system which is able to execute applications in
the presence of certain difficulties such as leaving and joining nodes, fluctuating load, and different
requirements of applications to be satisfied.

The Cloud Computing case study centers on a platform as a service (PaaS) cloud solution which
we call the Science Cloud Platform (SCP). This platform combines a standard PaaS cloud computing

ASCENS 15

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

infrastructure with peer-to-peer and voluntary computing, respectively; the full description of the cloud
computing case study of ASCENS can be found in deliverable D7.3 [Ser13].

Such an infrastructure requires autonomic nodes which are (self-)aware of changes in load (either
from cloud applications or from applications external to the cloud) and of the network structure (i.e.
nodes coming and going) which requires self-healing properties (network resilience). Another issue
is data redundancy in case nodes drop out of the system, which requires preparatory actions. Finally,
executing applications in such an environment requires a fail-over solution, i.e. self-adaptation of the
cloud to provide what we may call application execution resilience. It is not necessary in this context
to prevent participation of partially centrally-controlled entities such as IaaS providers. In fact, parts
of the SCP may run on IaaS solutions which enables it to spawn new virtual machines or shut them
down again. Such additional functionality can be used to balance load or to conserve energy.

To sum up in one sentence, the goal of the SCP is to deploy and run user-defined applications on
the p2p-connected web of voluntarily provided machines which form the cloud.

In the following, we introduce various ASCENS methods that have been applied to the cloud
computing case study. We start with sections on requirements, modeling and programming: First,
we discuss requirement analysis in section 3.1.1 followed by awareness patterns in section 3.1.2.
We then continue with modeling in Helena in section 3.1.3, and finally programming in SCEL and
SACPL in section 3.1.4. Afterwards, we discuss runtime concerns: First, in section 3.1.5, we discuss
a collaborative approach for distributed task execution; finally, an excursion into the area of mobile
cloud computing is presented in section 3.1.6.

3.1.1 Requirements Engineering with SOTA

The precise analysis of requirements is an important aspect in the early phase of system engineering
[ST09]. Depending on the system under consideration, the domain must be mapped out in different
ways. In open-ended and adaptive systems, a goal-oriented approach to requirements engineering, i.e.
where requirements are modeled in terms of goals [MCY99], is the most beneficial.

Within ASCENS, the SOTA (State Of The Affairs) approach [AZ12] captures this way of think-
ing about a system, and goes one step further from simple goal-oriented systems in that it considers
dynamic systems modeling with a particular focus on systems with self-* (self-star) properties, in par-
ticular self-adaptation. Within a system, this applies both on a local level (i.e., the component level)
and more global levels (i.e., the ensemble level).

The SOTA approach proves useful to understand and model functional and non-functional require-
ments, expressing them into system specifications whose correctness can be checked. A complete def-
inition of the requirements of a system-to-be implies identifying the dimensions of the SOTA space,
and in particular defining the set of goals (with pre- and post-conditions, and possibly associated
goal-specific utilities) and the global utilities for such systems, that is, the sets:

G = {G1, G2, . . . , Gn}

where
Gi = {Gpre

i , Gpost
i , Ui}

U = {U1, U2, . . . , Un}

The SOTA specification expressed in terms of Goals and Utilities enables the designer to choose the
most appropriate pattern from a catalogue ([Puv12]), so as to describe the system under study at best.

Depending on the type of utilities and/or goals in the specification of the scenario, a pattern is
more suitable than another, as thoroughly discussed in [PPC+13] and [PCZ13].

ASCENS 16

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

It is important to note that self-* systems should not be simply engineered to achieve a certain
state, but to strive to achieve a certain state. In SOTA, the entities of the systems (either simple ones or
collections of entities) are seen placed in an n-dimensional space S, where each of the n dimensions
represents one axis on which the entities are placed. The position of the entity may change either
based on its own actions or because the environment changes. Moving within S thus corresponds to
the evolution of the system.

The different dimensions in S within the cloud case study relate to the fitness of each node in itself,
and to keeping to the requirements of applications (SLAs) executed by ensembles. Thus, dimensions
for each component include

• CPU load, i.e. processor utilization on nodes (in an ensemble: of the cloud in general)

• Available main memory, i.e. utilization of the available RAM

• Executed applications, i.e. apps running on a certain node (in the cloud: and their proper distri-
bution)

• Energy consumption, i.e. the drain on local energy resources which depends on machine pa-
rameters

A reputation score can be added which negotiates between energy usage and application execution.
Application dimensions (given their SLAs are fulfilled) are

• Response time (of an application given a user request)

• Redundancy of data (how many copies are available)

• Cost of execution (for example in terms of energy, or of actual renting cost)

As basic entities, the cloud case study contains nodes (service components) and collections of
nodes which aim to keep one application running (service component ensembles). We must also
identify the goals and utilities for these entities.

For a node, basic goals are:

• not to degrade in speed (i.e., keeping the local CPU load on an acceptable level)

• as well as not exceeding its main memory

• but, on the other hand, keeping energy consumption in check.

How to deal with the trade-off between application execution and energy consumption is an inter-
esting question which can be solved in different ways, for example by using reputation scores. On the
ensemble level, key goals are:

• keeping applications running, that is always having one or more nodes available which execute
an application

• keeping enough backups of both application code and data to survive contingency situations

• fulfilling application requirements, or SLAs.

ASCENS 17

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

Finally, utilities can constrain how a goal is achieved, that is by confining its execution path or
trajectory. A utility related to load might restrict, for example, a load above 90%, which means that
components need to avoid the area with these values in the state space S. On an ensemble level, we
may express the wish to avoid idling machines, that is if all applications are executing in a stable way
to shut down single nodes, which can be expressed by a utility which codifies the maximum percentage
of idle nodes.

Balancing the load in a node can be defined as follows:

Gnodei = { Gpre = 25% < load of work < 75%;
Gpost = load of work > 50%;
U = energy level > 0

}

The main benefit of using SOTA is understanding the functional and adaptation requirements
of the system. For design, we can move forward using adaptation patterns to identify the possible
architectures for the system, which is discussed in the next section.

3.1.2 Adaptation Patterns applied to Science Cloud

A common approach to understanding, categorizing, and designing IT systems is the use of patterns,
i.e. descriptions of characteristics which have proven to be beneficial for the implementation of a
system. Within ASCENS, a catalog of architectural design patterns has been developed [CPZ11]
which are intended to be used to build adaptive components and systems. In the life cycle, this work
is relevant on the border between requirements engineering and modeling.

The design patterns have been studied with regard to the cloud case study [PF13]. In this section,
we will discuss two patterns which have been used in the cloud.

Firstly, we need to discuss individual cloud nodes (which we call SCPis, for Science Cloud Plat-
form instances). In this regard, the Proactive Service Component pattern [PF13] best captures the
behavior of such a node. This pattern enables the SCPi, which is a Service Component (SC) in the
terms of ASCENS and the adaptation pattern itself, to have an internal feedback loop, or, in other
words, implicitly contain an Autonomic Manager (AM) which is responsible for driving the adapta-
tion through this feedback loop. These kinds of components are used because nodes in the cloud are
goal-oriented in nature and actively try to adapt their behavior, even without an external call (e.g. for
saving energy). A visualization of such a component is shown in Figure 3.

In the cloud, the sensor and effector are used as follows:

• Sensor: the sensor part of a cloud node uses OS-specific functions to determine the CPU load,
available memory, network utilization, and so on.

• Effector: If an IaaS system like the Zimory Cloud is available, a cloud node may use the API of
such a platform as its effector, creating new virtual machines or shutting them down.

Input and output refer to user interactions:

• Input/Output: Cloud nodes run applications, and as such they must handle user input (in the
form of web requests) to these applications, and sending the result of the request back to the
user. This interface is HTTP-based.

The control and emitter ports are used for ensemble adaptation (see below).

ASCENS 18

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

By using the proactive service component pattern, individual SCP nodes are self-aware and able
to self-adapt, each following the goal of achieving best performance for deployed apps while saving
energy. The internal feedback loop created through the AM part of the node is used for checking these
conditions and adapting properly.

Data from the operating
system (load, memory, …)

Using IaaS systems to
create or shutdown virtual

machines

Initiating request for bids
for execution; monitoring

executing nodes

Application execution
requests; request for app

initiation

User requests for individual
executing applications

Answers for user requests
from applications

Cloud Node

Figure 3: Proactive Service Component

Furthermore, multiple nodes work together to execute applications. On this level, the P2P Negoti-
ation Service Components Ensemble Pattern [PF13] is a fitting description of this behavior, since each
node (potentially) communicates with every other node for adaptation, there is no central coordinator,
and each node follows a goal (which in this case is the same for each node, though with different data
depending on deployed apps). The use of this pattern is also possible because the components that
form the ensemble are proactive and need to communicate with others to propagate adaptation. This
is done, as indicated above, through the control and emitter interfaces of the service component:

• Emitter: service components in a deploy or initiator role (see also the modeling section) emit
requests for initiation and execution to other nodes. Furthermore, an executor lets other nodes
know via its emit port when it is no longer able to execute an application.

• Control Via the control interface, the above requests are received and acted upon.

Using this pattern, multiple SCP nodes work together: For each application, one ensemble con-
sisting of a subset of the overall cloud nodes is formed which is then responsible for executing the
application (which includes deployment, finding an executor, executing, and monitoring). We call
such an ensemble an SCPe (Science Cloud Platform ensemble).

Obviously, there are also other ways in which a cloud can be organized. In [PF13], the applicability
of the Centralized AM Service Components Ensemble Pattern was discussed as well. This pattern
proposes a completely different setup which does not use a peer-to-peer organization but instead uses a
centralized autonomic manager. Dynamically adapting the cloud to such a structure might be advisable

ASCENS 19

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

in the case of a partial blackout of the cloud, that is, a large percentage of the cloud goes down. If only
a few nodes remain, switching to a centralized mode in which one AM coordinates many individual
nodes (which give up their own adaptivity mechanisms for the time being) might prove to be more
effective. Nevertheless, this pattern can only be applied for the time that its context of applicability is
the same as in the observed case. When the context changes again, the pattern has to be changed as
well.

3.1.3 Ensembles Level Modeling with Helena

Modeling the behavior of the individual components and the ensembles which implement the cloud
functionality is challenging due to the complexity and dynamics of the participating ensembles. In
ASCENS, existing techniques such as component-based software engineering ([Szy02, RRMP08])
have thus been augmented with features that focus on the particular characteristics of ensembles.
Among these are the fact that ensembles are dynamically formed on demand, realizing collective, goal-
oriented behavior through communication between the individual participants; furthermore, multiple
ensembles may run concurrently using the same basic resources, but dealing with different tasks on
a higher level. To be able to model these issues on a first-class basis, the Helena approach [HK14]
has been developed, which uses a UML-like notation for collaborations founded on a rigorous formal
semantics. This work may be used in the modeling section of the EDLC.

A particular property of ensembles is the fact that although the platform on which ensembles run
may itself be plain component-based, each component can take part in different ensembles and in the
course of doing so take up different, ensemble-specific roles [GSR96]. A service component may
play different roles at the same time, both in one ensemble and in different, concurrently running
ensembles; it may also dynamically change its role(s) in order to adapt to new situations.

The Helena approach is centered on this notion of roles and the collaboration of roles in ensembles
for pursuing the ensemble goal. In the present case study, there may be multiple such ensembles; one
for each of the applications which are executed within the cloud. Each ensemble has the goal of
deploying the application, finding an execution target node, executing, and finally monitoring the
application execution. This is illustrated in Figure 4.

Figure 4: Ensembles in the Helena approach

The first or basic level (on the bottom of the figure) shows the pool of all SCPi nodes which are, in
principle, able to provide resources to the cloud. In the figure, these are the four nodes labeled i1 to i4,
which may be physical or virtual machines on which instances of the science cloud platform (SCPis)
are running. Each of these may participate in ensembles for executing an application. As indicated

ASCENS 20

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

in the figure, executing an application requires different responsibilities taken up by different roles
in the ensemble. These are the deployer (node from which the application originates), the initiator
(leading the search for an execution node), the actual executor, and a monitor which keeps tab on the
executor. As an example, the figure shows two different ensembles, each executing one application,
where nodes concurrently play different roles or do not participate at all.

Ongoing research in Helena currently focuses on the description of the behavior of each role
as well as on the behavior on the ensemble level. These descriptions are given a rigorous formal
foundation, which can then be exploited for ensuring that the ensemble behavior actually reaches the
desired goal. We believe that the analysis of ensembles of collaborating roles can be beneficial to
developers due to the reduction of the complexity of the models, since the combination of all roles
within one service component must only be integrated into a component-based architecture in the
following implementation phase. This is discussed in the next section, where a language is presented
to which a systematic transition from Helena is currently being investigated.

3.1.4 Modeling the high-load Scenario with SCEL and SACPL

ASCENS has been studying linguistic primitives suitable for the autonomic computing paradigm, and
has developed the language SCEL (Software Component Ensemble Language) [NFLP13, DLPT13]
which is geared towards describing autonomic systems, taking into consideration the behaviors, knowl-
edge, and aggregations involved, based on specified policies. SCEL in particular supports program-
ming context-awareness, self-awareness, adaptation and ensemble-wide interactions — and may be
used in the modeling/programming section of the EDLC.

In the following, we discuss the application of SCEL to the service components of the cloud case
study. The concept of a service component – or autonomic component – lies at the heart of SCEL.
This concept directly matches the notion of an SCPi, i.e. an individual node in the science cloud.
Furthermore, the notion of an ensemble in SCEL matches the notion of an SCPe, since both are based
on components’ attributes, which in the science cloud usually take the form of participation in the
management of a cloud application.

As an example, we consider here the SCEL implementation for a situation in the cloud where
a node is overloaded, i.e. the CPU load exceeds a certain threshold and an application needs to be
moved to a different node. This scenario includes the use of an IaaS solution, that is we include the
ability to spawn a new virtual machine and moving the application there.

The full SCEL specification for the scenario of high load and moving an element to a newly created
VM can be found in [DLPT13]. We will outline the general idea of the behavior here. The SCPi where
the application is running initially is the following SCEL component:

I[K,Π, (AM [ME])]

The interface I of the component encapsulates the remaining three elements. K represents the
knowledge of the SCPi, which includes attributes relevant for adaptation. Π is the policy the compo-
nent follows, which in this case is specified in SACPL, the SCEL Access Control Policy Language
[DLPT13], discussed below. AM [ME] is the (controlled) composition of processes AM and ME
running in the component.

As we have seen in the section on adaptation patterns, an SCPi follows the proactive service
component pattern. This means it contains, as in a SCEL component, internal knowledge and goals.
In the above definition, the main work of the node, including the application logic, is performed in the
Service Component (SC) which here is called Managed Element (ME). The component also contains
its own, implicit, Adaptation Manager (AM), which specifies actions for adaptation (in particular,
spawning a new machine). In the considered scenario, the managed element cyclically reads (by

ASCENS 21

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

means of action qry) a local datum, e.g. a key, elaborates (by means of function f (·)) it and sends (by
means of action put) the result to the component m:

ME , qry(“key”, ?x)@self.put(“key”, f(x))@m.ME

Instead, the adaptation manager just spawns a new machine (by means of action new):

AM , new(J ,K,ΠJ , AM [ME])

The actual adaptation logic (i.e., when to adapt) is dealt with using the policy Π. The component’s
interface I exposes the attribute CPULoad, whose value (i.e., a percentage of load) is a context infor-
mation sensed by the component from the underlying infrastructure. The policy Π detects when the
attribute value is over a given threshold (e.g., 80%) and triggers the autonomic manager. More specif-
ically, the policy says that the main application logic, which is part of ME, may only be performed as
long as CPULoad is less than the threshold, while the spawning of a new machine (realized by means
of an action new in AM) may not be performed until CPULoad is greater than the threshold.

In particular, the policy Π in force at the component results from the composition, by means of the
p-o (permit override) operator, of the following policies:

〈deny ; target:{ } 〉 * deny all *

〈permit ; target:{ equal(subject.id,n) and * permit local qry *
equal(object.id,n) and
equal(action,qry) and
less-or-equal-than(subject.CPUload,threshold) } 〉

〈permit ; target:{ equal(subject.id,n) and * permit remote put *
equal(object.id,m) and
equal(action,put) } 〉

〈permit ; target:{ equal(action,new) and * enable new *
greater-than(subject.CPUload,threshold) } 〉

Basically, Π says that

• action qry may only be performed until subject.CPUload is less than, or equal to, threshold;

• action put may always be performed, leaving the value of subject.CPUload out of consideration;

• action new may not be performed until subject.CPUload is not greater than threshold.;

• all other actions that differs from those above are denied.

The rationale underlying this policy is that a qry may be computationally heavy (because it requires
examination of the repository), while a put is a light operation (because it only requires addition of an
item to the repository). Of course, different choices are possible.

An interesting problem in this context is that Π, ME and AM in a dynamically created VM are
the same as those within the corresponding source node of the science cloud; however the application
logic which is part of ME may only be executed on one machine at a time (since we assume that
the application is a singleton). To ensure such behavior, multiple options have been explored with
different power of expression. First, it is possible to add a new attribute to the component which keeps
track of its execution status; AM is thus modified to properly set such an attribute. Second, the policy
Π can be extended to include obligations that are actions executed as part of a node switch to take care

ASCENS 22

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

H
it

+
 R

u
n

n
in

g
 r

a
te

 o
f

T
a

sk
s

Miss Rate Tolerance

1000 PNs
4000 PNs
7000 PNs

10000 PNs

Figure 5: Performance with varying degrees of cooperation.

of dealing with the execution status attribute (in place of AM). Finally, it is possible to use several
policies instead of a single one, and dynamically switch between policies on an adaptation by means of
a sort of automata where states are policies and state transitions represent adaptivity events (expressed
as policy targets). The details of these three options are discussed in [DLPT13].

To summarize, the above description has shown the use of SCEL and a policy language, SACPL,
to model a scenario within the science cloud where high load of a node leads to the spawning of a new
virtual machine with an additional SCPi which can take over the application logic. An implementation
of these abstract descriptions can be done in Java (as discussed in the following chapter) or more
directly in jRESP [DLPT13], which is currently work in progress.

3.1.5 A Cooperative Approach for Distributed Task Execution in Autonomic Clouds

In [ALLS13] we implemented a prototypical simulator inspired on the SCIENCE CLOUD, and have
performed a series of simulation-based experiments to validate cooperative approaches. We consid-
ered different degrees of cooperation among PNs. A selfish cloud node sends requests for remote task
execution when local resources are not sufficient, but rejects all external requests. Instead, a volunteer
node always accepts external requests, when locally available resources are sufficient. In between the
two opposite strategies, there is a partial volunteering scheme for which a node may decide to accept
or reject a task execution request, depending on a function that takes depends on the willingness of
the node to collaborate and its willingness to satisfy its own requests. The experimental evaluation is
supported by DEUS [DEU] a general-purpose, discrete event simulator, that has been successfully ap-
plied for the modeling and simulation of various other complex systems. Our evaluation exploits real
workload data from the Google Cluster dataset [Hel10] and provides estimations of the performance
of various cooperation strategies for different SCIENCE CLOUD configurations showing that collabo-
rative strategies tend to perform better than selfish ones, in particular for large number of nodes. As an
illustrative example, Figure 5 shows how increasing the degree of volunteering (horizontal axis) and
the number of nodes (the various curves) affect performance (vertical axis) in terms of the percentage
of taks executed successfully (i.e. QoS respected).

This work is an example of how to use a simulation approach to test-drive the runtime circle of the
Ensemble Development Life Cycle (EDLC).

ASCENS 23

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

3.1.6 Mobile Cloud Computing with DEECo

An interesting aspect of the case study is the fact that the individual nodes can be personal computers.
As such, the concept also includes mobile nodes: laptops, tablets, or even smartphones. Mobile
devices have some noteworthy properties in addition to standard nodes. They are devices (a) whose
neighbors – in the sense of network proximity – may change, (b) whose battery capacity is limited,
and (c) whose computing capacity may be (severely) limited as well.

Applications running on top of the science cloud may want to take those properties into consider-
ation. In fact, we can imagine that applications intended to run on mobile devices be effectively split
into two components, or smaller applications, communicating with one another. In one scenario, they
may both run on one SCPi — if the node is powerful enough and access to power is not an issue;
in another, they may be split between two SCPis, one on a mobile node (which handles UI) and an-
other on a stationary node (which handles the computationally extensive background work). In order
to keep the user interface responsive, the network latency between the two nodes may not exceed a
certain threshold, which becomes problematic in the presence of (physical) node mobility.

This scenario has been investigated within ASCENS [BBHK13]. The envisioned method for this
case uses a specialized adaptation architecture which, through two components, takes care of the
planning and monitoring involved. This architecture spans the three activities in the runtime circle of
the EDLC.

The first component involved is the monitor, which works within an application and can operate
in one of two modes:

• Running mode. In running mode, the monitor executes as part of a running application, i.e. it
reflects the actual deployment. The monitor gathers data about the current node, which includes
the performance and battery life. This non-functional properties data (NFPData) is used by the
planner (see below) to decide on adaptation.

• Mock mode. A monitor may also be detached from its application and spawned on a different
node where it runs in mock mode, testing the performance of the node with the performance
model of the application (MonitorDef) in mind, but without actually moving the whole applica-
tion. Again, NFPData is generated which can be used by the planner.

The second component is the planner. The planner provides the SCPi with the MonitorDefs for the
monitors involved, which the SCPi can distribute to interesting nodes for gathering NFPData. Based
on information about the application, which are included in a deployment plan, the planner is able
to restrict which nodes are interesting; for example, this may include nodes which are a limit of two
hops away. Based on the information in the NFPData from affected nodes, the planner instructs the
underlying SCPi(s) to deploy the applications appropriately given the data.

A particular advantage of the monitor approach with mock modes is the availability of real data:
The monitor deployed on remote nodes is able to report, based on its MonitorDef, precisely those
measurements which are relevant for the application. As usual, the nodes which may take part in the
execution of an application form an ensemble with the specific task to figure out the best configuration
for all entities involved.

Figure 6 shows a simplified definition of such an ensemble.
All in all, the adaptation architecture based on planners and (mock) monitors allows for a very

flexible awareness of the network environment. While this approach is useful for all kinds of nodes
the SCP may run on, it is particularly helpful in the presence of mobile nodes.

ASCENS 24

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

Monitor(Ab)
<<running>>

<<mock>>

Mobile device Stationary device

Monitor(Af)
<<running>>

Planner(A)

NFPData(Ab) MonitorDef(A*)

NFPData(Af)

MonitorDef(*)

NFPData(A*)

DeploymentPlan(A)

MonitorDef(*)

Monitor(Ab)
<<mock>>

<<running>>
NFPData(Ab)

(2) The Device spawns a new monitor
in the mock mode for each MonitorDef
(3) After external ly migrating-in
the application component the Device
turns the monitor into running mode

NFPDeviceData(*)
(2, 3)

Device(S)

(2)

(1) The Device spawns a new
monitor in the mock mode for each new MonitorDef
(3) After external ly migrating-out the application
component the Device turns the monitor into mock mode

Device(M)

NFPDeviceData(A)
(1, 2)

(3)

NFPDeviceData(A)

NFPDeviceData(*)

(3)

(2, 3)

(2)

(3)

(1, 2, 3)

(1, 2, 3)

(1, 2, 3)

Distributes only models
that are allowed to be
migrated on the device

Figure 1: Adaptation architecture of the running example: phases 1 (M isolated), 2 (S discovered), and 3 (Ab
migrated to S). Phases 1,2,3 are in the figure denoted by (1), (2), (3).

the included performance dependency model of the
corresponding application component (e.g., the func-
tion CPU × GPU → FPS). In other words, Monitor
predicts – based on the model – the performance of
the application component if it would be deployed on
that computation node. The model might depend on
particular machine-specific performance data (NFPDe-
viceData, e.g., available CPU speed, etc.); see Device.

Device. Each computation node is reflected by the De-
vice component. Specifically, a Device component ensures
management of the Monitors (e.g., it instantiates Monitors
advertised by newly discovered Planners) and it provides
NFPDeviceData for Monitors in the mock mode.

4.2 Adaptation architecture ensembles
The expectation is that the number of available computa-

tion nodes, as well as the number of Monitors, changes dynam-
ically. Therefore, the communication among the components
exploits the concept of emergent component ensembles. The
architecture involves the following ensembles (Figure 1):

Planner and Device(s). Each Planner is a coordinator
of an ensemble that distributes MonitorDefs (including the
performance dependency model) of application components
to Devices representing currently available computation nodes
(including the one the Planner is running on). The Planner is
able to constraint which MonitorDefs should be distributed
to which Devices (effectively constraining the potential mi-
gration destinations for a particular application component).
A simplified example of a definition of this ensemble is in
Figure 2. It specifies that only reachable devices within
2 network hops are to be considered and that this check is
to be performed every 15 seconds. The distribution of the
MonitorDefs is performed by adding the MonitorDef to the
target component’s knowledge.

Planner and Monitor(s). Each Planner is a coordinator
of an ensemble that aggregates NFPData from all Monitors
corresponding to the components of the application reflected
by the Planner. Thus, this ensemble aggregates all the de-
ployment alternatives for the application.

1 ensemble PlannerToDevice:
2 coordinator: Planner
3 member: Device
4 membership: HopDistance(Planner.device, Device) ≤ 2
5 knowledge exchange:
6 Device.monitorDef[Planner.app] := Planner.monitorDef
7 scheduling: periodic(15s)

Figure 2: Example of an ensemble definition.

Device and Monitor(s). Each Device component is a
coordinator of an ensemble that distributes NFPDeviceData to
the Monitors in the mock mode residing on the corresponding
computation node.

4.3 Adaptation architecture in action
In this section, we illustrate on the motivation example

the adaptation architecture interaction at runtime.
At first (phase 1, Figure 1), the ensemble distributes the

MonitorDefs of both Af and Ab from Planner of A to the Device
component of the mobile device (M), which subsequently
spawns Monitors for both components and sets them to the
running mode. The Monitors start measuring NFPData of the
running components which are then aggregated back to the
Planner. So far no deployment alternatives are discovered.

After the stationary device (S) is discovered (phase 2,
Figure 1), the ensemble propagates MonitorDefs of the com-
ponents that could be (potentially) migrated (i.e., Ab) to its
Device component, which spawns a new Monitor. Since Ab is
deployed on a different Device this Monitor runs in the mock
mode. Thus, the Device component of the stationary device
feeds the Monitor with NFPDeviceData allocated for A. Based
on this NFPDeviceData and the performance dependency
model of Ab the Monitor produces NFPData reflecting the
expected performance of Ab on S. Consequently, another
ensemble aggregates all the currently produced NFPData
for Af and Ab to the Planner. The Planner thus eventually
discovers that there are two deployment alternatives for Ab
(i.e., one actually running on M and one modeled on S) and
finally decides to deploy Ab on the stationary device.

345

Figure 6: Ensemble Definition

3.2 e-Mobility

In this section, we explain how we exploited EDLC in the context of the e-Mobility scenario. The e-
Mobility scenario focuses on avoiding contingency situation in an open-ended systems of interacting
electric vehicles. Such a scenario is highly dynamic. This stems mostly from the fact that it includes
unforeseeable human user actions which influence the availability of travel resources.

Technically, we assume in the case-study that travels are initiated by personal activities. A journey
is thus defined as a sequence of trips, with each trip being initiated by a single activity. Trips may
consist of multiple stages. A stage can be executed in different travel modes such as walking mode or
driving mode. For example, consider a user that leaves for work in the morning. Work is the activity
that initiates travel. The first trip contains a walking stage from home to the vehicle’s parking lot, a
driving stage from the parking lot at home to the one at work and lastly a walking stage to the office.
The working time at the office is considered to be the activity duration. Throughout that time the
vehicle is parked at the car park. If it has access to a charging station, it may recharge. After work the
user continues his journey. The number of consecutive trips follows from the number of activities.

In this scenario the main components are the user, the electric vehicle, the parking lot and charging
station. Parking lot and charging station are commonly referred to as infrastructure components.
Component temporarily form ensembles. These ensembles include (i) collection of charging stations,
(ii) collection of parking lots, (iii) collection of users and electric vehicles and (iv) collection of at
least one user, one electric vehicle and one infrastructure component, etc.

Throughout runtime, contingency situations may occur. Components and ensembles require self-
adaptive actions to resolve these situations. Examples of contingency situations that need to be re-
solved by the electric vehicle component include (i) unavailability of a reserved parking lot, (ii) un-
availability of a reserved charging station, (iii) falling below minimum battery energy level and (iv)
missing a scheduled arrival time. Examples of contingency situations that need to be handled by the
parking lot or charging station component include (i) early or late arrival of a vehicle at a parking lot
or charging station, (ii) early or late departure of a vehicle from a parking lot or charging station, (iii)
missed initiation of a scheduled charging action and (iv) deviation from the expected power profile
during charging.

3.2.1 Applying EDLC to e-Mobility – Big Picture

In the spirit of EDLC, we have employed several interrelated methods developed in ASCENS to ad-
dress the application life cycle of the e-Mobility. In particular, we start with the specification of
requirements and their reflection in the operation space of the system and system’s self-awareness
(described in Section 3.2.2). Following the requirements specification, we focus on the high-level
architectural design, both in terms of adaptation patterns (Section 3.2.3) and in goals decomposable
into individual components and ensembles (Section 3.2.4). Next, emphasis is put on low-level design

ASCENS 25

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

of component activities. For that, we employ the SCEL language, which is specifically intended for
ensemble-based description of communication and coordination-oriented concerns (Section 3.2.5).
Along with SCEL we also employ (Section 3.2.6) the SCLP (soft-constraints logic programming),
which provides a natural way of describing optimization related tasks, which are very frequent in
self-adaptive systems. The final step is the implementation of components and the deployment of the
system (Section 3.2.7), for which we use a dedicated ensemble-based component model and compo-
nent runtime (called DEECo).

3.2.2 Requirements Engineering with SOTA

The activity of requirements engineering for self-adaptive systems in SOTA requires identifying the
dimensions of the SOTA space, which means modeling the relevant information that the different
components and ensembles of a system have to collect to become aware of their location in such
space. This is necessary to recognize whether they are behaving correctly and to adapt their actions
whenever necessary.

In e-mobility, the space S clearly includes the spatial dimensions related to the street map, but also
dimensions related to the current traffic conditions, the battery conditions, and in general any physical
or virtual dimension that may affect the behavior of vehicles. As a vehicle moves along some road,
its position in the SOTA space changes accordingly, obviously w.r.t. the dimension representing the
spatial location but also w.r.t. the dimension representing the traffic and battery conditions.

Once the SOTA space is defined, a goal in SOTA can be expressed in terms of a specific state of
the affairs to aim for, that is, a specific point or a specific area in S which the component or ensemble
should try to reach in its evolution, in spite of external contingencies that can move the trajectory
farther from the goal. For instance, a goal for a vehicle could imply reaching a position in the SOTA
space that, for the dimensions representing the spatial location, trivially represents the final destination
and for the dimension representing the battery condition may represent a charging level ensuring safe
return. That is, if the location to be reached has coordinate (x,y) and we know that the place need to
be reached in a time no more than T:

Gcari =
{
Gpre = location(t, s);Gpost = location(x, y);

U = battery level > 10%
⋃

time for reaching < T
}

In general, a goal is not necessarily always active. That is, a goal has to be defined also in terms
of the preconditions that activate it. In addition, a goal may impose constraints on the trajectory to be
followed while trying to achieve, e.g., a car may wish to reach a destination while avoiding motorway.

3.2.3 From SOTA to High-Level Design with Adaptation Patterns

The SOTA modeling approach is very useful to understand and model the functional and adaptation
requirements, and to check the correctness of such specifications (as described in [AZ12]). However,
when a designer considers the actual design of the system, it is important to identify which architec-
tural schemes need to be chosen for the individual components and ensembles.

To this end, in previous work [CPZ11], we defined a taxonomy of architectural patterns for adap-
tive components and ensembles of components. This taxonomy has the twofold goal of enabling reuse
of existing experiences and providing useful suggestions to a designer on selecting the most suitable
patterns to support adaptability.

In a coordinated system for e-mobility, the e-vehicles of a car-sharing company may all share the
same basic adaptation goals, thus making it suitable to model them as simple components all sharing

ASCENS 26

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

(2) Vehicle has an up-to-
date and feasible plan

(1) Vehicle meets its
calendar

 (5) Plan is kept updated

(7) Availability of relevant
PLCSs is kept updated

(6) Plan feasibility w.r.t.
battery level is checked

1{ route}

PLCS

position
availability

1{ batteryLevel,
feasibility}

1{ route,feasibility,
availabilities,position}

*{position, availability}

1{calendar,availabilities}

(9) Battery sufficiency
w.r.t plan is checked

P

(8) Plan is kept computed
w.r.t. availability & feasibility

P

X

(4) an up-to-date plan can always
be followed by the vehicle

A

(3) Driver follows the route
 of the plan

P

Vehicle

calendar
position
route
feasibility
availabilities
batteryLevel

component invariant

invariant refinementx{k} role with knowledge k

exchange
invariant

Xprocess
invariant

P
assumptionA

Figure 7: E-Mobility system level graph – IRM method.

the same class of external controller. Also, at the level of the fleet of e-vehicles, the presence of a
single stakeholder makes it possible to exploit a pattern of an ensemble with a global control loop to
orchestrate the overall behavior of the fleet.

To do that, an adaptation pattern that permits components to share the adaptation mechanism and
goals is necessary and it is the “P2P Negotiation Service Components Ensemble Pattern”. This pattern
has a decentralised and shared control of adaptation and permits to the different components of the
system to coordinate each other in order to manage adaptation (see [Puv12] for further details).

3.2.4 High-Level Design – Architecture

In order to guide the design of an ensemble-based system from high-level strategic goals, require-
ments and patterns (described by SOTA) to their low-level realization in terms of system architecture
(components and ensembles) we use the Invariant Refinement Method (IRM) [KBP+13b].

The main idea of IRM is to capture the high-level system goals and requirements in terms of in-
teraction invariants. In compliance to SOTA’s notion of “striving to achieve”, invariants describe the
desired state of the system-to-be at every time instant. In general, invariants are to be maintained by
the coordination of the different system components. At the design stage, by component we refer to
a participant or actor of the system-to-be. A special type of invariant, called assumption, describes a
condition that is expected to hold about the environment; an assumption is not intended to be main-
tained explicitly by the system-to-be.

As a design decision, identified top-level invariants are decomposed into more concrete sub-
invariants forming a decomposition graph (Figure 7). The decomposition is essentially a refinement,

ASCENS 27

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

where the composition of the children exhibits all the behavior expected from the parent and (poten-
tially) some more. By this decomposition, we strive to get to the level of abstraction where the (leaf)
invariants represent detailed design of the particular system constituents components, component pro-
cesses, and ensembles. Two special types of invariants, namely the process invariants (denoted by “P”)
and exchange invariants (denoted by “X”), are used to model the low-level component computation
(processes) and interaction (ensembles), respectively.

A possible system-level graph corresponding to the simplified e-Mobility scenario is depicted in
Figure 7. In this case, the IRM design mainly captures the necessity to keep the vehicles plan updated
(invariant (5)) and to check whether the current plan remains feasible with respect to measured battery
level (invariant (6)). The identified leaf invariants are easily mappable to component activities, which
are further formally captured by SCEL or SCLP.

3.2.5 Modeling Computational Activities with SCEL

To complement the high-level, architectural design, we have proposed specific linguistic and program-
ming abstractions aiming at dealing with the challenges posed to language designers by massively
distributed and highly dynamic systems. Our starting points have been the notions of autonomic
components (ACs) and autonomic-component ensembles (ACEs) that are used to structure systems
into independent and distributed building blocks that interact and adapt in different ways. Based on
the notions of ACs and ACEs, we have introduced a number of specific abstractions and linguistic
constructs that permit building up ACs, defining ACEs and programming their behaviors and interac-
tions. The proposed abstractions are the basis of SCEL (Software Component Ensemble Language)
[DLPT13, DFLP11b].

ACs are entities with dedicated knowledge units and resources that can cooperate while play-
ing different roles. Each AC is equipped with an interface, consisting of a set of attributes, such
as provided functionalities, spatial coordinates, group memberships, trust level, response time, etc.
Attributes are used by the ACs to dynamically organize themselves into ACEs.

Indeed, one of the main novelties of SCEL is the way sets of partners are selected for interaction
and thus how ensembles are formed. Individual ACs not only can single out communication partners
by using their identities, but they can also select partners by exploiting the attributes in the interfaces
of the individual ACs. Predicates over such attributes are used to specify the targets of communication
actions, thus providing a sort of attribute-based communication. In this way, the formation rule of
ACEs is endogenous to ACs: members of an ensemble are connected by the interdependency relations
defined through predicates.

Starting from the IRM model presented in Figure 7, we can identify two kinds of SCEL compo-
nents, namely PLCSs and Vehicles:

Iplcs1[Kplcs1,Πplcs1, Pplcs1] ‖ Iplcs2[Kplcs2,Πplcs2, Pplcs2] ‖ . . .

‖ Ivehicle1[Kvehicle1,Πvehicle1, Pvehicle1] ‖ Ivehicle2[Kvehicle2,Πvehicle2, Pvehicle2] ‖ . . .

A PLCS identifies a parking lot/charging station and is characterized by a position, its availability
and, possibly, a chargingStation. These are the attributes that are exposed in the component interface
and that respectively identify the location of the PLCS, the number of available slots in the area and
the presence of a charging station.

Iplcs j , {(id, plcsj), (type, “PLCS”), (position, (xj , yj)), (availability , n), (chargingStation, b)}

As expected, Vehicle components identify cars involved in the scenario and will expose in their inter-
face a set of attributes describing the state of the component (position, batteryLevel,. . .).

Ivehicle i , {(id, vehiclei), (type, “Vehicle”), (position, (xi, yi)), (batteryLevel , “high”), . . .}

ASCENS 28

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

Attributes of both PLCSs and Vehicles are obtained as the projection on the interface of the local
knowledge of each component.

The user associated to a vehicle is modeled by a process that, according to the local Vehicle
interface, will interact with PLCSs in order to identify the next stop in the travel. This task is largely
simplified thanks to the use of attribute based communication. Indeed, if poi is the next point-of-
interest to visit in the travel, then the next PLCS to use can be identified by sending a reservation
request to all the PLCSs components that are close to poi up-to a given walking distance and that can
be reached with the current battery level.

Pvehicle i , . . . get(“poi”, j, ?xpoi, ?ypoi)@self .
put(“reservationRequest”, resData, self)@Pplcs

where Pplcs stands for predicate

type=“PLCS”
∧ distance((xpoi, ypoi), position) ≤ walkingDistance
∧ isReachable(position, this.batteryLevel)

Keyword this indicates that batteryLevel refers to an attribute specified in the interface of the
vehicle; all other attributes (i.e., position and type) refer to the PLCS components.

However, when the battery level of a vehicle decreases under a given threshold, the actual be-
haviour can be adapted so to force the reservation of a PLCS that can be used to recharge the battery
and then continue with planned trip. In this case, the predicate used as target of the put action for
sending the reservation request becomes Pplcs ∧ chargingStation=true.

We refer to Deliverable D1.3 for a more detailed account of an e-Mobility scenario modelled in
SCEL.

3.2.6 Adaptation via Soft-Constraints Solving and Optimization

As a complement to SCEL specifically targeting intuitive specification of optimization problems that
frequently appear in self-adaptive systems, we have used our approach on Soft Constraint Logic Pro-
gramming.

Constraint logic programming (CLP) [JL87] extends logic programming (LP) by embedding con-
straints in it. They represent a limitation of the possible combinations of the values of some variables
modeling a problem. For example, if we consider three variables {X,Y, Z} which can take values in
D = {red, yellow, blue}, we can have a constraint on each pair of them stating that they must take a
different value: so for each assignment of colours they say if it is allowed or not.

A further extension of CLP has been proposed in [BMR01] to also handle soft constraints, which
roughly speaking are constraints that rather than returning a boolean value yield more informative
values such as a level of satisfiability or a cost. Technically, this is done by adding a structure modeling
these levels, which is represented by a semiring, that is, a set with two operations: one is used to
generate an ordering over the levels and another one is used to define how two levels can be combined
and which level is the result of such a combination. So for example, in the case above, one can use
natural numbers to model the costs of constraints, the min operation to generate an ordering over them,
and the sum operation to combine them. We thus have a constraint on each pair of variables stating
that when the two colours are equal the cost is∞, if just one of them is red the cost is 1, otherwise it
is 2.

This extension has led to a high-level and flexible declarative programming formalism, called
Soft CLP (SCLP), allowing to easily model and solve real-life problems. Roughly speaking, SCLP
programs are logic programs where logical constants and operations are replaced by those of the

ASCENS 29

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

semiring. Consequently, assignments of variables to the items of the Herbrand universe yield the
levels of satisfiability or the costs of the constraints.

We have applied the SCLP framework [MMH12] to the e-Mobility travel optimization problem
described in [HZWS12], by modeling in Ciao [BCC+97]8 two scenarios: the (i) trip; and (ii) jour-
ney optimization problems. A solution to (i) finds the best trip in terms of travel time and energy
consumption, while (ii) determines the optimal sequence of trips, guaranteeing that the user reaches
each appointment in time and that the state of charge of the electric vehicle never falls below a given
threshold.

Besides optimizing trips and journeys of single users, that we can call local problems, the e-
Mobility case study aims at solving global problems, involving large ensembles of vehicles. For such
large problems, the solution is often unfeasible, with both SCLP and more efficient tools. To tackle
these, we propose a coordination of declarative and procedural knowledge: the global problem is de-
composed into several local problems, which can be separately solved by the SCLP implementation
(e.g. [BCC+97]), and whose parameters can be iteratively determined by a programmable coordina-
tion strategy. The latter guarantees a suboptimal, yet acceptable global solution.

Let us consider for example the parking optimization problem, which consists in finding the best
parking lot for each vehicle of an ensemble in terms of three factors: the distance from the current
location of the vehicle to the parking lot, the distance from the parking lot to the appointment location
and the cost of the parking lot. Solving a global optimization procedure which assigns the best parking
lot to each vehicle of the ensemble would be rather expensive, and also not flexible (replanning could
require lots of time). So we propose to use SCLP to solve the local problems and some procedural
language to program the orchestrator. In this setting, SCLP is convenient since the orchestrator will
be able to access much more easily the parameters of its fact/clause-based declarative implementation
than an ordinary imperative module structure.

In particular, the orchestrator could be programmed using an extension of SCEL or simply Java.
The orchestrator, after receiving the requests from the vehicles which want to park, asks the SCLP
tool to solve the local optimization problems, determining the best parking lot for each vehicle. Then,
it verifies if the local solutions all together form an admissible global solution, that is, if each parking
lot is able to satisfy the requests of the vehicles planning to park in it. If it is so, the problem is
solved, otherwise the orchestrator queries the declarative knowledge again, but now by increasing the
costs of the parking lots which received too many requests. The procedure is repeated, with suitable
variations, until a global solution is found. Notice that in this way the orchestrator has a hypothetical,
transactional behaviour, with the options of committing (a solution is found) or partially backtracking
(on the parkings which are overfull).

Figure 8 shows the most important clauses of the CIAO program modeling the local problem of
each vehicle. The bestParkingLot clause determines the best parking lot for the vehicle by using the
min predicate, which models the operation of the chosen semiring allowing us to choose the parking
lot with the minimum cost. This clause also uses the parkingLot predicate to obtain the cost of
each parking lot in terms of the three factors described above. The head of the parkingLot clause
has indeed the following shape parkingLot(CurrLoc,AppLoc, PL,C), where CurrLoc represents
the current location of the vehicle, AppLoc is the location of the appointment, PL represents the
parking lot and C the cost of the solution. This cost is given by a linear combination of the distance
DistCurrLocP from the current location to the parking lot, the distance DistPA from the parking
lot to the appointment location and the cost of the parking lot.

The Ciao program in Figure 9 instead models the parking lots. Also in this case we show the
most important clauses. In particular, we have some facts modeling the costs of the parking lots and
the changeCost predicate allowing to increase the costs of a list of parking lots. It is used by the

8We would like to thank the Clip group for its technical support.

ASCENS 30

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

:-module(localOptimization,_,_).
:-use_module(parkingLot).
...
parkingLot(CurrLoc,AppLoc,PL,C):-

parkingLot(PL, SN, PLLoc),
distance(CurrLoc,PLLoc,DistCurrLocP),
distance(PLLoc, AppLoc, DistPA),
parkingCost(PL, PC),
C .=. (X * DistPA) + (Y * PC) + (Z * DistCurrLocP).

bestParkingLot(CurrLoc, AppLoc, BestPL):-
findall([PL,Cpl], parkingLot(CurrLoc, AppLoc, PL, Cpl), ResL),
min(ResL, BestPL).

...

Figure 8: The CIAO program modeling the local parking optimization problem.

:-module(parkingLot,_,_).
:-use_package(dynamic_clauses).
:- dynamic parkingCost/2.
...

parkingCost(p1, 1).
parkingCost(p2, 2).
...

changeCost([PL|PLL]):-
retract_fact(parkingCost(PL, CPL)),
C .=. CPL + 1,
asserta(parkingCost(PL, C)),
changeCost(PLL).

changeCost([]).

Figure 9: The CIAO program modeling parking lots.

orchestrator to change the costs of the parking lots which received too many requests.

3.2.7 Implementation and Deployment

Next steps in the EDLC, following the architectural design and detailed specification of component
activities, is implementation and deployment. For these steps, we employ our DEECo (Dependable
Emergent Ensembles of Components) component model [BGH+13b] to provide us with the relevant
software engineering abstractions that ease the programmers’ tasks.

A component in DEECo, features execution model based on the MAPE-K autonomic loop [KC03].
In compliance with SCEL, it consists of (i) well-defined knowledge, being a set of knowledge items
and (ii) processes that are executed periodically in a soft real-time manner. The component concept
is complemented by the first-class ensemble concept. An ensemble stands as the only communication
mechanism between DEECo components. It specifies a membership condition, according to which
components are evaluated for participation. The evaluation is based on the components’ knowledge
(their attributes in SCEL). An ensemble also specifies what is to be communicated between the partic-
ipants, that is, the appropriate knowledge exchange function. Similar to component processes, ensem-
bles are invoked periodically in a soft real-time manner. (See Figure 10 for an excerpts of components

ASCENS 31

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

1 component Vehicle features AvailabilityAggregator:
2 knowledge:
3 batteryLevel = 90%,
4 position = GPS(...),
5 calendar = [POI(WORKPLACE, 9AM−1PM), POI(MALL, 2PM−3PM), ...],
6 availabilities = [],
7 plan = {
8 route = ROUTE(...),
9 isFeasible = TRUE

10 }
11 process computePlan:
12 in plan.isFeasible, in availabilities,
13 in calendar, inout plan.route
14 function:
15 if (!plan.isFeasible)
16 plan.route← Planner.computePlan(calendar, availabilities)
17 scheduling: periodic(5000ms)
18 ...
19 ...
20 ensemble UpdateAvailabilityInformation:
21 coordinator: AvailabilityAggregator
22 member: AvailabilityAwareParkingLot
23 membership:
24 ∃ poi ∈ coordinator.calendar:
25 ‘ distance(member.position, poi.position) ≤ TRESHOLD &&
26 isAvailable(poi, member.availability)
27 knowledge exchange:
28 coordinator.availabilities← { (m.id, m.availability) | m ∈ members }
29 scheduling: periodic(2500ms)
30 ...

Figure 10: Examples of identified DEECo components & ensembles.

and ensembles descriptions as found in the e-Mobility case study.)
In order to bring the above abstractions to practical use we have used jDEECo9 – our reification of

DEECo component model in Java. In jDEECo, components are intuitively represented as annotated
Java classes, where component knowledge is mapped to class fields and processes to class methods.
Similarly, appropriately annotated classes represent DEECo ensembles.

Once the necessary components and ensembles are coded, they are deployed in jDEECo runtime
framework, which takes care of process and ensemble scheduling, as well as low-level distributed
knowledge manipulation.

3.2.8 Evaluation

Having described the application of EDLC to the e-Mobility case study, we relate it in this section to
other approaches having the same aim and we describe benefits that we have observed in performing
the case study. In particular, we structure this section along three main topics addressed in the case
study, namely (i) requirements engineering and architectural design, (ii) modeling of activities, (iii)
programming and deployment.

As to requirements engineering and architectural design in the area of autonomic systems, the most
recognized approaches are KAOS [Lam08] and Tropos [BPG+04]. Similar to our approach, they fall
into the category of goal modeling and elaboration, especially in the area of agent-based systems. In
our experience, they provide a very solid ground for requirements engineering, but fall short to an
extent when continuous control with self-adaptivity (as in the case of e-Mobility case study) is sought
for. For this reason, we have employed SOTA and IRM, which are centered around the notion of

9http://github.com/d3scomp/JDEECo

ASCENS 32

http://github.com/d3scomp/JDEECo

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

continuously “striving to achieve” and thus make the reasoning about a guided evolution of a system
easier.

As for the activity modeling, our approach builds on the body of work carried out in coordina-
tion languages (e.g., KLAIM [DNFP98]) and process algebras. However, it extends it by providing a
tailored semantics to describe and reason about cooperating groups of components (i.e. ensembles).
In the same vein, SCLP builds on the experience with constraint solving, but adds the option of soft-
constraints and integration with SCEL. Indeed, in the e-Mobility case study, we found the interplay of
SCEL with SCLP very useful for description of mutually related activities of interaction and coordi-
nation among vehicles combined with finding a trade-off between local-global optimums (reflecting
the need of harmonizing the selfish and cooperative concerns of vehicles in the case-study).

Finally, at the programming and deployment stage, our approach has been backed up by DEECo
component model and its Java-based reification jDEECo. In this respect, it is possible to find a
plethora of component models and SOA-based approaches (e.g. SCA, Fractal, OSGi). However,
these typically fall short in well-defined dynamicity (as captured by the ensembles) as well as in
autonomicity and self-adaptation capabilities (as featured by the special design of components as dis-
tributed MAPE-K based entities). Similar problems apply even to the agent-based approaches with
their Belief-Desire-Intention model (e.g., JADE). On the other hand, the explicit support of DEECo
for ensembles and components – based on knowledge and cyclic activities – proved to make the tran-
sition from SOTA/IRM-based design (together with activities captured by SCEL/SCLP) to runtime
very smooth.

3.3 Swarm Robotics

Swarm robotics calls for advanced techniques to provide adaptive, autonomous, self-aware and intelli-
gent behavior. One software solution to such requests is an ensemble-based approach that structures a
complex control system into dynamic ensembles of relatively simple system elements, called service
components. The dynamism and autonomous nature of the system elements is modeled by the commu-
nication/distribution principle. This principle can be realized through knowledge- and predicate-based
mechanisms, which allow for run-time evaluation of communication and connection rules among the
system elements.

The work in robotics case study revolves around a family of scenarios that pose interesting design
challenges. The basic idea is that a disaster happened in a building. Part of the building has collapsed,
trapping a number of victims inside. To make matters worse, a radiation source is present, which
damages robots as well as humans. To prevent harm to further human lives, a team of robots is
deployed in a specific area—the deployment area. From that location, the robots must explore, search
for victims, and coordinate to save the victims as quickly as possible, while avoiding damage from
radiation.

During the third year of the project, we discussed and identified a number of interesting variants
for this basic template. Their detailed description is reported in D7.3. In brief, we distinguish between
easy and hard exploration, depending on the structure of the environment. In the first case, robots
only move within a corridor. In the second one, the environment is more complex and the robots are
required to construct a spatial representation of the environment, either in the form of an individual
map, or in the form of a network of landmark robots. In addition, the robots must construct a wall to
protect themselves and the victims from radiation.

In the following discussion, we describe the EDLC phases used for requirement analyses (Sec. 3.3.1),
high-level modeling (Sec. 3.3.2), SCEL modeling, (Sec. 3.3.3), awareness mechanisms (Sec. 3.3.4),
and deployment (Sec. 3.3.5), focusing on the tools that realize each phase—SOTA, MESSI, SCEL,
Iliad, and jRESP/ARGoS.

ASCENS 33

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

3.3.1 Requirement Analyses

The requirement analysis phase is the first step towards a sound implementation of a solution for the
robotics scenario. The input of this phase is a high-level, often non-formal description of the scenario,
such as that reported in D73. The output of this phase is a semi-formal description of the system
dynamics, as well as a set of adaptation patterns that fit the system requirements.

In the case under study, the robots behave as a coordinated swarm. For this reason, the patterns that
take inspiration from swarm robotics, such as the Reactive Stigmergy Service Components Ensemble
Pattern or the Cognitive Stigmergy Service Components Ensemble [Puv12], are the most natural to
describe the system. These patterns, as it can be found in their Context, describe systems composed
of a large amount of components acting together, in which the components are simple and the envi-
ronment is frequently changing. A number of studies confirm that through these patterns the system
can achieve high performance (e.g. [PPC+13], [PCZ13]).

An interesting aspect of this scenario is that a victim may be too heavy to be transported to safety
by a single robot. Thus, cooperation among multiple robots is required. To achieve coordination,
multiple alternatives are possible, spanning from leader-based to completely decentralized approaches.
We maintain that a SOTA specification helps selecting the right approach.

For example, in the Reactive Stigmergy Service Components Ensemble Pattern, the goals G and
utilities U are treated disjointly from a component to another—each service component has its own
goals and utilities:

• Goals: GSC1 , GSC2 , . . . , GSCn

• Utilities: USC1 = USC2 = . . . = USCn

while, in a pattern whereby a direct coordination is needed to manage adaptation, they can be expressed
as:

• Goals: GSC1

⋃
GSC2

⋃
. . .

⋃
GSCn

• Utilities: USC1

⋃
USC2

⋃
. . .

⋃
USCn

The SOTA description offers the means to select the pattern to use for a specific task because,
describing functional and non-functional requirements, it allows the developer to identify which pat-
tern is more similar to the target system. Moreover, self-expression [PPC+13] can be used to allow a
system to satisfy tasks for which it was not created: recognizing the new functional and non-functional
requirements, a new pattern can be selected, and, using self-expression mechanisms (as described in
[Puv13]), the dynamic change of the pattern can be done. For example, one could envision that, when
the robots must cooperate to transport a victim, or to construct a map of the environment, they could
switch to a pattern like the Centralized AM Service Components Ensemble Pattern, or the P2P Ne-
gotiation Service Components Ensemble Pattern to perform the task, and then switch back to their
original behavioral pattern. To this aim, a self-expression mechanism that can be used is the role-
based approach [PNA+13, Puv13] whereby a robot dynamically changes its role from “environment
explorer” to, e.g., “group leader” or “follower”. The interesting aspect of this role-based approach
is that, by simply changing roles, robots can also form coordinated groups with clear leader-follower
assignments.

To understand how SOTA and adaptation patterns work in the robotic scenario, we must describe
the scenario in SOTA. The SOTA space S includes:

• Spatial aspects related to, e.g., landmark placement and victim locations;

ASCENS 34

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

• Robot-specific internal aspects, such as battery consumption;

• Ensemble-related aspects, such as the distribution of the behaviors of the robots over time.

As a robot performs its actions, its position in the SOTA space (i.e., its SOTA state) changes accord-
ingly.

In SOTA, a goal is expressed in terms of a specific target SOTA state. For instance, when a
robot reaches a victim, the former must have enough battery life in order to safely transport the latter.
This can be expressed as a SOTA state in which the spatial sub-state of the robot is within a suitable
range to the victim, the battery level sub-state is above a suitable threshold, and the behavior sub-state
corresponds to the “transport” behavior. In SOTA, this can be described as follows:

Groboti = { Gpre = local position;
Gpost = new location

⋃
victim rescue(carry,mark position);

U = battery level > min level
}

This system can be cast as an instance of the P2P Negotiation SCE Pattern, which revolves around
an implicit autonomic feedback loop for each proactive component. In this pattern, the components
need to directly communicate to propagate adaptation mechanisms and to share knowledge. The
main advantage of the P2P Negotiation SCE Pattern is that no centralised control is present, thus
excluding the single-point-of-failure issue. Each robot is aware of its battery state and has its private
goal. Moreover, because a robot does not know where the victim is and does not have the possibility
of mapping all the environment, each robot is able to propagate messages and exchange information
with neighbours, to better adapt its behaviour and find the victim. Because the most important utility
of a robot is to maintain a high battery level, each robot has the sub-goal of exploring only a portion
of the space while looking for victims. The P2P Negotiation SCE Pattern allows a robot that reaches
an unexplored position to send a message to its neighbours and communicate the state of this location
(victim found or new point of connection), and to ask for a new robot to complete the task.

Another candidate pattern to design this system could have been the Reactive Stigmergy SCE
Pattern (described before). However, this pattern does not support explicit coordination among robots,
so, using this pattern, robots can sense information propagated in the environment, but cannot share a
common adaptation mechanism in order to find and rescue a victim.

3.3.2 Modeling and validation with MESSI

The output of the Requirement Engineering phase is a SOTA specification together with one or more
adaptation patterns identified as suitable for the robotic scenario to be tackled. The first step of the
Modeling phase consists of producing an abstract specification of a strategy for the robot swarm,
suitable to achieve the SOTA goal and satisfying the corresponding utilities. The specification is
presented in a form that is quite a standard for describing distributed strategies for swarm robotics
(see [OGCD10]), namely as a diagram representing a finite state machine (like the one in Figure 11).
One or more such diagrams can be produced, specifying different strategies or variations thereof.

These diagrams constitute the input of MESSI [MES] (“Maude Ensemble Strategies Simulator and
Inquirer”), a tool for early prototyping and analysis of robotic strategies. Within the EDLC, MESSI is
placed conceptually in the Validation phase of the Design Cycle, and its key features are presented in
JD3.1 and D6.3. MESSI allows one to build a high-level but executable model of the specified strategy,
and to validate it via animated simulation and quantitative analysis. The outcome of this prototyping
and validation step may serve as a feedback to the Requirement Engineering phase, should some
ambiguity or inconsistency in the original requirements be detected. Otherwise, the comparison of

ASCENS 35

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

different strategies will produce a streamlined finite state machine, that might be mapped into suitable
SCEL terms, and thus passed to the jRESP simulation and analysis environment. An early analysis on
prototypes, even if performed on an abstract representation of the real system, can at least speed-up
testing and debugging, and dispense the programmers from coding lowest-performance strategies.

MESSI conforms to the CODA conceptual framework (for Control Data, the key feature of the
methodology), a white-box approach to the specification of self-adaptive systems, aiming at providing
simple yet precise guidelines for their clean structuring. We proposed it in a few papers [BCG+12a,
BCG+a] and presented it already in deliverables D2.2 and JD2.1. Briefly, the main idea is that the pro-
grammer is in charge of separating the adaptation and the application logic, by explicitly identifying
the control data, i.e. the data of the system whose modification triggers an adaptation. MESSI is imple-
mented with the reflective language Maude, and it supports a hierarchical software architecture style
called “reflective russian dolls”, which we have found well-suited for modeling autonomic systems
with self-* features [BCG+12b, BCG+b]. We decided to adopt an implementation using available,
state-of-the-art tools, to be able to test immediately our proposal as a component of the life cycle. We
foresee its reengineering, by using the chain of tools and techniques now developed by ASCENS, the
MISSCEL simulator reported in JD3.1 and D6.3, as well as in D1.3, being a case at hand.

As a concrete example to test the effectiveness of our approach, we addressed an “easy explo-
ration” variant of the robotic scenario where no construction is needed. We further assume that the
victim is either too heavy for a single robot or that it has to be protected. More precisely, we cur-
rently assume that a victim robot has to be surrounded by eight robots in order to be rescued. This
number might be parametrized, depending on the weight of the victim and/or on the strength of the
rescue-robots. So the problem is to identify a victim, attract other robots to completely surround it
aggregating in a circle, and. when the assembly is ready, move all together towards a light, represent-
ing a safe location. Noteworthy, the strategy of Figure 11 is part of the outcome of the work done by
a group of three students during the International AWARENESS summer school on Self-Awareness in
Autonomic Computing Systems (AWASS 2012) 10. It is worth noticing that none of the students were
expert in robotics, self-assembly behaviours or swarm computing. This shows the ease of use of our
framework.

The strategy depicted in Figure 11 is executed concurrently and independently by all rescue-robots
in the swarm. Each state is implemented by a basic MESSI controller which is a module (a set of
rules) realizing a predefined behaviour: for example, MOVE IN ANY DIRECTION implements random
walking; IDLE lets the robot stay idle; and robots in state GRAB ADMISSIBLE LED try to grab a robot
with red LEDs. Transitions among states represent changes of behaviour, triggered by the condition
labeling the arrow. They are implemented using reflection and are seen as adaptations of the robot,
because they correspond to a change of control data, i.e., of the MESSI controller currently under
eecution. Briefly, a robot starts in the AGG state and, walking around, it changes to SA when it sees a
victim. When it grabs the victim (states WT or GWT) it changes its LEDs to magenta and stops. When
another robot sees a magenta LED, it changes state to SBB, where the OUTLANK EFFECT controller
lets it explore the surroudings looking for the victim. States GWT, WT, PT1 and PT2 implement a token
passing protocol to check that the victim is completely surrounded by robots. When this happens, all
robots are in state SH and, for the sake of conciseness, we assume that after a timeout they change
state to CP where they move together towards a light source.

The comparison of the performances of different strategies implemented in MESSI can be carried
out using a parallel statistical model checker. We do not have results about the above collective res-
cue scenario yet, as we currently focused on obstacle avoidance (e.g. hole-crossing while navigating
towards a light source) and morphogenesis (where robots assemble to form predefined shapes) sce-
narios. Indeed, the procedure proved adequate in identifying some weaknesses in the specification

10http://www.aware-project.eu/awareness-training/awass-2012/

ASCENS 36

http://www.aware-project.eu/awareness-training/awass-2012/

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

Figure 11: A self-assembly strategy for collective rescue scenarios.

of the basic self-assembly response strategy proposed in [OGCD10], as reported in [BCG+b]. Suc-
cessive rounds of specification tuning and analysis provided a valuable feedback, and allowed for the
development of sound and sometimes more efficient strategies for such scenarios.

3.3.3 SCEL Modeling and jRESP Programming

In this section, we outline how SCEL [DLPT13, DFLP11b] can be used to model the robotic scenarios.
In the considered model, each robot is described via a SCEL component.

To model an autonomic system in SCEL, the first step is to identify the basic attributes that charac-
terize the relevant aspects of Autonomic Components (ACs) involved. ACs are entities with dedicated
knowledge units and resources. ACs can cooperate while playing different roles. Awareness is enabled
by providing ACs with information about their own state and behavior; such information is stored in
each AC’s knowledge repository. These repositories also allow ACs to store and retrieve information
about their working environment. Ultimately, this information is used to redirect and adapt their be-
havior. Each AC is equipped with an interface, consisting of a collection of attributes, such as provided
functionalities, spatial coordinates, group memberships, trust level, response time, etc. Attributes are
used by the ACs to dynamically organize themselves into autonomic-component ensembles (ACEs).
These are sets of ACs featuring goal-oriented execution. ACEs are highly dynamic and flexible, and
not curbed by rigid structures. These attributes are typically identified during the requirements analysis
and are related to the set of goals and utilities that are part of SOTA specification.

In the robot scenarios, one of the main attributes is the task that a robot is performing. For instance,
in the hard exploration variant, when individual mapping is not possible, possible values for this
attribute, that we call task, are: exploring, networking, searching and rescuing.

The value of attribute task is determined by what the robot sensors perceives from the enclosing
environment. The schema of robot behaviour is the following: a group of robots starts in task explor-
ing and performs a random walk across the area. A robot switches to task networking when either it
perceives a victim, or it detects a given number of robot invoked in task networking. The following

ASCENS 37

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

code segment is the SCEL process identifying the exploring task:

Pexp(id) , //While executing this behaviour a robot moves following a random walk.
get(“victim sensed”)@self.

//When a victim is perceived, the robot stops moving
put(“stop”)@self.
//The fact that a victim has been directly found is published in the local knowledge
put(“victim”, 0, id)@self.
nil

+ qry(“victim”, ?d, ?r)@true.
//A robot also stops the presence of a victim is inferred from another robot
put(“stop”)@self.
//In this case the the robot publish in the knowledge
//that a victim has been indirectly perceived
put(“victim”, d + 1, id)@self.
nil

During the exploration phase, robots publish information about the distance (in terms of number
of hops) to the victims in the local knowledge. This information will be used by the other robots (all in
state searching). A victim can be discovered by following the chain of decreasing hops. When a robot
at distance 0 from a victim is found, a robot starts the rescue phase. The processes implementing the
searching procedure are reported below:

Psearch() , //Looks for a robot that directly or indirectly perceives a victim
qry(“victim”, ?d, ?r)@true.
Pfollow(r, d)

Pfollow(r, d) , if (d == 0){
//A robot that directly perceives a victim has been found.
Presc()
}
//Move towards robot r
put(“towards”, r)@self.
//Search the next robot in the path to the victim
qry(“victim”, d− 1, ?r)@true.
Pfollow(d− 1, r)

Starting from a SCEL specification we can easily obtain the corresponding jRESP code that
provides a Java implementation of the robot controller. The implementation of jRESP fully relies
on the SCEL’s formal semantics. This close correspondence enhances confidence on the behavior of
the jRESP implementation of SCEL programs, once the latter have been analyzed through formal
methods made possible by the formal operational semantics. Unfortunately, jRESP programs cannot
be executed on a real robot. However, we can simulate the behavior of the system by relaying on the
simulation environment provided by jRESP.

In particular, to support analysis of adaptive systems specified in SCEL, jRESP provides a set
of classes that permits simulating jRESP programs. These classes allow the execution of virtual
components over a simulation environment that is able to control component interactions and to collect
relevant simulation data.

By relying on jRESP simulation environment, a prototype framework for statistical model-checking
has been also developed. Following this approach, a randomized algorithm is used to verify whether

ASCENS 38

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

the implementation of a system satisfies a specific property with a certain degree of confidence. In-
deed, the statistical model-checker is parameterized with respect to a given tolerance ε and error
probability p. The used algorithm guarantees that the difference between the value computed by the
algorithm and the exact one is greater than ε with a probability that is less than p.

The model-checker included in jRESP can be used to verify reachability properties. These per-
mits evaluating the probability to reach, within a given deadline, a configuration where a given predi-
cate on collected data is satisfied.

3.3.4 Awareness Mechanisms

As described in Sect. 3.3.1, the requirement analysis phase of the EDLC results in a state-space model
of the system’s behavior, and in goals and utilities that describe the desired behavior of the system. To
convert the abstract requirements into an awareness-based solution that can be executed on the Iliad
runtime, the main tasks are:

1. State and action abstraction, i.e., reducing the abstract state-space to a manageable size, in such
a manner that the reasoners of the awareness mechanism can still decide whether the ensemble’s
goals have been reached, and which effects various actions have on the state;

2. Developing strategies (either internal to the awareness mechanism, or external) that can deter-
mine which actions must be taken in order to reach the goals determined in the analysis phase.

Often, the awareness mechanism will be used by SCEL/jRESP programs that serve as autonomic
manager and managed elements, as described in the previous section. In this context, the SCEL pro-
grams are responsible for high-level behaviors, control, and synchronization. The distribution of work
between awareness mechanism and SCEL programs can be handled in a flexible manner: a SCEL
program might, e.g., only use the reinforcement-learning component of Iliad to perform state esti-
mation, and perform all computations concerning the actions that should be performed on its own; a
different solution might instead use the HTN planner of Iliad to compute the actions to execute, so
that the SCEL program serves only as “action executor” that performs almost no computation. By
using the run-time cycle of the EDLC, it is also possible to combine these two solutions: the system
can execute (efficient) jRESP code in situations that were planned for at design time, or that it has
already encountered and solved in the past. When an unexpected situation appears, or the measured
performance degrades, the SCEL program acting as autonomic manager can ask the awareness mech-
anism to compute a new strategy (using potentially expensive reasoning mechanisms). After obtaining
a solution, the autonomic manager can trigger an adaptation process that places the new strategy into
the library of known solutions available to the managed elements, so that similar situations can be
handled efficiently in the future.

In addition to these general considerations, the robotics scenario provides several challenges for
the awareness mechanism (and any formalism that is based on high-level descriptions of the domain
or on reasoning): The marXbots provide relatively limited memory and computational power, so that
running complex reasoning mechanisms on the robots themselves is practically infeasible. The data
delivered by most sensors is noisy, and because of the limited computational power available, many
state estimation techniques that are used on larger robots cannot be performed on the marXbot. Thus,
it is often not possible to obtain precise information about the robot’s state, and decisions must be
made using a probabilistic state estimate.

Even with these restrictions, an awareness mechanism based on the SOTA model can provide
significant improvements to the system’s performance. We have run several experiments to explore
awareness mechanisms. In one of these experiments, a simulated robot executes a rescue operation in
a slightly simplified version of the hard exploration scenario where no construction is needed and the

ASCENS 39

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

(define-constant all-directions ’(N NE E SE S SW W NW))
(defun* nav (loc)

"nav LOC
Navigate to location LOC. Repeatedly choose among the navigation
actions until the robot reaches LOC."

(until (equal (robot-loc) loc)
(with-choice navigate-choice (dir (remove-obstacles all-directions))
(action navigate-move dir))))

Figure 12: High-level partial program for navigation in the rescue scenario

environment has a maze-like topology with mostly narrow corridors: the robot navigates to a victim
(whose position is known), picks up the victim, and then navigates back to a rescue zone. The robot is
not provided with a map of the environment. To avoid the complexities of Simultaneous Localization
and Mapping (SLAM), for the time being we assume that the robot can determine its position and
orientation, e.g., by using a GPS receiver. The robot incurs a penalty for bumping into obstacles while
navigating or for driving into areas with radiation, but it cannot reliably sense obstacles and radiation;
instead, it can only determine the problem when it receives a penalty after moving. This is a realistic
assumption for a robot relying on local sensors only. The robot can infer whether the penalty was due
to an obstacle or radiation by checking whether its position is unchanged after receiving a penalty;
however, the robot has a certain chance of slipping and moving in a different direction than intended,
so this check is not completely reliable. While the experiment removes uncertainty about the robot’s
location and does not take into account moving obstacles, it addresses many issues of the full hare
exploration scenario, and is an important first step towards developing an awareness mechanism that
can drive the run-time cycle of the EDLC in robotic scenarios.

Fig. 12 shows the partial program (i.e., an internal strategy) used by a simple awareness mecha-
nism based on reinforcement learning. This program repeatedly picks an action (move north, move
north-west, etc.) until the robot has reached the desired target location; it is a partial program since
the program itself does not specify which of the possible actions should be taken; this choice is per-
formed by a reinforcement learning mechanism. Fig. 12 shows the action abstraction performed by
the awareness mechanism: the robot’s motion is represented by a compass point only. The label
navigate-choice is responsible for connecting the partial program to the reinforcement learning
mechanism which also performs state abstraction; the label navigate-move is used by the runtime
to execute the desired action, e.g., by placing a tuple into the tuple space of the controlling SCEL
program.

Figure 13a shows a relatively typical learning curve when using the program of Fig. 12. Even with
this extremely simple partial program and the default reinforcement learning algorithm used by Iliad,
the robot will reliably rescue the victim (have a score > 0) after ca. 3000 simulated episodes.11 By tak-
ing into account knowledge about similar routes and performing a limited amount of HTN-planning,
the performance of the awareness mechanism can be significantly increased while still leaving it light-
weight enough to execute on individual marXbots (see Figure 13b).

3.3.5 Deployment

The final phase of the EDLC involves the deployment of the robot behaviors on the robots. This phase
is the most critical because it is usually the most economically expensive, time-consuming, and risky.

11This low number of episodes relative to the state space is possible because of the maze-like structure of the environment.
For this simple program, performance degrades if the environment contains many open areas.

ASCENS 40

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

(a) Simple learning (b) Knowledge-based learning + planning

Figure 13: Learning curves for single-robot rescue operation in a simplified, maze-like hard-
exploration environment with slippery floor (random exploration, approx. 15000 episodes, using dis-
crete state abstraction with approx. 6400 states, max. possible avg. performance ≈ 47)

For this reason, deployment is usually performed in two distinct sub-phases. The first sub-phase
consists in testing the behaviors in accurate physics-based simulations. These simulations must in-
clude as much detail as possible, so as to minimize catastrophic issues in the next sub-phase. The next
deployment sub-phase consists in testing the behaviors on the real platforms.

Deployment is likely to uncover problems that have been overlooked in the previous phases of
the EDLC. Thus, the outcome of the deployment activities can be exploited as feedback to refine the
analysis of the system as of the previous EDLC phases, fostering new cycles of design. In ASCENS,
the deployment phase is completed using either ARGoS framework [PTO+12]12 or jRESP13.

ARGoS offers facilities both to simulate large-scale robots swarms as accurately as necessary, and
to deploy the refined behaviors onto the real robots without modification. The robot behaviors can be
written either in C++ or in Lua. For instance, the explore behavior of the robots for the landmark-based
navigation approach described in D73 is reported in Fig. 14.

In addition, by using the Hexameter communications infrastructure14, ARGoS can integrate aware-
ness mechanisms developed using the Iliad runtime either directly on individual robots or remotely
over a network connection.

Alternatively, jRESP is a Java runtime environment providing a framework for developing auto-
nomic and adaptive systems according to the SCEL paradigm. Specifically, jRESP provides an API
that permits using in Java programs the SCEL’s linguistic constructs for controlling the computation
and interaction of autonomic components, and for defining the architecture of systems and ensembles.
jRESP provides specific components that can be used to simulate SCEL programs.

12http://iridia.ulb.ac.be/argos
13jRESP (Java Run-time Environment for SCEL Programs) website: http://jresp.sourceforge.net/.
14https://github.com/thomasgabor/hexameter/ and https://github.com/hoelzl/Hexameter

ASCENS 41

http://iridia.ulb.ac.be/argos
http://jresp.sourceforge.net/
https://github.com/thomasgabor/hexameter/
https://github.com/hoelzl/Hexameter

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

--[[Logic of state EXPLORE]]
function rescuer:explore()
-- State transition logic
-- Idea: Become a landmark if you get too far from the closest known landmark
-- Be sure to be out of the nest (landmarks are useless inside the nest)
if rescuer:is_out_of_nest() then
-- Get the landmarks around
local landmarks = rescuer:landmarks_in_range()
if landmarks then
-- Get the data of the closest landmark
local dist = RAB_RANGE
local marker
local is_victim_landmark = false
for i = 1, #landmarks do
if landmarks[i].range < dist then
dist = landmarks[i].range
marker = landmarks[i].data[3]
is_victim_landmark = (landmarks[i].data[2] == RESCUER_STATE__VICTIM_LANDMARK)

end
end
-- Are we getting too far from the closest?
if (not is_victim_landmark) and

(dist > 0.8 * RAB_RANGE) then
-- The closest landmark is getting too far
-- Become a landmark!
rescuer:become_landmark(marker)
return

end
end

else
-- Explorer got back to the nest
-- Switch back to exiting state
rescuer:switch_to_exiting()
return

end
-- State logic
-- Wander in the environment
local repulsion = rescuer:repulsion_vector()
if(repulsion.x*repulsion.x+repulsion.y*repulsion.y > 0.001) then
rescuer:vector_to_wheel_velocity_noscale(repulsion)

else
robot.wheels.set_velocity(5,5)

end
end

Figure 14: The Explore behavior for the landmark-based approach in D73, written in Lua on ARGoS.

ASCENS 42

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

4 Conclusions

In this deliverable we presented a software development life cycle for autonomic systems. Its aim is to
support developers dealing with self-awareness and self-adaptation in ensembles, talking into account
environmental situation. A distinguishing feature of the double-wheeled life cycle is the feedback loop
from runtime to design (in addition to the feedback loops at runtime provided by classical approaches
for self-adaptive engineering). It is also important to remark that our life cycle relies on foundational
methods used for the verification of the expected behaviour; indeed this provides this way another
feedback loop that allows for improvement of the software. We illustrated how the life cycle can be
instantiated using a set of languages, methods and tools developed within the ASCENS project.

The proof of concept of the life cycle was performed for the three domains of the ASCENS case
studies: robot swarms, cloud computing and e-mobility. Although the selected scenarios of these case
studies are quite different, from the software engineering point of view similar methods and techniques
can be applied to ensure awareness and self-adaptation. The main commonalities regarding techniques
and tools are:

• Requirements engineering based on SOTA (State-of-the-Affairs)

• Modeling and programming of the scenarios with SCEL (Software Component Ensemble Lan-
guage)

• Implementation supported by the jRESP (Java runtime environment) and DEECo (Dependable
Emergent Ensembles of Components)

• Use of adaptation patterns

• POEM awareness mechanisms

Within the scope of ASCENS there have been developed many other methods, techniques and tools
also applicable in the EDLC but which were not mentioned in this deliverable. The reader is referred
to deliverables of work packages WP1 to WP8 and in particular to the ASCENS Joint Deliverable
on Verification Results Applied to the Case Studies (JD3.1) [Be13] for further scenarios as well as
methods, tools and techniques used in the validation and verification phase of the EDLC.

ASCENS 43

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

References

[ALLS13] Michele Amoretti, Alberto Lluch-Lafuente, and Stefano Sebastio. A cooperative ap-
proach for distributed task execution in autonomic clouds. In PDP, pages 274–281.
IEEE Computer Society, 2013.

[AZ12] D. B. Abeywickrama and F. Zambonelli. Model Checking Goal-Oriented Requirements
for Self-Adaptive Systems. In Proc. of ECBS, pages 33–42. IEEE, April 2012.

[BBD+12] Saddek Bensalem, Marius Bozga, Benoı̂t Delahaye, Cyrille Jégourel, Axel Legay, and
Ayoub Nouri. Statistical Model Checking QoS Properties of Systems with SBIP. In
Tiziana Margaria and Bernhard Steffen, editors, ISoLA (1), volume 7609 of LNCS, pages
327–341. Springer, 2012.

[BBH+12] Lubomir Bulej, Tomas Bures, Vojtech Horky, Jaroslav Keznikl, and Petr Tuma. Perfor-
mance Awareness in Component Systems: Vision Paper. In Proceedings of COMPSAC
2012, COMPSAC ’12, 2012.

[BBHK13] Lubomı́r Bulej, Tomáš Burea, Vojtčch Horký, and Jaroslav Keznikl. Adaptive deploy-
ment in ad-hoc systems using emergent component ensembles: vision paper. In Pro-
ceedings of the 4th ACM/SPEC International Conference on Performance Engineering,
ICPE ’13, pages 343–346, New York, NY, USA, 2013. ACM.

[BBK+12] Lubomir Bulej, Tomas Bures, Jaroslav Keznikl, Alena Koubkova, Andrej Podzimek,
and Petr Tuma. Capturing Performance Assumptions using Stochastic Performance
Logic. In Proc. 3rd Intl. Conf. on Performance Engineering, ICPE’12, Boston, MA,
USA, 2012.

[BBNS09] Saddek Bensalem, Marius Bozga, Thanh-Hung Nguyen, and Joseph Sifakis. D-Finder:
A Tool for Compositional Deadlock Detection and Verification. In Ahmed Bouajjani
and Oded Maler, editors, CAV, volume 5643 of LNCS, pages 614–619. Springer, 2009.

[BBS06] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling Heterogeneous Real-time
Components in BIP. In SEFM, pages 3–12. IEEE Computer Society, 2006.

[BCC+97] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garcı́a, and G. Puebla.
The Ciao Prolog System. Reference manual. Technical Report CLIP3/97.1, School of
Computer Science, Technical University of Madrid (UPM), 1997.

[BCG+a] Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch-Lafuente, and Andrea
Vandin. A conceptual framework for adaptation. ACM Transactions on Autonomous and
Adaptive Systems. submitted.

[BCG+b] Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch-Lafuente, and Andrea
Vandin. Modelling and analyzing adaptive self-assembly strategies with maude. Science
of Computer Programming. to appear.

[BCG+12a] Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch-Lafuente, and Andrea
Vandin. A Conceptual Framework for Adaptation. In Juan de Lara and Andrea Zisman,
editors, FASE, volume 7212 of LNCS, pages 240–254. Springer, 2012.

ASCENS 44

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

[BCG+12b] Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch-Lafuente, and Andrea
Vandin. Modelling and analyzing adaptive self-assembly strategies with maude. In
Franciso Durán, editor, WRLA, volume 7571 of Lecture Notes in Computer Science,
pages 118–138. Springer, 2012.

[BdSIY13] Saddek Bensalem, Lavindra de Silva, Félix Ingrand, and Rongjie Yan. A verifiable and
correct-by-construction controller for robot functional levels. CoRR, abs/1309.0442,
2013.

[Be13] Saddek Bensalem and Jacques Combaz (eds.). Verification Results Applied to the Case
Studies, November 2013. ASCENS Join Deliverable JD3.1.

[BGH+13a] Tomas Bures, Ilias Gerostathopoulos, Petr Hnetynka, Jaroslav Keznikl, Michal Kit, and
Frantisek Plasil. DEECO: An Ensemble-Based Component System. In Proceedings
of the 16th International ACM Sigsoft symposium on Component-based software engi-
neering, CBSE ’13, pages 81–90, New York, NY, USA, 2013. ACM.

[BGH+13b] Tomas Bures, Ilias Gerostathopoulos, Petr Hnetynka, Jaroslav Keznikl, Michal Kit, and
Frantisek Plasil. DEECo an Ensemble-Based Component System. In Proc. of CBSE
’13, Vancouver, Canada, 2013. ACM.

[BGL+11] Saddek Bensalem, Andreas Griesmayer, Axel Legay, Thanh-Hung Nguyen, and Doron
Peled. Efficient Deadlock Detection for Concurrent Systems. In Satnam Singh, Barbara
Jobstmann, Michael Kishinevsky, and Jens Brandt, editors, MEMOCODE, pages 119–
129. IEEE, 2011.

[BLRV95] A. Bröckers, C. M. Lott, H. D. Rombach, and M. Verlage. MVP-L Language Report
Version 2. Technical Report Technical Report Nr. 265/95, University of Kaiserslautern,
1995.

[BMR01] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-Based Constraint Logic Program-
ming: Syntax and Semantics. ACM TOPLAS, 23(1):1–29, 2001.

[BMSG+09] Yuriy Brun, Giovanna Marzo Serugendo, Cristina Gacek, Holger Giese, Holger Kienle,
Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. Software engineering for
self-adaptive systems. chapter Engineering Self-Adaptive Systems through Feedback
Loops, pages 48–70. Springer, Berlin, Heidelberg, 2009.

[BPG+04] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John Mylopou-
los. Tropos: An Agent-Oriented Software Development Methodology. Autonomous
Agents and Multi-Agent Systems, 8(3):203–236, May 2004.

[Cor05] IBM Corporation. An Architectural Blueprint for Autonomic Computing. Technical
report, IBM, 2005.

[CPZ11] G. Cabri, M. Puviani, and F. Zambonelli. Towards a Taxonomy of Adaptive Agent-
based Collaboration Patterns for Autonomic Service Ensembles. In Proc. of CTS, pages
508–515. IEEE, May 2011.

[DEU] Distributed Systems Group, DEUS project homepage. http://code.google.
com/p/deus/.

ASCENS 45

http://code.google.com/p/deus/
http://code.google.com/p/deus/

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

[DFLP11a] Rocco De Nicola, Gian Luigi Ferrari, Michele Loreti, and Rosario Pugliese. A
Language-Based Approach to Autonomic Computing. In Formal Methods for Com-
ponents and Objects, 10th International Symposium, Revised Selected Papers, pages
25–48, 2011.

[DFLP11b] Rocco De Nicola, Gian Luigi Ferrari, Michele Loreti, and Rosario Pugliese. A
Language-Based Approach to Autonomic Computing. In Revised Selected Papers of
FMCO, pages 25–48. Springer, 2011.

[dLea11] Rogerio de Lemos et al. Software Engineering for Self-Adaptive Systems: A second
Research Roadmap. In Rogerio de Lemos, Holger Giese, Hausi Müller, and Mary Shaw,
editors, Software Engineering for Self-Adaptive Systems, number 10431 in Dagstuhl
Seminar Proceedings, Dagstuhl, Germany, 2011. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany.

[DLPT13] Rocco De Nicola, Michele Loreti, Rosario Pugliese, and Francesco Tiezzi. SCEL: a
Language for Autonomic Computing. Technical report, IMT Lucca, January 2013.

[DNFP98] R. De Nicola, G.L. Ferrari, and R. Pugliese. KLAIM: A Kernel Language for Agents
Interaction and Mobility. Software Engineering, IEEE Transactions on, 24(5):315–330,
1998.

[GSR96] Georg Gottlob, Michael Schrefl, and Brigitte Röck. Extending object-oriented systems
with roles. ACM Trans. Inf. Syst., 14(3):268–296, July 1996.

[Hel10] Joseph L. Hellerstein. Google cluster data. Google research blog, Jan-
uary 2010. Posted at http://googleresearch.blogspot.com/2010/01/
google-cluster-data.html.

[HK14] Rolf Hennicker and Annabelle Klarl. Foundations for Ensemble Modeling - The Helena
Approach. In Specification, Algebra, and Software (Festschrift in Honour of Kokichi
Futatsugi), 2014. To Appear.

[Höl13] Matthias Hölzl. The POEM Language (Version 2). Technical Report 7, ASCENS, July
2013. http://www.poem-lang.de/documentation/TR7.pdf.

[HW11] Matthias M. Hölzl and Martin Wirsing. Towards a system model for ensembles. In
Gul Agha, Olivier Danvy, and José Meseguer, editors, Formal Modeling: Actors, Open
Systems, Biological Systems, volume 7000 of Lecture Notes in Computer Science, pages
241–261. Springer, 2011.

[HW14] Matthias Hölzl and Martin Wirsing. Issues in engineering self-aware and self-expressive
ensembles. In Jeremy Pitt, editor, The Computer After Me. World Scientific Publishing,
to appear 2014.

[HZWS12] N. Hoch, K. Zemmer, B. Werther, and R. Y. Siegwarty. Electric Vehicle Travel Opti-
mization - Customer Satisfaction Despite Resource Constraints. In Proc. of IEEE IVS.
IEEE, 2012.

[IM10] Paola Inverardi and Marco Mori. A Software Lifecycle Process to Support Consistent
Evolutions. In Rogério de Lemos, Holger Giese, Hausi A. Müller, and Mary Shaw,
editors, Software Engineering for Self-Adaptive Systems, volume 7475 of LNCS, pages
239–264. Springer, 2010.

ASCENS 46

http://googleresearch.blogspot.com/2010/01/google-cluster-data.html
http://googleresearch.blogspot.com/2010/01/google-cluster-data.html
http://www.poem-lang.de/documentation/TR7.pdf

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

[JL87] J. Jaffar and J. L. Lassez. Constraint Logic Programming. In POPL, pages 111–119.
ACM Press, 1987.

[KBP+13a] Jaroslav Keznikl, Tomas Bures, Frantisek Plasil, Ilias Gerostathopoulos, Petr Hnetynka,
and Nicklas Hoch. Design of Ensemble-Based Component Systems by Invariant Refine-
ment. In Proceedings of the 16th International ACM Sigsoft symposium on Component-
based software engineering, CBSE ’13, pages 91–100, New York, NY, USA, 2013.
ACM.

[KBP+13b] Jaroslav Keznikl, Tomas Bures, Frantisek Plasil, Ilias Gerostathopoulos, Petr Hnetynka,
and Nicklas Hoch. Design of Ensemble-Based Component Systems by Invariant Re-
finement. In Proc. of CBSE ’13, Vancouver, Canada, 2013. ACM.

[KC03] Jeffrey Kephart and David Chess. The Vision of Autonomic Computing. Computer,
36(1):41–50, 2003.

[Lam08] Axel Van Lamsweerde. Requirements Engineering: from Craft to Discipline. In SIG-
SOFT ’08/FSE-16, pages 238–249. ACM, 2008.

[MCY99] John Mylopoulos, Lawrence Chung, and Eric S. K. Yu. From Object-Oriented to Goal-
Oriented Requirements Analysis. Communications of the ACM, 42(1):31–37, 1999.

[MES] MESSI: http://sysma.lab.imtlucca.it/tools/ensembles/.

[MMH12] G. V. Monreale, U. Montanari, and N. Hoch. Soft Constraint Logic Programming for
Electric Vehicle Travel Optimization. CoRR, abs/1212.2056, 2012.

[MVZ+12] Lukáš Marek, Alex Villazón, Yudi Zheng, Danilo Ansaloni, Walter Binder, and Zheng-
wei Qi. DiSL: a domain-specific language for bytecode instrumentation. In Proceedings
of the 11th annual international conference on Aspect-oriented Software Development,
AOSD ’12, pages 239–250, New York, NY, USA, 2012. ACM.

[NFLP13] Rocco Nicola, Gianluigi Ferrari, Michele Loreti, and Rosario Pugliese. A language-
based approach to autonomic computing. In Bernhard Beckert, Ferruccio Damiani,
FrankS. Boer, and MarcelloM. Bonsangue, editors, Formal Methods for Components
and Objects, volume 7542 of Lecture Notes in Computer Science, pages 25–48. Springer
Berlin Heidelberg, 2013.

[NGT04] Dana Nau, Malik Ghallab, and Paolo Traverso. Automated Planning: Theory & Prac-
tice. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[OGCD10] Rehan O’Grady, Roderich Groß, Anders Lyhne Christensen, and Marco Dorigo. Self-
assembly strategies in a group of autonomous mobile robots. Autonomous Robots,
28(4):439–455, 2010.

[PCZ13] M. Puviani, G. Cabri, and F. Zambonelli. A taxonomy of architectural patterns for self-
adaptive systems. In Proceedings of the Sixth International C* Conference on Computer
Science and Software Engineering, pages 76–84, Porto, Portugal, July 2013.

[PF13] Mariachiara Puviani and Regina Frei. Self-management for cloud computing. In SAI
Conference, London, UK, 2013.

ASCENS 47

http://sysma.lab.imtlucca.it/tools/ensembles/

JD3.2: Software Engineering for Self-Aware SCEs (Final) November 8, 2013

[PNA+13] Mariachiara Puviani, Victor Noel, Dhaminda Abeywickrama, Franco Zambonelli,
Rocco De Nicola, Francesco Tiezzi, Luca Cesari, and Rosario Pugliese. Third report on
wp4. ASCENS Deliverable D, 4, 2013.

[PPC+13] M. Puviani, C. Pinciroli, G. Cabri, L. Leonardi, and F. Zambonelli. Is self-expression
useful? evaluation by a case study. In Proceedings of the 22nd IEEE WETICE con-
ference - 3rd Track on Adaptive and Reconfigurable Service-oriented and conmponent-
based Applications and Architectures (AROSA), Hammamet, Tunisia, June 2013.

[PTO+12] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne Brutschy, Manuele
Brambilla, Nithin Mathews, Eliseo Ferrante, Gianni Di Caro, Frederick Ducatelle,
Mauro Birattari, Luca Maria Gambardella, and Marco Dorigo. ARGoS: a modular,
parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6(4):271–
295, 2012.

[Puv12] M. Puviani. Tr 4.2: Catalogue of architectural adaptation patterns. Technical report,
ASCENS Project, 2012.

[Puv13] M. Puviani. Tr 4.3: Simulation of adaptation patterns and self-expression mechanisms.
Technical report, ASCENS Project, 2013.

[RRMP08] Andreas Rausch, Ralf Reussner, Raffaela Mirandola, and Frantisek Plasil, editors. The
Common Component Modeling Example: Comparing Software Component Models,
volume 5153 of LNCS. Springer, 2008.

[Ser13] Nikola Serbedzija. Deliverable d7.3: Third report on wp7 - integration and simulation
report for the ascens case studies. Technical report, ASCENS Project, 2013.

[SF09] Nikola B. Serbedzija and Stephen H. Fairclough. Biocybernetic loop: From awareness
to evolution. In IEEE Congress on Evolutionary Computation, pages 2063–2069. IEEE,
2009.

[ST09] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and research chal-
lenges. ACM TAAS, 4(2):1–42, 2009.

[Szy02] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, Boston, MA, USA, 2nd edition, 2002.

[VH13] E. Vassev and M. Hinchey. Autonomy Requirements Engineering. IEEE Computer,
46(8):82–84, 2013.

[VHBM13] E. Vassev, M. Hinchey, N. Bicocchi, and P. Mayer. D3.3: Third Report on WP3: Knowl-
edge Modeling for ASCENS Case Studies and Knowledge Implementation, 2013. AS-
CENS Deliverable.

[VHM+12] E. Vassev, M. Hinchey, U. Montanari, N. Bicocchi, F. Zambonelli, and M. Wirsing.
D3.2: Second Report on WP3: The KnowLang Framework for Knowledge Modeling
for SCE Systems, 2012. ASCENS Deliverable.

ASCENS 48

	Introduction
	Ensemble Development Life Cycle
	Designing Self-Aware Systems
	Requirements Engineering
	Modeling and Programming
	Verification and Validation

	Running Self-Aware Systems
	Monitoring
	Awareness
	Self-adaptation

	Transitions between Design and Runtime Cycles
	Deployment
	Feedback

	EDLC in the Context of the ASCENS Case Studies
	Cloud Computing
	Requirements Engineering with SOTA
	Adaptation Patterns applied to Science Cloud
	Ensembles Level Modeling with Helena
	Modeling the high-load Scenario with SCEL and SACPL
	A Cooperative Approach for Distributed Task Execution in Autonomic Clouds
	Mobile Cloud Computing with DEECo

	e-Mobility
	Applying EDLC to e-Mobility – Big Picture
	Requirements Engineering with SOTA
	From SOTA to High-Level Design with Adaptation Patterns
	High-Level Design – Architecture
	Modeling Computational Activities with SCEL
	Adaptation via Soft-Constraints Solving and Optimization
	Implementation and Deployment
	Evaluation

	Swarm Robotics
	Requirement Analyses
	Modeling and validation with MESSI
	SCEL Modeling and jRESP Programming
	Awareness Mechanisms
	Deployment

	Conclusions

