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Executive Summary

This report outlines the last year of Research & Development within WP3 and concludes the over-
all results achieved within this WP’s mandate. WP3 was initially intended to handle the problem of
knowledge representation (KR) and awareness of self-adaptive systems. In the first three years of
the project, we developed the KnowLang Framework to provide both notation and tools for knowl-
edge representation. In the last 4th year of the project, we developed the KnowLang Reasoner, which
complements our work on the KnowLang Framework by providing a reasoner operating over the
KnowLang-specified and KnowLang-compiled knowledge bases (KBs). The KnowLang Reasoner is
an efficient and powerful reasoning mechanism that is meant to support reasoning about self-adaptive
behavior. It runs as a component in host, self-adaptive systems such as the ASCENS ensembles. The
reasoner communicates with a host system via special ASK and TELL operators and operates in the
KR context outlined by the KnowLang-compiled KB, a context formed by the represented knowl-
edge. The TELL operators feed the KR context with important information driven by errors, executed
actions, new sensory data, etc., thus helping the KnowLang Reasoner update the KB with recent
changes in both the system and execution environment. The system uses ASK operators to receive
recommended behavior where knowledge is used against the perception of the world to generate ap-
propriate actions in compliance to some goals and beliefs. In addition, ASK operators may provide the
system with awareness-based conclusions about the current state of the system or a current situation
involving the environment, and ideally with behavior models for self-adaptation.

In this deliverable, we report on our continuous work on specifying KR models for the ASCENS
Case Studies. In particular, we report our results on building the KR models for eMobility and Swarm
Robotics. The second part of this deliverable outlines our work on the KnowLang Reasoner. In
particular, we present the design and implementation of the KnowLang Reasoner, along with test
results of using the reasoner to simulate awareness for the eMobility ASCENS Case Study. Similar
to the previous years, in this year, we continued collaborating with the other WPs taking part in the
ASCENS Project, mainly with WP7, WP4, and WP8.
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1 Introduction

One of the major breakthroughs of the ASCENS Project, is KnowLang, which includes both the
KnowLang Framework and KnowLang Reasoner. During the project’s four years of research & devel-
opment, WP3 has accomplished results allowing engineers of self-adaptive systems to build knowl-
edge models with built-in adaptive mechanisms, and use these models at runtime to control the be-
havior of self-adaptive systems in critical situations requiring self-adaptation. In this deliverable, we
outline the results achieved by WP3 during the last, forth year of the ASCENS Project.

1.1 Research & Development in Year 4

In the last, fourth year of the project, after the successful completion of the KnowLang Framework
(WP3.T1), we continued working on the knowledge models for the ASCENS Case Studies (WP3.T2),
but the focus of our major efforts was put on the implementation of the KnowLang Reasoner (WP3.T3)
and using the latter to perform simulation of awareness for ASCENS ensembles (WP3.T4). At the
time of this document’s writing, we have implemented in KnowLang the knowledge bases (KBs) for
the eMobility and Swarm Robotics case studies, and with the completion of the KB for the Science
Clouds case study in Year 3 of the project [VHBM13], we concluded the task WP3.T2. Moreover,
we have implemented the first version of the KnowLang Reasoner. Although still limited in terms of
its learning abilities, currently, the reasoner can efficiently operate over all the knowledge models we
have specified with KnowLang. With this, we completed the task WP3.T3. Finally, we have used
the implemented KnowLang Reasoner, along with a test application, hosting that reasoner, to perform
awareness tests where we tested against the eMobility knowledge model, which concludes the task
WP3.T4.

1.2 Relations with Other WPs

In the fourth year of this project, we continued collaborating intensively with WP1, WP2, WP4, WP7,
and WP8. The collaboration with WP1 was at the level of interoperability between SCEL and the
KnowLang Reasoner. KnowLang provides a KR model of the SCEL knowledge base and the Knowl-
ang Reasoner should be properly integrated with SCEL. We also worked on the integration of POEM
in the reasoning process driven by the KnowLang Reasoner. Although not fully accomplished, this
work paved the way of using POEM as a FOL reasoner in the reasoning process driven by the KnowL-
ang Reasoner.

The collaboration with WP2 continued with further implementation of our model for soft con-
straints for KnowLang [VHM+12]. The soft constraints for KnowLang are used as a knowledge
representation (KR) technique that will help designers impose constraining requirements for special
liveness properties, an approximation to our understanding of good-to-have properties. The approach
associates tuples of possible values held by special KnowLang variables with possible preferences.

Concerning WP4, in this third year of the project, we worked together on the problem of situa-
tional awareness and reasoning. For data collection for awareness purposes, we used of a recently-
developed framework [BFZ14], centered around the concept of dynamic service reconfiguration,
which is able to gather data from a number of different sources, and classify them using general-
purpose algorithms. For reasoning, we used the KnowLang Framework and the Knowlang Reasoner.
This joint work resulted in the joint publication [BVZH14].

WP7 [SMP+12, SHP+13] provides vital experimental platforms for both the notation and toolset
of KnowLang. In collaboration with WP7, this year, we used again the Autonomy Requirements
Developed (ARE) approach [VH13a] to capture relevant knowledge data and then we used KnowLang
to specify a complete, yet relevant knowledge models for both eMobility and Science Clouds case
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studies. In these endeavor, WP7 provided us with important information related to the possible state
expressions and scenarios. This joint work also resulted in two publications [VHBH14, VH14].

WP8 tackles the Ensemble Development Life Cycle (EDLC) [HK13, KHK+13]. The ARE ap-
proach contributes to EDLC by adding on to the requirements engineering of the design phase of
EDLC. More specifically, it helps to capture the autonomy requirements of the system in question,
which in turn are used as a basis for deriving relevant knowledge-representation models for that very
system. In the EDLC requirements engineering, both SOTA and ARE are collaborating to come up
with self-adaptive behavior. ARE’s GAR model might be used to add on to the SOTA adaptation
patterns by outlining self-* objectives providing for self-adaptive behavior. Moreover, SOTA patterns
might help identify self-* objectives along with proper scenarios defined as SOTA trajectories to a
goal.

1.3 Structure of the Document

The rest of this document is organized as follows. Section 2 provides a brief overview of the ARE
approach, along with an overview of the KnowLang mechanism for specifying self-adaptive behavior.
This section provides a required background for the rest of the document. Sections 3 and 4 present
the KnowLang knowledge specification models for the eMobility and Swarm Robotics case studies
respectively. In Section 5 we outline the implementation of the KnowLang Reasoner, along with the
test results of simulating awareness for ASCENS ensembles. The presented results outline our experi-
ments with the KnowLang Reasoner operating over the eMobility case study. Finally, to conclude the
topic, in Section 6, we present a brief summary and future goals.

2 Capturing Requirements for Self-adaptive Behavior

The self-adaptive behavior is what makes the difference in self-adaptive systems. In this endeavor,
we have been striving to capture this very behavior, so it can be properly designed and consecutively,
implemented. To do so, we consider that self-adaptive behavior extends upstream the regular ob-
jectives of a system with special self-managing objectives, also called self-* objectives [VH13a].
Basically, the self-* objectives provide autonomy features in the form of system’s ability to auto-
matically discover, diagnose, and cope with various problems. This ability depends on the sys-
tem’s degree of autonomicity, quality and quantity of knowledge, awareness and monitoring capa-
bilities, and quality characteristics such as adaptability, dynamicity, robustness, resilience, and mobil-
ity. The approach for capturing all these requirements is called Autonomy Requirements Engineering
(ARE) [VH13a, VH13d, VH13c, VH13b]. The ARE approach was presented in our 3rd deliverable
[VHBM13] where we demonstrated in detail the process of capturing autonomy requirements for the
ASCENS Science Clouds Case Study. In this section we provide a brief overview of ARE as a needed
background for the following sections explaining the formalization of the other two ASCENS Case
Studies: eMobility and Swarm Robotics.

2.1 The Autonomy Requirements Engineering Approach

ARE strives to provide a complete and comprehensive solution to the problem of autonomy require-
ments elicitation and specification. Note that the approach targets exclusively the self-* objectives as
the only means to explicitly determine and define autonomy requirements. Thus, it is not meant to
handle the regular functional and non-functional requirements of the systems, presuming that those
might by tackled by the traditional requirements engineering approaches, e.g., use case modeling, do-
main modeling, constraints modeling, etc. Hence, functional and nonfunctional requirements might
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be captured by the ARE approach only as part of the self-* objectives elicitation.
The ARE approach starts with the creation of a goals model that represents system objectives and

their interrelationships for the system in question. For this, we use GORE (Goal-Oriented Require-
ments Engineering) where ARE goals are generally modeled with intrinsic features such as type, actor,
and target, with links to other goals and constraints in the requirements model. Goals models might be
organized in different ways copying with the system’s specifics and engineers’ understanding about
the system’s goals. Thus we may have hierarchical structures where goals reside different level of
granularity and concurrent structures where goals are considered as being concurrent to each other.

The next step in the ARE approach is to work on each one of the system goals along with the
elicited environmental constraints to come up with the self-* objectives providing the autonomy re-
quirements for this particular system’s behavior. In this phase, we apply a special Generic Autonomy
Requirements model to a system goal to derive autonomy requirements in the form of goal’s supportive
and alternative self-* objectives along with the necessary capabilities and quality characteristics.

Finally, the last step after defining the autonomy requirements per system’s objectives is the for-
malization of these requirements, which can be considered as a form of formal specification or re-
quirements recording. The formal notation used to specify the autonomy requirements is KnowLang
[VHM+12, VHBM13, VH15]. Recall that the process of requirements specification with KnowLang
goes over a few phases:

1. Initial knowledge requirements gathering - involves domain experts to determine the basic no-
tions, relations and functions (operations) of the domain of interest.

2. Behavior definition - identifies situations and behavior policies as ”control data” helping to
identify important self-adaptive scenarios.

3. Knowledge structuring - encapsulates domain entities, situations and behavior policies into
KnowLang structures like concepts, properties, functionalities, objects, relations, facts and
rules.

2.2 Formalizing Self-adaptive Behavior with KnowLang

To specify self-* objectives with KnowLang, we use special policies associated with goals, special
situations, actions (eventually identified as system capabilities), metrics, etc.[VHM+12, VHBM13,
VH15]. Hence, self-* objectives are represented as policies describing at an abstract level what the
system will do when particular situations arise. The situations are meant to represent the conditions
needed to be met in order for the system to switch to a self-* objective while pursuing a system goal.
Note that the policies rely on actions that are a-priori-defined as functions of the system. In case,
such functions have not been defined yet, the needed functions should be considered as autonomous
functions and their implementation will be justified by the ARE’s selected self-* objectives.

According to the KnowLang semantics, in order to achieve specified goals (objectives), we need
to specify policy-triggering actions that will eventually change the system states, so the desired ones,
required by the goals, will become effective [VHM+12, VH15]. Note that KnowLang policies allow
the specification of autonomic behavior (autonomic behavior can be associated with self-* objectives),
and therefore, we need to specify at least one policy per single goal, i.e., a policy that will provide
the necessary behavior to achieve that goal. Of course, we may specify multiple policies handling
same goal (objective), which is often the case with the self-* objectives and let the system decides
which policy to apply taking into consideration the current situation and conditions. The following is
a formal presentation of a KnowLang policy specification [VHM+12].

Policies (Π) are at the core of autonomic behavior (autonomic behavior can be associated with
autonomy requirements). A policy π has a goal (g), policy situations (Siπ), policy-situation relations
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(Rπ), and policy conditions (Nπ) mapped to policy actions (Aπ) where the evaluation of Nπ may

eventually (with some degree of probability) imply the evaluation of actions (denoted with Nπ
[Z]→ Aπ

(see Definition 2). A condition is a Boolean function over ontology (see Definition 4), e.g., the
occurrence of a certain event.

Def. 1 Π := {π1, π2, ...., πn}, n ≥ 0 (Policies)

Def. 2 π :=< g, Siπ, [Rπ], Nπ, Aπ,map(Nπ, Aπ, [Z]) >

Aπ ⊂ A,Nπ
[Z]→ Aπ (Aπ - Policy Actions)

Siπ ⊂ Si, Siπ := {siπ1 , siπ2 , ...., siπn}, n ≥ 0
Rπ ⊂ R,Rπ := {rπ1 , rπ2 , ...., rπn}, n ≥ 0
∀rπ ∈ Rπ • (rπ :=< siπ, [rn], [Z], π >) , siπ ∈ Siπ
Siπ

[Rπ ]→ π → Nπ

Def. 3 Nπ := {n1, n2, ...., nk}, k ≥ 0 (Conditions)

Def. 4 n := be(O) (Condition - Boolean Expression)

Def. 5 g := 〈⇒ s′〉|〈s⇒ s′〉 (Goal)

Def. 6 s := be(O) (State)

Def. 7 Si := {si1, si2, ...., sin}, n ≥ 0 (Situations)

Def. 8 si :=< s,A
←
si , [E

←
si ], Asi > (Situation)

A
←
si⊂ A (A ←si - Executed Actions)

Asi ⊂ A (Asi - Possible Actions)
E
←
si⊂ E (E ←si - Situation Events)

Policy situations (Siπ) are situations that may trigger (or imply) a policy π, in compliance with the

policy-situations relations Rπ (denoted with Siπ
[Rπ ]→ π), thus implying the evaluation of the policy

conditions Nπ (denoted with π → Nπ)(see Definition 2). Therefore, the optional policy-situation
relations (Rπ) justify the relationships between a policy and the associated situations (see Definition
2). In addition, the self-adaptive behavior requires relations to be specified to connect policies with
situations over an optional probability distribution (Z) where a policy might be related to multiple
situations and vice versa. Probability distribution is provided to support probabilistic reasoning and
to help the KnowLang Reasoner choose the most probable situation-policy ”pair”. Thus, we may
specify a few relations connecting a specific situation to different policies to be undertaken when the
system is in that particular situation and the probability distribution over these relations (involving
the same situation) should help the KnowLang Reasoner decide which policy to choose (denoted with

Siπ
[Rπ ]→ π - see Definition 2).

A goal g is a desirable transition to a state or from a specific state to another state (denoted with
s ⇒ s′) (see Definition 5). A state s is a Boolean expression over ontology (be(O))(see Definition
6), e.g., “a specific property of an object must hold a specific value”. A situation is expressed with
a state (s), a history of actions (A ←

si) (actions executed to get to state s), actions Asi that can be
performed from state s and an optional history of events E ←si that eventually occurred to get to state s
(see Definition 8).

Ideally, policies are specified to handle specific situations, which may trigger the application of
policies. A policy exhibits a behavior via actions generated in the environment or in the system
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itself. Specific conditions determine, which specific actions (among the actions associated with that
policy - see Definition 2) shall be executed. These conditions are often generic and may differ from
the situations triggering the policy. Thus, the behavior not only depends on the specific situations a
policy is specified to handle, but also depends on additional conditions. Such conditions might be
organized in a way allowing for synchronization of different situations on the same policy. When a
policy is applied, it checks what particular conditions are met and performs the mapped actions (see
map(Nπ, Aπ, [Z])) - see Definition 2). An optional probability distribution can additionally restrict
the action execution. Although initially specified, the probability distribution at both mapping and
relation levels is recomputed after the execution of any involved action. The re-computation is based
on the consequences of the action execution, which allows for reinforcement learning.

3 Formalizing eMobility with KnowLang

An eMobility system [SRA+11, SMP+12] needs to thematically, temporally and spatially coordinate
mobility entities where the system must be modeled as a heterogeneous system composed of intelli-
gent and self-aware nodes, which are cross-connected by information and communication technology.
In such a system, the e-vehicles are competing for infrastructure resources of the traffic environment
where the infrastructure resources are constrained. For example, roads, parking lots and charging sta-
tions have a limited capacity. The cost for a e-vehicle to use the infrastructure capacity is variable and
changes with time and location. Situations occur, in which the availability of infrastructure resources
does not match the demand.

eMobility brings most of the challenges that the theories and methodologies developed for self-
adaptive systems are striving to solve. Hence, self-adaptation emerged as an important paradigm
making eMobility capable of modifying the system behavior and/or structure in response to increasing
workload demands and service failures. A common characteristic of self-adaptive eMobility is to
emphasize self-adaptations required to ensure that services will be provided in a fail-safe manner and
under consideration of system goals.

In eMobility vehicles move according to a schedule defined by a driver [SRA+11, SMP+12]. Ev-
ery e-vehicle component is responsible for driving along the optimal route, meeting time constraints
imposed by the driver’s schedule and reserving spaces at a particular Point of Interest (POI). Vehi-
cles are competing for infrastructure resources of the traffic environment and a set of locally optimal
solutions should be computed for each individual driver. Each e-vehicle is equipped with a Vehicle
Planning Utility (Route Planner) that plans travels including a set of alternative routes. Traffic routes
are composed of multiple driving locations, e. g., POIs. A set of locally optimal solutions is computed
for each individual user. This set is negotiated on a global level in order to satisfy the global perspec-
tive. The set of locally optimal solutions guarantees a minimum quality for each individual driver. The
global optimization scheme guarantees optimal resource distribution within the local constraints. The
size of the set of locally optimal solutions determines the cooperative nature of the individual driver.
The smaller the set, the more competitive the driver is. The larger the set the more cooperative the
driver is. The process of Route Selection (RouteSAM) advises on a route choice, which is made from
a set of alternative routes generated by the route planner. The RouteSAM considers road capacity and
traffic levels. It optimizes overall throughput of the roads by balancing the route assignments of the
vehicles. From a local vehicle perspective the journey time is minimized, from a global perspective,
the congestion levels are minimized. The route selection process strives to satisfy global optimality
criteria of road capacity. Once a vehicle is in the close vicinity of a destination, it computes a set of
locally optimal parking lots. Again, the selection process of parking lots satisfies global optimality
criteria of parking capacity.

Figure 1 shows a formal petri net representation of a real example scenario that considers four
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Figure 1: eMobility Example [SRA+11]

destinations (Wolfsburg, Gifhorn, Braunschweig, and Hannover), the road network between the des-
tinations and the processes which are taking place at the destination locations [SRA+11]. The road
network is described by several transition framed sub nets (e.g. RNet15). It is assumed that the jour-
neys between destinations contain a limited set of variants. Typically three alternative routes and three
alternative driving styles are considered, generating a set of maximally 9 variants. Each destination
is represented by a transition framed subnet (e.g. Hannover), which models both the vehicle charging
process (e.g. CarPark H) and user specific processes (e.g. User H) such as appointments. The charging
stations that are connected to the car parks support three different charging modes (normal, fast and
ultra-fast charging).

3.1 ARE for eMobility

In the eMobility operational environment, self-adaption is required by situations that occur when the
availability of infrastructure resources does not match the demand - not enough capacity, or environ-
ment constraints (e.g., speed limit, or delay due to high traffic) hinder the e-vehicle goals. eMobility
considers five different levels of self-adaptation [SHP+13]:

• Level-1: A vehicle computes a set of alternative routes for its current destination. This operation
is performed locally by the use of the vehicle’s planning utility.

• Level-2: A vehicle chooses the best option from those alternatives that are computed in the
previous level. The vehicle observes the situation and adapts by triggering a new adaptation
cycle, starting at Level-1 to the changes in the environment. This operation may require central
planning and reasoning at group (ensemble) level.

• Level-3: A vehicle computes a set of parking lots nearby the current destination. This operation
is local and is performed by the vehicle’s planning utility.

• Level-4: A central parking lot planner (PLCSSAM) chooses the best option from those alterna-
tives that are provided by the vehicle in the previous level. As a result vehicles are assigned an
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optimal or near-optimal parking lot reservation. At the same time, a ”near-optimal parking lot”
load balancing is established.

• Level-5: A vehicle issues a reservation request to the selected parking lot. As a result the parking
space at that parking lot is booked. Both the vehicle and the parking lot monitor the situation.
If required, a new adaptation cycle is triggered.

Based on the rationale above, we applied the ARE approach (see Section 2.1) and derived the eMobil-
ity goals along with the self-* objectives assisting these goals when self-adaptation is required. Figure

Figure 2: eMobility Goals Model with Self-* Objectives for System Goals from Level 3

2 depicts the ARE goals model for eMobility where goals are organized hierarchically at four different
levels. As shown, the goals from the first two levels (e.g., ”Take Journey”, ”Arive on Time”, ”Provide
Route”, ”Provide Parking Lot”, and ”Sufficient Battery”) are main system goals captured at different
levels of abstraction. The 3rd level is resided by self-* objectives (e.g., ”Optimize Speed”, ”Avoid
Low Speed Zones”, ”Reduce Parking Time”, and ”Ensure Sufficient Battery”) and supportive goals
(e.g., ”Low Route Traffic”) associated with and assisting the 2nd-level goals. Finally, the goals from
the 4th level are self-* objectives (e.g., ”Reduce Route Traffic”) assisting the supportive goals from the
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3rd level. Basically, all the self-* objectives inherit the system goals they assist by providing behavior
alternatives with respect to these system goals. The eMobility system switches to one of the assisting
self-* objectives when alternative autonomous behavior is required (e.g., a vehicle needs to avoid low-
speed zones). In addtion, Figure 2 depicts some of the environment constraints (e.g., ”Traffic Lights”
and ”Low-speed Zones”), which may cause self-adaptation.

3.2 Specifying eMobility Ontology

In order to specify the autonomy requirements for eMobility, the first step is to specify a knowledge
base (KB) representing the eMobility system in question, i.e., e-vehicles, parking lots, routes, traffic
lights, etc. To do so, we need to specify ontology structuring the knowledge domains of eMobility.
Note that these domains are described via domain-relevant concepts and objects (concept instances)
related through relations. Recall that in order to handle explicit concepts like situations, goals, and
policies, we grant some of the domain concepts with explicit state expressions where a state expression
is a Boolean expression over the ontology (see Definition 6 in Section 2.2).

Figure 3, depicts a graphical representation of the eMobility ontology relating most of the domain
concepts within an eMobility system. Note that the relationships within a concept tree are ”is-a”
(inheritance), e.g., the RoadElement concept is a TraficEntity and the Action concept is a Knowledge
and consecutively Phenomenon, etc. Most of the concepts presented in Figure 3 were derived from
the eMobility Goals Model (see Figure 2). Other concepts are considered as explicit and derived from
the KnowLang’s specification model [VHM+12].

Figure 3: eMobility Ontology Specified with KnowLang

The following is a sample of the KnowLang specification representing three important concepts:
V ehicle, Journey, and Route. As specified, the concepts in a concept tree might have properties
of other concepts, functionalities (actions associated with that concept), states (Boolean expressions
validating a specific state), etc. For example, the Vehicle’s IsMoving state holds when the vehicle
speed (the V ehicleSpeed property) is greater than 0.
// e-Vehicle
CONCEPT Vehicle {
PARENTS {eMobility.eCars.CONCEPT_TREES.Entity}
CHILDREN { }
PROPS {
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PROP carDriver {
TYPE {eMobility.eCars.CONCEPT_TREES.Driver} CARDINALITY {1} }

PROP carPassengers {
TYPE {eMobility.eCars.CONCEPT_TREES.Passenger} CARDINALITY {*} }

PROP carBattery {
TYPE {eMobility.eCars.CONCEPT_TREES.Battery} CARDINALITY {1} }

}
FUNCS {
FUNC startEngine {TYPE {eMobility.eCars.CONCEPT_TREES.StartEngine}}
FUNC stopEngine {TYPE {eMobility.eCars.CONCEPT_TREES.StopEngine}}
FUNC accelerate {TYPE {eMobility.eCars.CONCEPT_TREES.Accelerate}}
FUNC slowDown {TYPE {eMobility.eCars.CONCEPT_TREES.SlowDown}}
FUNC startDriving {TYPE {eMobility.eCars.CONCEPT_TREES.StartDriving}}
FUNC stopDriving {TYPE {eMobility.eCars.CONCEPT_TREES.StopDriving}}

}
STATES {
STATE IsOperational{

NOT eMobility.eCars.CONCEPT_TREES.Vehicle.PROPS.carBattery.STATES.batteryLow }
STATE IsMoving{ eMobility.eCars.CONCEPT_TREES.VehicleSpeed > 0 }

}
}

CONCEPT Journey {
PARENTS {eMobility.eCars.CONCEPT_TREES.Phenomenon}
CHILDREN {}
PROPS {
PROP journeyRoute {TYPE {eMobility.eCars.CONCEPT_TREES.Route} CARDINALITY {1}}
PROP journeyTime {TYPE {DATETIME} CARDINALITY {1}}
PROP journeyCars {TYPE {eMobility.eCars.CONCEPT_TREES.Vehicle} CARDINALITY {*}}

}
STATES
{
STATE STATE InSufficientBattery {eMobility.eCars.CONCEPT_TREES.JourneyBatterySufficiency > 0}
STATE InNotSufficientBattery {
NOT eMobility.eCars.CONCEPT_TREES.Journey.STATES.InSufficientBattery}

STATE Arrived {eMobility.eCars.CONCEPT_TREES.Journey.PROPS.journeyRoute.STATES.AtEnd}
STATE ArrivedOnTime { eMobility.eCars.CONCEPT_TREES.Journey.STATES.Arrived AND

(eMobility.eCars.CONCEPT_TREES.JourneyTime <=
eMobility.eCars.CONCEPT_TREES.Journey.PROPS.journeyTime)

}
}

}

CONCEPT Route {
PARENTS {eMobility.eCars.CONCEPT_TREES.Phenomenon}
CHILDREN {}
PROPS {
PROP locationA {TYPE {eMobility.eCars.CONCEPT_TREES.Location} CARDINALITY {1}}
PROP locationB {TYPE {eMobility.eCars.CONCEPT_TREES.Location} CARDINALITY {1}}
PROP intermediateStops {TYPE {eMobility.eCars.CONCEPT_TREES.Location} CARDINALITY {*}}
PROP currentRoad {TYPE {eMobility.eCars.CONCEPT_TREES.Road} CARDINALITY {1}}
PROP alternativeRoads {TYPE {eMobility.eCars.CONCEPT_TREES.Road} CARDINALITY {*}}

}
FUNCS {
FUNC getCurrentLocation {TYPE {eMobility.eCars.CONCEPT_TREES.GetCurrentLocation}}
FUNC takeAlternativeRoad {TYPE {eMobility.eCars.CONCEPT_TREES.TakeAlternativeRoad}}
FUNC recomputeRoads {TYPE {eMobility.eCars.CONCEPT_TREES.RecomputeRoads}}

}
STATES {
STATE AtBeginning {eMobility.eCars.CONCEPT_TREES.Route.FUNCS.getCurrentLocation =

eMobility.eCars.CONCEPT_TREES.Route.PROPS.locationA}
STATE AtEnd {eMobility.eCars.CONCEPT_TREES.Route.FUNCS.getCurrentLocation =

eMobility.eCars.CONCEPT_TREES.Route.PROPS.locationB}
STATE OnRoute { NOT eMobility.eCars.CONCEPT_TREES.Route.STATES.AtBeginning AND

NOT eMobility.eCars.CONCEPT_TREES.Route.STATES.AtEnd}
STATE InHighTraffic {
eMobility.eCars.CONCEPT_TREES.Route.PROPS.currentRoad.STATES.InHighTraffic}

STATE InLowTraffic {
eMobility.eCars.CONCEPT_TREES.Route.PROPS.currentRoad.STATES.InFluentTraffic}

}
}

As mentioned above, the states are specified as Boolean expressions. For example, the state Route’s
OnRoute holds (is true) while the Route is neither AtBeginning nor at AtEnd states. A concept
realization is an object instantiated from that concept. As shown, a complex state might be expressed as
a Boolean function over other states. For example, the Journey’s stateArrivedOnTime is expressed
as a Bollean expression involving the Journey’s Arrived state and Journey’s properties.

Note that states are extremely important to the specification of goals (objectives), situations, and
policies. For example, states help the KnowLang Reasoner determine at runtime whether the system
is in a particular situation or a particular goal (objective) has been achieved.
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3.3 Specifying Self-Adaptive Behavior

To specify self-* objectives with KnowLang, we use goals, policies, and situations. These are de-
fined as explicit concepts in KnowLang, and for the eMobility Ontology we specified them under the
concepts Virtual entity→Phenomenon→Knowledge (see Figure 3). Figure 4, depicts a concept tree
representing the specified eMobility goals. Note that most of these goals were directly interpolated
from the goals model (see Figure 2).

Figure 4: eMobility Ontology: eMobility Goal Concept Tree

Recall that KnowLang specifies goals as functions of states where any combination of states can
be involved (see Section 2.2). A goal has an arriving state (Boolean function of states) and an optional
departing state (another Boolean function of states) (see Definition 5 in Section 2.2). A goal with
departing state is more restrictive, i.e., it can be achieved only if the system departs from the specific
goal’s departing state.

The following code samples present the specification of two simple goals. Usually, goals’ arriving
and departing states can be either single states or sequences of states. Note that the states used to
specify the goals below are specified as part of both Journey and Route concepts.
//
//==== eMobility Goals ===========================================
//
CONCEPT_GOAL ArriveOnTime {
CHILDREN {eMobility.eCars.CONCEPT_TREES.Goal}
PARENTS {}
SPEC {

DEPART { eMobility.eCars.CONCEPT_TREES.Journey.PROPS.journeyRoute.STATES.AtEnd }
ARRIVE { eMobility.eCars.CONCEPT_TREES.Journey.STATES.ArrivedOnTime }

}
}
CONCEPT_GOAL LowRouteTraffic {
CHILDREN {eMobility.eCars.CONCEPT_TREES.Goal}
PARENTS {}
SPEC {
DEPART { eMobility.eCars.CONCEPT_TREES.Route.STATES.InHighTraffic }
ARRIVE { eMobility.eCars.CONCEPT_TREES.Route.STATES.InLowTraffic }

}
}

The following is a specification sample showing an eMobility policy called ReduceRouteTraffic -
as the name says, this policy is intended to reduce the route traffic. As shown, the policy is specified to
handle the goal LowRouteTraffic and is triggered by the situationRouteTrafficIncreased. Fur-
ther, the policy triggers via its MAPPING sections conditionally (e.g., there is a CONDITONS
directive that requires the Route’s state OnRoute to be hold) the execution of a sequence of actions.
When the conditions are the same, we specify a probability distribution among the MAPPING sec-
tions involving same conditions (e.g., PROBABILITY 0.7), which represents our initial belief in
action choice.
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CONCEPT_POLICY ReduceRouteTraffic {
CHILDREN {}
PARENTS {eMobility.eCars.CONCEPT_TREES.Policy}
SPEC {

POLICY_GOAL {eMobility.eCars.CONCEPT_TREES.LowRouteTraffic}
POLICY_SITUATIONS {eMobility.eCars.CONCEPT_TREES.RouteTrafficIncreased}
POLICY_RELATIONS {eMobility.eCars.RELATIONS.Situation_Policy_1}
POLICY_ACTIONS {eMobility.eCars.CONCEPT_TREES.TakeAlternativeRoad,

eMobility.eCars.CONCEPT_TREES.RecomputeRoads}
POLICY_MAPPINGS {
MAPPING {
CONDITIONS {eMobility.eCars.CONCEPT_TREES.Route.STATES.OnRoute}
DO_ACTIONS {eMobility.eCars.CONCEPT_TREES.Route.FUNCS.takeAlternativeRoad}
PROBABILITY {0.7}

}
MAPPING {
CONDITIONS { eMobility.eCars.CONCEPT_TREES.Route.STATES.OnRoute}
DO_ACTIONS { eMobility.eCars.CONCEPT_TREES.Route.FUNCS.recomputeRoads,

eMobility.eCars.CONCEPT_TREES.Route.FUNCS.takeAlternativeRoad}
PROBABILITY {0.3}

}
MAPPING {
CONDITIONS { eMobility.eCars.CONCEPT_TREES.Route.STATES.AtBeginning}
DO_ACTIONS { eMobility.eCars.CONCEPT_TREES.Route.FUNCS.recomputeRoads,

eMobility.eCars.CONCEPT_TREES.Route.FUNCS.takeAlternativeRoad}
}

}
}

}

As specified, the probability distribution gives initial designer’s preference about what actions
should be executed if the system ends up in running the ReduceRouteTraffic policy. Note that at
runtime, the KnowLang Reasoner maintains a record of all the action executions and re-computes the
probability rates every time when a policy has been applied and consecutively, actions have been exe-
cuted. Thus, although initially the system will execute the function takeAlternativeRoad (it has the
higher probability rate of 0.7), if that policy cannot achieve its goal with this action, then the probabil-
ity distribution will be shifted in favor of the function sequence recomputeRoads, takeAlternative-
Road, which might be executed the next time when the system will try to apply the same policy.
Therefore, probabilities are recomputed after every action execution, and thus the behavior change
accordingly.

Moreover, to increase the goal-oriented autonomicity, in policy specification, we may use a spe-
cial operator implemented in KnowLang called GENERATE NEXT ACTIONS. This operator
will automatically generate the most appropriate actions to be undertaken by eMobility. The action
generation is based on the computations performed by a special reward function implemented by the
KnowLang Reasoner. The KnowLang Reward Function (KLRF) observes the outcome of the actions
to compute the possible successor states of every possible action execution and grants the actions with
special reward number considering the current system state (or states, if the current state is a composite
state) and goals. KLRF is based on past experience and uses Discrete Time Markov Chains [EG05]
for probability assessment after action executions [VHM+12, VH15].

Note that when generating actions, the GENERATE NEXT ACTIONS operator follows a
sequential decision-making algorithm where actions are selected to maximize the total reward. This
means that the immediate reward of the execution of the first action, of the generated list of actions,
might not be the highest one, but the overall reward of executing all the generated actions will be the
highest possible one. Moreover, note that, the generated actions are selected from the predefined set
of actions (e.g., the implemented eMobility actions). The principle of the decision-making algorithm
used to select actions is as follows:

1. The average cumulative reward of the reinforcement learning system is calculated.

2. For each policy-action mapping, the KnowLang Reasoner learns the value function, which is
relative to the sum of average reward.

3. According to the value function and Bellman optimality principle1, is generated the optimal
1The Bellman optimality principle: If a given state-action sequence is optimal, and we were to remove the first state and
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sequence of actions.

As mentioned above, policies are triggered by situations. Therefore, while specifying policies han-
dling eMobility objectives, we need to think of important situations that may trigger those policies.
These situations shall be eventually outlined by scenarios. A single policy requires to be associated
with (related to) at least one situation (see Section 2.2), but for polices handling self-* objectives we
eventually need more situations. Actually, because the policy-situation relation is bidirectional, it is
maybe more accurate to say that a single situation may need more policies, those providing alternative
behaviors or execution paths out of that situation. The following code represents the specification
of two situations: RouteTrafficIncreased and BatteryIsInsufficient where both were used
for the specification of policies. For example, the RouteTrafficIncreased situation was used to
specify the ReduceRouteTraffic policy.
CONCEPT_SITUATION RouteTrafficIncreased {

CHILDREN {}
PARENTS {eMobility.eCars.CONCEPT_TREES.Situation}
SPEC {
SITUATION_STATES {eMobility.eCars.CONCEPT_TREES.Route.STATES.InHighTraffic}
SITUATION_ACTIONS {eMobility.eCars.CONCEPT_TREES.TakeAlternativeRoad}

}
}
CONCEPT_SITUATION BatteryIsInsufficient { // battery is insufficient to complete the journey

CHILDREN {}
PARENTS {eMobility.eCars.CONCEPT_TREES.Situation}
SPEC {
SITUATION_STATES {eMobility.eCars.CONCEPT_TREES.Journey.STATES.InNotSufficientBattery}
SITUATION_ACTIONS {eMobility.eCars.CONCEPT_TREES.FindNearestChargeStation,

eMobility.eCars.CONCEPT_TREES.GoToChargeStation,
eMobility.eCars.CONCEPT_TREES.ChargeBattery,
eMobility.eCars.CONCEPT_TREES.ReplaceVehicle}

}
}

As shown, the situation is specified with SITATION STATES (e.g., InHighTraffic) and SI-
TUATION ACTIONS (e.g., TakeAlterna-tiveRoad). To consider a situation effective (i.e.,
the system is currently in that situation), the situation states must be respectively effective (evalu-
ated as true). For example, the situation RouteTraf -ficIncreased is effective if the Route’s state
InHighTraffic is effective (is hold). The possible actions define what actions can be undertaken
once the system falls in a particular situation. For example, the RouteTrafficIncreased situation
has one possible action: TakeAlternativeRoad.

Recall that situations are related to policies via relations (see Definition 2 in Section 2.2). The
following code demonstrates how we related the situation RouteTrafficIncreased to the policy
Reduce-RouteTraffic .
RELATION Situation_Policy_1{
RELATION_PAIR {
eMobility.eCars.CONCEPT_TREES.RouteTrafficIncreased,
eMobility.eCars.CONCEPT_TREES.ReduceRouteTraffic}

}
}

In general, a self-adaptive system has sensors that connect it to the world and eventually help it listen to
its internal components. These sensors generate raw data that represent the physical characteristics of
the world. The representation of monitoring sensors in KnowLang is handled via the explicit Metric
concept [VHM+12, VH15]. In our approach, we assume that eMobility sensors are controlled by
software drivers (e.g., implemented in C++) where appropriate methods are used to control a sensor
and read data from it. By specifying a Metric concept we introduce a class of sensors to the KB
and by specifying objects, instances of that class, we represent the real sensor. KnowLang allows the
specification of four different types of metrics [VHM+12, VH15]:

• RESOURCE - measure resources like capacity;

action, the remaining sequence is also optimal (with the second state of the original sequence now acting as initial state).
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• QUALITY - measure qualities like performance, response ti-me, etc.;

• ENVIRONMENT - measure environment qualities and resources;

• ENSEMBLE - measure complex qualities and resources where the metric might be a function of
multiple metrics both of RESOURCE and QUALITY type.

The following is a specification of metrics mainly used to assist the specification of states in the
specification of the eMobility concepts (see Section 3.2).

// metrics
CONCEPT_METRIC RoadTrafficLevel {
CHILDREN {}
PARENTS {eMobility.eCars.CONCEPT_TREES.Metric}
SPEC {
METRIC_TYPE { ENVIRONMENT }
METRIC_SOURCE { "ECarClass.GetRoadTrafficLevel" }
DATA_TYPE { NUMBER }

}
}
CONCEPT_METRIC BatteryEnergyLevel {
CHILDREN {}
PARENTS {eMobility.eCars.CONCEPT_TREES.Metric}
SPEC {
METRIC_TYPE { RESOURCE }
METRIC_SOURCE { "ECarClass.GetBatteryEnergyLevel" }
DATA_TYPE { NUMBER }

}
}
CONCEPT_METRIC JourneyBatterySufficiency {
CHILDREN {}
PARENTS {eMobility.eCars.CONCEPT_TREES.Metric}
SPEC {
METRIC_TYPE { RESOURCE }
METRIC_SOURCE { "ECarClass.GetJourneyBatterySufficiency" }
DATA_TYPE { BOOLEAN }

}
}
CONCEPT_METRIC VehicleSpeed {
CHILDREN {}
PARENTS {eMobility.eCars.CONCEPT_TREES.Metric}
SPEC {
METRIC_TYPE { RESOURCE }
METRIC_SOURCE { "ECarClass.GetVehicleSpeed" }
DATA_TYPE { NUMBER }

}
}
CONCEPT_METRIC JourneyTime {
CHILDREN {}
PARENTS {eMobility.eCars.CONCEPT_TREES.Metric}
SPEC {
METRIC_TYPE { RESOURCE }
METRIC_SOURCE { "ECarClass.GetJourneyTime" }
DATA_TYPE { DATETIME }

}
}

4 Formalizing Swarm Robotics with KnowLang

Aside from complex mechanics and electronics, building robots is about the challenge of interact-
ing with a dynamic and unpredictable world, which requires the presence of intelligence. In swarm
robotics systems, in addition to this challenge, we also need to deal with the dynamic local interac-
tions among robots, often resulting in emergent behavior at the level of the entire swarm. Real swarm
intelligence systems such as social insects, bird flocks and fish schools, leverage such parallelism to
achieve remarkable efficiency and robustness to hazards. The prospect of replicating the performance
of natural systems and their incredible ability of self-adaptation is the main motivation in the study of
swarm robotics systems.

Swarm robotics brings most of the challenges that the theories and methodologies developed for
self-adaptive systems are attempting to solve. Hence, self-adaptation has emerged as an important
paradigm making a swarm robotics system capable of modifying the system behavior and/or structure
in response to increasing workload demands and changes in the operational environment. Note that
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robotic artificial intelligence (AI) mainly excels at formal logic, which allows it, for example, to find
the appropriate action from hundreds of possible actions.

The Ensemble of Robots Case Study targets swarms of intelligent robots with self-awareness capa-
bilities that help the entire swarm acquire the capacity to reason, plan, and autonomously act [SRA+11,
SMP+12]. The case study relies on the marXbot robotics platform [BBR+11], which is a modular re-
search robot equipped with a set of devices that help the robot interact with other robots of the swarm
or the robotic environment. The environment is defined as an arena where special cuboid-shaped ob-
stacles are present in arbitrary positions and orientations. Moreover, the environment may contain a
number of light sources, usually placed behind the goal area, which act as environmental cues used as
shared reference frames among all robots.

Each marXbot robot is equipped with a set of devices to interact with the environment and with
other robots of the swarm:

• a light sensor, that is able to perceive a noisy light gradient around the robot in the 2D plane;

• a distance scanner that is used to obtain noisy distances and angular values from the robot to
other objects in the environment;

• a range and bearing communication system, with which a robot can communicate with other
robots that are in line-of-sight;

• a gripper, that is used to physically connect to the transported object;

• two wheels independently controlled to set the speed of the robot.

Currently, the marXbots robots are able to work in teams where they coordinate based on simple in-
teractions in group tasks. For example, a group of marXbots robots may collectively move a relatively
heavy object from point A to point B by using their grippers.

For the purpose of the Ensemble of Robots case study, we developed a simple scenario that re-
quires self-adaptive behavior of the individual marXbot robots [SHP+13]. In this scenario, a team of
marXbot robots, called rescuers, is deployed in a special area, called a deployment area. We imagine
that some kind of disaster has happened, and the environment is occasionally obstructed by debris that
the robots can move around. In addition, a portion of the environment is dangerous for robot navi-
gation due to the presence of radiation. We assume that prolonged exposition to radiation damages
the robots. For example, short-term exposition increases a robot’s sensory noise. Long-term dam-
age, eventually, disables the robot completely. To avoid damage, the robots can use debris to build a
protective wall.

Further, we imagine that a number of victims are trapped in the environment and must be rescued
by the robots. Each victim is suffering a different injury. The robots must calculate a suitable rescuing
behavior that maximizes the number of victims rescued. A victim is considered rescued when it is
deposited in the deployment area alive. To perform its activities, a robot must take into account that it
has limited energy.

4.1 ARE for Swarm Robotics

Following the scenario described above, we applied the ARE approach (see Section 2.1) and derived
the goals along with the self-* objectives assisting these goals when self-adaptation is required. Fur-
ther, based on the rationale above, we applied the ARE approach and derived the system’s goals along
with the self-* objectives assisting these goals when self-adaptation is required.

Figure 5 depicts the ARE goals model for swarm robotics where goals are organized hierarchically
at three different levels. As shown, the goals from the first two levels (e.g., “Rescue Victims”, “Protect
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Figure 5: Swarm Robotics Goals Model with Self-* Objectives

against Radiation”, and “Move Victims away”) are main system goals captured at different levels of
abstraction. The 3rd level is resided by self-* objectives (e.g., “Clean Debris”, “Optimize Rescue
Operation”, and “Avoid Radiation Zones”) and supportive goals (e.g., “Exploration and Mapping”
and “Find Victim”) associated with and assisting the 2nd-level goals. Basically, all self-* objectives
inherit the system goals they assist by providing behavior alternatives with respect to these system
goals. The system switches to one of the assisting self-* objectives when alternative autonomous
behavior is required (e.g., a robot needs to avoid a radiation zone). In addition, Figure 5 depicts some
of the environmental constraints (e.g., “Radiation” and “Debris”), which may cause self-adaptation.

4.2 Specifying Swarm Robotics Ontology

In order to specify the autonomy requirements for swarm robotics, the first step is to specify a knowl-
edge base (KB) representing the swarm robotics system in question, i.e., robots, victims, radiation,
debris, etc. To do so, we need to specify ontology structuring the knowledge domain of the case study.
Note that this domain is described via domain-relevant concepts and objects (concept instances) re-
lated through relations. To handle explicit concepts like situations, goals, and policies, we grant some
of the domain concepts with explicit state expressions where a state expression is a Boolean expression
over the ontology (see Definition 6 in Section 2.2).
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Figure 6, depicts a graphical representation of the swarm robotics ontology relating most of the
domain concepts within a swarm robotics system. Note that the relationships within a concept tree are
”is-a” (inheritance), e.g., the Radiation Zone concept is an EnvironmentEntity and the Action
concept is a Knowledge and consecutively Phenomenon, etc. Most of the concepts presented in
Figure 6 were derived from the Swarm Robotics Goals Model (see Figure 5). Other concepts are
considered explicit and were derived from the KnowLang specification model [VHM+12, VH15].

Figure 6: Swarm Robotics Ontology Specified with KnowLang

The following is a sample of the KnowLang specification representing theRobot concept. As spec-
ified, the concept has properties of other concepts, functionalities (actions associated with that con-
cept), states (Boolean expressions validating a specific state), etc. For example, the IsOperational
state holds when the robot’s battery (the rBattery property) is not in the batteryLow state and the
robot itself is not in the IsDamaged state.
CONCEPT Robot { ....
PROPS {
PROP rBattery {TYPE{swarmRobots.robots.CONCEPT_TREES.Battery} CARDINALITY{1}}
PROP rPlanner {TYPE{swarmRobots.robots.CONCEPT_TREES.Planner} CARDINALITY{1}}
PROP rCommunicationSys {TYPE{swarmRobots.robots.CONCEPT_TREES.CommunicationSys} CARDINALITY{1}}
PROP liftCapacity {TYPE{NUMBER} CARDINALITY{1}}
PROP dragCapacity {TYPE{swarmRobots.robots.CONCEPT_TREES.Capacity} CARDINALITY{1}}
PROP rDamages {TYPE{swarmRobots.robots.CONCEPT_TREES.Damage} CARDINALITY{*}}
PROP distDebries {TYPE{swarmRobots.robots.CONCEPT_TREES.Dstance_to_Debries} CARDINALITY{1}}
PROP victimToCareOf {TYPE{swarmRobots.robots.CONCEPT_TREES.Victim} CARDINALITY{1}}}
FUNCS {
FUNC plan {TYPE {swarmRobots.robots.CONCEPT_TREES.Plan}}
FUNC explore {TYPE {swarmRobots.robots.CONCEPT_TREES.Explore}}
FUNC selfCheck {TYPE {swarmRobots.robots.CONCEPT_TREES.CheckForDamages}}
FUNC dragVictimAway {TYPE {swarmRobots.robots.CONCEPT_TREES.DragVictim}}
FUNC carryVictim {TYPE {swarmRobots.robots.CONCEPT_TREES.CarryVictim}}
FUNC buildWall {TYPE {swarmRobots.robots.CONCEPT_TREES.BuildWall}}}
STATES {
STATE IsOperational{ NOT swarmRobots.robots.CONCEPT_TREES.Robot.PROPS.rBattery.STATES.batteryLow AND

NOT swarmRobots.robots.CONCEPT_TREES.Robot.STATES.IsDamaged }
STATE IsDamaged { swarmRobots.robots.CONCEPT_TREES.Robot.FUNCS.selfCheck > 0 }
STATE IsPlaning { IS_PERFORMING{swarmRobots.robots.CONCEPT_TREES.Robot.FUNCS.plan} }
STATE IsExploring { IS_PERFORMING{swarmRobots.robots.CONCEPT_TREES.Robot.FUNCS.explore} }
STATE HasDebrisNearby { swarmRobots.robots.CONCEPT_TREES.Victim.PROPS.distDeplArea < 3 } //less than 3 m

}}

As we have already noticed, the states are extremely important to the specification of goals, situations,
and policies. For example, states help the KnowLang Reasoner determine at runtime whether the
system is in a particular situation or a particular goal has been achieved. The following code sample
presents a partial specification of a simple goal.
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CONCEPT_GOAL Protect_Victim_against_Radiation { ....
SPEC {
DEPART { swarmRobots.robots.CONCEPT_TREES.Victim.STATES.underRadiation }
ARRIVE { swarmRobots.robots.CONCEPT_TREES.Victim.STATES.radiationSafe }}}

4.3 Specifying Self-Adaptive Behavior

The following is the specification of a policy called ProtectV ictimAgainstRadiation. As shown,
the policy is specified to handle the Protect V ictim against Radiation goal and is triggered by the
situation V ictimNeedsHelp. Further, the policy triggers via its MAPPING sections conditionally
the execution of a sequence of actions. When the conditions are the same, we specify a probability dis-
tribution among theMAPPING sections involving same conditions (e.g., PROBABILITY {0.6}),
which represents our initial belief in action choice.

CONCEPT_POLICY ProtectVictimAgainstRadiation { ....
SPEC {
POLICY_GOAL { swarmRobots.robots.CONCEPT_TREES.Protect_Victim_against_Radiation }
POLICY_SITUATIONS { swarmRobots.robots.CONCEPT_TREES.VictimNeedsHelp }
POLICY_RELATIONS { swarmRobots.robots.RELATIONS.Policy_Situation_1 }
POLICY_ACTIONS { swarmRobots.robots.CONCEPT_TREES.DragVictim,
swarmRobots.robots.CONCEPT_TREES.CarryVictim,swarmRobots.robots.CONCEPT_TREES.BuildWall}

POLICY_MAPPINGS {
MAPPING {
CONDITIONS { swarmRobots.robots.CONCEPT_TREES.Robot.STATES.IsOperational AND
swarmRobots.robots.CONCEPT_TREES.Robot.PROPS.victimToCareOf.PROPS.victimMass >
swarmRobots.robots.CONCEPT_TREES.Robot.PROPS.liftCapacity AND
swarmRobots.robots.CONCEPT_TREES.Robot.STATES.HasDebrisNearby}
DO_ACTIONS {swarmRobots.robots.CONCEPT_TREES.Robot.FUNCS.dragVictimAway} PROBABILITY {0.6}}

MAPPING {
CONDITIONS { swarmRobots.robots.CONCEPT_TREES.Robot.STATES.IsOperational AND
swarmRobots.robots.CONCEPT_TREES.Robot.PROPS.victimToCareOf.PROPS.victimMass >
swarmRobots.robots.CONCEPT_TREES.Robot.PROPS.liftCapacity AND
swarmRobots.robots.CONCEPT_TREES.Robot.STATES.HasDebrisNearby}
DO_ACTIONS {swarmRobots.robots.CONCEPT_TREES.Robot.FUNCS.buildWall} PROBABILITY {0.4}}

MAPPING {
CONDITIONS { swarmRobots.robots.CONCEPT_TREES.Robot.STATES.IsOperational AND
swarmRobots.robots.CONCEPT_TREES.Robot.PROPS.victimToCareOf.PROPS.victimMass <=
swarmRobots.robots.CONCEPT_TREES.Robot.PROPS.liftCapacity}
DO_ACTIONS {swarmRobots.robots.CONCEPT_TREES.Robot.FUNCS.carryVictim} PROBABILITY {0.6}}

MAPPING {
CONDITIONS { swarmRobots.robots.CONCEPT_TREES.Robot.STATES.IsOperational AND
swarmRobots.robots.CONCEPT_TREES.Robot.PROPS.victimToCareOf.PROPS.victimMass <=
swarmRobots.robots.CONCEPT_TREES.Robot.PROPS.liftCapacity}
DO_ACTIONS { swarmRobots.robots.CONCEPT_TREES.Robot.FUNCS.dragVictimAway} PROBABILITY {0.4}

}}}}

As specified, the probability distribution gives the designer’s initial preference about what actions
should be executed if the system ended up running that policy. Note that at runtime, the KnowLang
Reasoner maintains a record of all the action executions and re-computes the probability rates every
time when a policy has been applied and subsequently, actions have been executed. Thus, although
initially the system will execute the function dragV ictimAway (it has the higher probability rate of
0.6), if that policy cannot achieve its goal with this action, then the probability distribution will be
shifted in favor of the function buildWall, which may be executed the next time when the system will
try to apply the same policy. Therefore, probabilities are recomputed after every action execution, and
thus the behavior changes accordingly.

5 KnowLang Reasoner

A very challenging task is the R&D of the inference mechanism providing for knowledge reason-
ing and awareness. In order to support reasoning about self-adaptive behavior and to provide a KR
gateway for communication with the KB, we have developed the KnowLang Reasoner. The reasoner
communicates with the system and operates in the KR Context, a context formed by the represented
knowledge (see Figure 7).

The KnowLang Reasoner should be supplied as a component hosted by the system and thus, it
runs in the system’s Operational Context as any other system’s component. However, it operates in
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Figure 7: KnowLang Reasoner

the KR Context and on the KR symbols (represented knowledge). The system talks to the reasoner via
special ASK and TELL Operators allowing for knowledge queries and knowledge updates (see Figure
7). Upon demand, the KnowLang Reasoner can also build up and return a self-adaptive behavior
model - a chain of actions to be realized in the environment or in the system.

5.1 ASK and TELL Operators

KnowLang provides for a predefined set of ASK and TELL Operators allowing for communication
with the KB. TELL Operators feed the KR Context with important information driven by errors, exe-
cuted actions, new sensory data, etc., thus helping the KnowLang Reasoner update the KR with recent
changes in both the system and execution environment. The system uses ASK Operators to receive
recommended behavior where knowledge is used against the perception of the world to generate ap-
propriate actions in compliance to some goals and beliefs. In addition, ASK Operators may provide
the system with awareness-based conclusions about the current state of the system or the environment
and ideally with behavior models for self-adaptation.

So far, we have developed the operational semantics of the following TELL and ASK Operators
[Vas12]:

• TELL ERR - tells about a raised error;

• TELL SENSOR - tells about new data collected by a sensor;

• TELL ACTION - tells about action execution;

• TELL ACTION (behavior) - tells about action execution as part of behavior performance;

• TELL BEHAV IOR (behavior) - tells about overall behavior performance, i.e., whether all
the actions outlining a behavior have succeeded;

• TELL OBJ UPDATE - tells about a possible object update;

• TELL CNCPT UPDATE - tells about a possible concept update;

• ASK BEHAV IOR - asks for self-adaptive behavior considering the current situation;

• ASK BEHAV IOR(goal) - asks for self-adaptive behavior to achieve certain goal;

• ASK BEHAV IOR(situation, goal) - asks for self-adaptive behavior to achieve certain goal
when departing from a specific situation;
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• ASK BEHAV IOR(state) - asks for self-adaptive behavior to go to a certain state;

• ASK RULE BEHAV IOR(conditions) - asks for rule-based behavior;

• ASK CURR STATE(object) - asks for the current state of an object;

• ASK CURR STATE - asks for the current system state;

• ASK CURR SITUATION - asks for the current situation.

5.2 The ASK BEHAVIOR Operator

This subsection provides a brief presentation of the operational semantics of theASK BEHAV IOR
KB Operator [Vas12]. For more information on the operational semantics of the other KnowLang KB
Operators, please consult [Vas12].

ASK BEHAVIOR Operator is used by the system to ask the KnowLang Reasoner for self-adaptive
behavior considering the current situation the system is in. The following rules reveal the operational
semantics of the ASK BEHAVIOR Operator - σ states for Operational Context (OC) and σ′ states for
Knowledge Representation Context (KRC) (see Figure 7). For clarity reasons, we do not show the
change in KRC after updates have been made in that context.

(1) σ
ask behavior()−−−−−−−−−→σ′

〈ASK BEHAV IOR,σ′〉−→〈findCurrentSituation(),σ′〉

(2)σ
ask behavior()−−−−−−−−−→σ′〈findCurrentSituation(),σ′〉−→〈si,σ′〉

〈findSitnPolcyRltns(si),σ′〉−→〈Rsi,σ′〉

(3)σ
ask behavior()−−−−−−−−−→σ′〈findSitnPolcyRltns(si),σ′〉−→〈Rsi,σ′〉

〈max(Rsi),σ′〉−→〈πsi,σ′〉

(4) 〈π, σ′〉 −→ 〈applyPolicy(π), σ′〉

(5)

〈πsi,σ′〉−→〈applyPolicy(πsi),σ′〉
∀nπ∈Nπ•〈nπ ,σ′〉−→〈TRUE,σ′〉

〈map(πsi,Nπ ,Aπ ,Z),σ′〉−→〈<A′π ,Z′>,σ′〉
A′π ⊆ Aπ

(6)

〈πsi,σ′〉−→〈applyPolicy(πsi),σ′〉
〈map(πsi,Nπ,Aπ,Z),σ′〉−→〈<A′π,Z′>,σ′〉

〈max(Z′),σ′〉−→〈z,σ′〉
〈getProbableActions(<A′π ,Z′>,z),σ′〉−→〈<A′′π ,z>,σ′〉

(7)

〈πsi,σ′〉−→〈applyPolicy(πsi),σ′〉
〈map(πsi,Nπ,Aπ,Z),σ′〉−→〈<A′π,Z′>,σ′〉

〈getProbableActions(<A′π ,Z′>,z),σ′〉−→〈<A′′π ,z>,σ′〉
〈recordBehavior(πsi,A′′π),σ′〉−→〈bπsi,σ′〉

(8)
σ

ask behavior()−−−−−−−−−→σ′〈recordBehavior(πsi,Aπ),σ′〉−→〈bπsi,σ′〉
σ′

return(b
π
si)−−−−−−−→σ

As shown in Rule 1, to ask for behavior, the system calls the ask behavior() function (a method
implementing the system call of the ASK BEHAVIOR Operator), which triggers a context switching

σ
ask behavior()−−−−−−−−−→ σ′. This passes the process control to the KnowLang Reasoner operating in the KRC.

Further, this context switching initiates an internal for KRC call of the ASK BEHAVIOR Operator,
which starts an internal operation (denoted with the findCurrentSituation() abstract function) to
find the situation the system is currently in.

The current situation will be approximately determined based on the global system state. Once
the current situation is successfully determined (see the second premise in Rule 2), the reasoner needs
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to find all the policies associated with that situation. Thus, the reasoner looks up all the situation-
policy relations the current situation participates in (denoted with the findSitnPolcyRltns(si) - see
the conclusion in Rule 2). Next, the relation with the highest probability rate is selected (recall that
KnowLang Relations may be associated with a probability rate - see Definition 2 in Section 2.2),
which helps to determine the most appropriate policy for that particular situation (see the conclusion
in Rule 3). The selected policy is applied (see Rule 4). The evaluation of a policy triggers a mapping
operation where any policy condition that is held (the conditions are Boolean expressions) is mapped
to appropriate actions with eventual probability rate (see Definition 4 in Section 2.2). This operation
selects pairs “actions subset”-“probability rate” (see the conclusion in Rule 5). Next, the reasoner
selects from these pairs the one with the highest probability rate to extract the subset of actions to
be executed (see the last premise and conclusion in Rule 6). The extracted subset of possible actions
has to be recorded as a behavior model (see the conclusion in Rule 7 where this is denoted with the
recordBehavior(πsi, A

′′
π) abstract function). Finally, the KnowLang Reasoner returns the recorded

behavior model to the system with a context switching back to OC σ (see Rule 8). Note that the
behavior model must comprise only actions allowed to be executed from the actual situation (see
Definition 7 in Section 2.2).

5.3 Reasoner Implementation

The KnowLang Reasoner is a comprehensive reasoning engine that operates on the KnwoLang speci-
fications to derive self-adaptive behavior. In addition, via the predefined ASK and TELL operators, it
provides KB querying and KB updating mechanisms (see Figure 7).

Figure 8: KnowLang Reasoner Startup Process

Therefore, in order to function, the reasoner requires as initial resource an already compiled, yet
KnowLang-specified KB. As shown in Figure 8 there are a few important operations performed by the
reasoner at startup. Along with loading the compiled KB into a tree of optimized KnowLang tokens,
these operations also build special information-retrieval and information-update structures and load
the implementation of multiple search algorithms. Finally, the startup process loads the awareness
control loop [VHBM13] and a special query interpreter, and starts the control loop.

Figure 9: KnowLang Reasoner Java Packages

Similar to the KnowLang Framework, the KnowLang Reasoner has been implemented in Java. At
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the time of this document writing, the KnowLang Reasoner’s implementation contained approximately
7000 lines of Java code, organized in four Java packages (see Figure 9). These java packages host all
the necessary classes needed at both startup and runtime.

5.3.1 KnowLang Reasoner Classes

Figure 10 presents the major classes implementing the KnowLang Reasoner. As shown, there are three
token classes used by the reasoner to load the KnowLang-compiled KB - KnowLangToken, KnowL-
angTierToken, and KnowLangCodeToken. These classes are identical to their counterparts used by the
KnowLang Framework [VHBM13] and the reasoner uses them to load a compiled KB into a special
declarative tree. The KnowLangToken class comprises everything needed to present the words of a
KnowLang specification. The KnowLangTierToken class is an extension of KnowLangToken and is
used by the reasoner to reconstruct from the KB the previously-specified concepts with their states,
properties and functionalities, along with all the objects and relations. In addition, the KnowLangTier-
Token class contains a reference to the KnowLangCodeToken class, which is basically used to store
some extra code generated by the KnowLang Framework and stored in the compiled KB.

If we consider the startup process shown in Figure 8, in stage “B”, the reasoner has the compiled
KB loaded into the KB declarative tree. The KnowLangReasonerDef class defines the declarative tree
as following:

public static Vector<KnowLangTierToken> vsDeclarationTree = new Vector<KnowLangTierToken>();

In addition to the declarative tree, that class also defines vectors of special classes intended to optimize
the reasoning process. These classes are ExtendedKLState, ExtendedKLMetric, ExtendedKLGoal, Ex-
tendedKLEvent, ExtendedKLAction, ExtendedKLSituation, ExtendedKLPolicy, ExtendedKLRelation,
and ExtendedKLGroup. These classes provide built-in functionality to facilitate the reasoning about
the KnowLang’s explicit concepts [VHBM13]. Basically, each one of these classes encapsulates an in-
stance of KnowLangTierToken representing the specification of an explicit concept. For example, the
ExtendedKLState class encapsulates a token representing the specification of a KnowLang-specified
state and to optimize the reasoner, provides methods that operate over that state, e.g., the ExtendedKL-
State class implements a mechanism for state evaluation (recall that states in KnowLang are specified
and evaluated as Boolean expressions).

Here, if we consider the startup process shown in Figure 8, in stage “C”, the reasoner has loaded all
the extended concepts, i.e., it has created vectors of ExtendedKL* classes. Note that extensive search
algorithms operating over these vectors and the declarative tree are implemented by the KBTraversal
class. This class is heavily used by the reasoner to find and refine needed concepts, properties, func-
tions, etc. The following is an implementation of such an algorithm, intended to discover all the goals
in the KB.
private Vector<KnowLangTierToken> findAllGoals(Vector<KnowLangTierToken> pvConceptTree)
{

Vector<KnowLangTierToken> rvResult = new Vector<KnowLangTierToken>();
Enumeration<KnowLangTierToken> tokens = pvConceptTree.elements();
KnowLangTierToken tierToken = null;
while (tokens.hasMoreElements())
{

tierToken = tokens.nextElement();
if ( tierToken.getTierName().equals(KnowLangReasonerDef.TIER_GOAL) )

rvResult.add(tierToken);
else

rvResult.addAll(findAllGoals(tierToken.getTokenVector()));
}
return rvResult;

}
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Figure 10: KnowLang Reasoner Class Diagram

The KnowLangReasoner class implements the control functionality of the KnowLang Reasoner. As
shown in the class diagram, this class performs the startup process (see Figure 8) and controls the
execution of a built-in control loop, along with handling all the queries addressed to the reasoner by
the host application. Recall that the host application runs the reasoner and talks to it via ASK and
TELL operators (see Figure 7). These operators are exposed to the host application via the IKnowL-
angReasoner interface, which is implemented by the KnowLangReasoner class (see Figure 10). In
addition, the ASK and TELL operators are supported by definitions and methods provided by the
KBQueryInterpreter class. Basically, this class interprets query and update commands provided to the
KnowLang Reasoner by human users, e.g., via a command line. For example, the KBQueryInterpreter
class interprets commands like “ask behavior” and “tell sensor val”, which are interpreted as calls of
the corresponding ASK and TELL operators.

The KnowLangReasoner class also creates and controls the awareness control loop, which is
implemented by the four inter-connected classes KLMonitor, KLRecognizer, KLAnalyzer, and KL-
Learner. Each one of these classes implements a special method called perform(), which is called by
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the reasoner in any iteration of an endless loop run by the reasoner’s run() method (the KnowLangRea-
soner class extends the predefined Thread class). For example, part of the KLAnalyzer’s perform()
method evaluates all the states specified in the KB as following:

Enumeration<ExtendedKLState> eStates = KnowLangReasonerDef.vsStates.elements();
while (eStates.hasMoreElements())
{

eStates.nextElement().evaluateState();
}

In that way, the reasoner constantly evaluates all the states and deducts new state changes, thus emerg-
ing as awareness about new situations, and realization of goals (recall that states are used to express
situations and goals).

5.3.2 A Closer Look at the Reasoner’s Implementation

This section looks inside of the implementation of some of the reasoner’s functionality as demonstra-
tive examples. The first example presents how the reasoner does the mapping selection, when a policy
has been chosen to handle a specific situation (for the relation between policies and situations see
Section 2.2). The method below, called getMappingActions() is implemented by the ExtendedKLPol-
icy class to compute what policy mapping is the most appropriate one at the time of policy running,
to extract the actions of the selected mapping. The method implements the probability distribution
condition at the level of policy mappings, which helps the reasoner decide what sequence of actions
to realize when multiple mappings are feasible.

private Vector<ExtendedKLAction> getMappingActions()
{

KLPolicyMapping theMaping = null;
Vector<ExtendedKLAction> vActions = new Vector<ExtendedKLAction>();
Enumeration<KLPolicyMapping> ePolicyMappings = policyMappings.elements();
while ( ePolicyMappings.hasMoreElements() )
{

KLPolicyMapping policyMapping = ePolicyMappings.nextElement();
//Considers probability distribution among the mappings
if ( policyMapping.isMappingPossible() )
{

if ( theMaping == null ) theMaping = policyMapping;
else if (policyMapping.getProbabilityDouble() > theMaping.getProbabilityDouble())

theMaping = policyMapping;
}

}
}

Here, as implemented after extracting all the policy’s mappings, the method finds among the possible
(or feasible) mappings the one with the highest probability rate.

The second example demonstrates how the reasoner performs a Boolean evaluation of KnowLang-
specified states. To provide this reasoning capability, the ExtendedKLState class implements a method
called evaluationState() (see Figure 10). In that way, every state loaded by the reasoner can self-
evaluate itself on demand. Note that all the concepts specified in KnowLang have an intrinsic Value
property that holds string values. This Value property is used when evaluating Boolean expressions
involving concepts or objects (concepts’ instances). When evaluating the Value properties of concepts,
as part of the evaluation of Boolean expressions, they are interpreted as numbers, Boolean values (true
or false), or strings. In such evaluations, the correctness of the Boolean expressions is handled in a
fault-tolerant fashion, i.e., if an expression cannot be evaluated due to an error, it is assigned a false
value.

public Boolean evaluateState()
{
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String sExpression = "";
Enumeration<KnowLangTierToken> exprEntts = vStateExpression.elements();
while (exprEntts.hasMoreElements())
{

KnowLangTierToken entty = exprEntts.nextElement();
if (entty.getName().equals("ID"))

sExpression += " " + oKBTraversal.evaluateID(entty);
else //SINGLE_TOKEN, INT_VAL, etc.

sExpression += " " + oKBTraversal.evaluateSingleToken(entty);
}

ScriptEngineManager mgr = new ScriptEngineManager();
ScriptEngine engine = mgr.getEngineByName("JavaScript");

if ( sExpression.trim().isEmpty() ) sExpression = "false";
evaluatedStateExpression = sExpression;
try
{

stateEvaluation = (Boolean) engine.eval(sExpression);
} catch (ScriptException e)
{

stateEvaluation = false;
}
setStateEvaluation(stateEvaluation);
return stateEvaluation;

}

As shown in the code above, in its first part, the method evaluateState() creates the string sExpression
of the Boolean expression by evaluating concepts’ values. This is done by the KBTraversal’s method
oKBTraversal.evaluateID(). In its second part, the method evaluates the already built string sExpres-
sion by using the Java Script engine. As mentioned above, in case of an error, the evaluationState()
method returns false, i.e., the state is evaluated as non-active.

The third example presents a method called reportBehaviorResult() that is intended to handle the
TELL BEHAV IOR operator. Recall that when the reasoner reasons about a self-adaptive behavior,
it determines the most appropriate policy first and then the most appropriate sequence of actions via
that policy’s mappings (see Section 2.2). Every behavior determined by the reasoner has a unique
signature, which can be used by the host system to report to the reasoner whether a behavior has been
successful. In that context, the reportBehaviorResult() method adds on the learning and self-adaptive
abilities of the KnowLang Reasoner. The method is implemented by the ExtendedKLPolicy class (see
Figure 10) and basically, it recomputes the probabilities embeded in the policy’s mappings, which
leads to reinforcement learning [VHM+12].

public void reportBehaviorResult(String pBehaviorSignature, boolean pSuccesful)
{

double step = KnowLangReasonerDef.probabilityStep;
if ( !pSuccesful ) step = -step;

KLPolicyMapping policyMapping = findPolicyMapping(pBehaviorSignature);
if ( policyMapping != null )
{

double newProbability = policyMapping.getProbabilityDouble() + step;
policyMapping.setProbability("" + newProbability);

}
}

As shown by the code above, a globally defined probability step (KnowLangReasonerDef.probability-
Step) is added to or deducted from the current probability rate of the mapping having the same behavior
signature (pBehaviorSignature). In that way, by changing the probability rates of the policy’s map-
pings, the reasoner basically changes the behavior preferences and self-adaptation emerges as shifting
from one sequence of action to another one when behavior is successful or not. Recall that similar
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self-adaptation emerges at the level of situation-policy relations as well (see Section 2.2). This mech-
anism though, is implemented by the KLLearner class, which implements a method that computes
this property in the reasoner’s learning phase and uses it later to decide what policy to run in order to
respond to a particular situation. Moreover, in the learning phase, the reasoner may also decide to re-
compute the KnowLangReasonerDef.probabilityStep property, which will either increase or decrease
the speed of learning.

5.4 Awareness with KnowLang

In this exercise, we performed tests with the KnowLang Reasoner to simulate awareness emerging
when the reasoner operates over the eMobility KB. To perform the exercise, we implemented a special
host application running the KnowLang Reasoner and communicating with it via a command line
where users enter ASK and TELL commands. In that way, the host application communicates with the
KnowLang interpreter implemented by the KBQueryInterpreter class (see Section 5.3.1) to convert
the human-friendldy commands to their ASK and TELL counterparts.

In the first phase of the awareness simulation, we run the host application, which in turn loaded
and run the KnowLang Reasoner. Next, the KnowLang Reasoner performed the startup process as
described in Section 5.3.1. Figure 11 depicts the result screen of Phase 1.

Figure 11: Awareness Simulation Test: Phase 1

Note that at the end of that phase, the eMobility KB is loaded and the reasoner waits for further
instructions. When in a “waiting” mode, the reasoner is iterating over the awareness control loop as
described in 5.3.1. Therefore, all the states expressed in KnowLang are constantly evaluated at any
loop iteration (performed by the analyzer), which leads to re-evaluation of all the goals and situations
expressed with states (see Section 2.2).

Figure 12: Awareness Simulation Test: “ask active states” Command
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5.4.1 Insufficient Battery Awareness Simulation

In this test we simulated battery insufficiency to accomplish a planned journey. Here, to see the cur-
rent state of the system, we asked the reasoner about all active states (see Figure 12). As shown in
Figure 12, the reasoner responded by returning a few currently active states, including the eMobil-
ity.eCars.CONCEPT TREES.Journey.STATES.InNotSufficientBattery. A closer look at the KnowLang
specification of this state will show that the state’s expression involves the evaluation of its neighbor
state, which in turn evaluates the JourneyBatterySufficiency metric (see Section 3.2). Recall that met-
rics represent sensors in KnowLang [VHM+12]. Here, to test the awareness of new sensory data, we
updated that metric’s value and asked for the active states again (see Figure 13).

Figure 13: Awareness Simulation Test: “tell sensor val JourneyBatterySufficiency true” and “ask
active states” Commands

Figure 14: Awareness Simulation Test: “ask current situation”, “ask active policy”, and “ask behav-
ior” Commands

As shown in Figure 13, the InNotSufficientBattery state was not active anymore, but the InSuf-
ficientBattery state appeared as active, which is correct considering the specification of both states
(see Section 3.2). Next, we asked the reasoner to see if there is a current situation that requires self-
adaptation, active policy, and recommended behavior. As shown in Figure 14, the reasoner did not
determine any of those.

In the next step, we simulated another sensory input (tell sensor val JourneyBatterySufficiency
false) that activated the InNotSufficientBattery state as expected. Then, we asked the reasoner again
about the presence of a situation that requires self-adaptation, active policy, and recommended behav-
ior. As shown in Figure 15, this time the reasoner responded by determining the current situation as
BatteryIsInsufficient, which is actually specified over the InNotSufficientBattery state, i.e., that situa-
tion is present when the state is active. Moreover, the reasoner determined the EnsureSufficientBattery
policy as active, and consecutively, it returned the recommended behavior as EnsureSufficientBat-
tery 1: FindNearestChargeStation.GoToChargeStation.ChargeBattery. Here, the active policy is as-
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Figure 15: Awareness Simulation Test: “tell sensor val JourneyBatterySufficiency false”, “ask ac-
tive states”, “ask current situation”, “ask active policy”, and “ask behavior” Commands

Figure 16: Awareness Process Steps

sociated with the current behavior, and the reasoner recommends a sequence of actions:

FindNearestChargeStation⇒GoToChargeStation⇒ChargeBattery

that will eventually lead the system out of the present situation. Note that the first string in the re-
turned behavior is the behavior signature EnsureSufficientBattery 1. Recall that the reasoner grands
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each determined behavior with a unique signature that can be used by the TELL BEHAVIOR operator
to report how successful the recommended behavior is (see Section 5.3.2).

Figure 16 depicts a UML sequence diagram presenting the entire simulation process in steps as
described above.

5.4.2 High Traffic Awareness and Reinforcement Learning Simulation

In the next test of our awareness simulation, we simulated a high traffic situation, which requires self-
adaptation. To do so, we activated a state (eMobility.eCars.CONCEPT TREES.Route.STATES.InHigh-
Traffic) that in turn, made the RouteTrafficIncreased situation present (for the KnowLang specification
of that situation see Section 3.3).

Figure 17: Awareness Simulation Test: “tell func val road getTrafficLevel 71” and “ask active states”
Commands

Figure 18: Awareness Simulation Test: “ask active states”, “ask current situation”, “ask ac-
tive policy”, and “ask behavior” Commands

To activate that state, we supplied the reasoner with the necessary data as following:
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tell func val road getTrafficLevel 71

With the tell operator above, we provided the function getTrafficLevel of the road concept with a
value that will make the InHighTraffic state active (see Figure 17).

In the next step, we asked the reasoner about the presence of situation that requires self-adaptation,
active policy, and recommended behavior. As shown in Figure 18, the reasoner responded by deter-
mining the current situation as RouteTrafficIncreased, which is actually specified over the InHighTraf-
fic state, i.e., that situation is present when the state is active.

Figure 19: Awareness Simulation Test: “tell behavior val ReduceRouteTraffic 1 false”, “ask behavior”
Commands

Figure 20: Awareness Simulation Test: “tell behavior val ReduceRouteTraffic 1 true”, “ask behavior”
Commands

The reasoner also determined the ReduceRouteTraffic policy as active, and consecutively, it re-
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turned the recommended behavior as ReduceRouteTraffic 1: TakeAlternativeRoad. Here, the active
policy is associated with the current behavior, and the reasoner recommends the action TakeAlterna-
tiveRoad that will eventually lead the system out of the present situation, i.e., it will reduce the traffic.
Please consult Section 3.3 for details on the specification of both the situation and policy.

Next, to simulate reinforcement learning, we simulated a few consecutive fails of the ReduceR-
outeTraffic 1 behavior by feeding the reasoner with simulated *negative* feedback of that behavior’s
execution as following:

tell behavior val ReduceRouteTraffic 1 false

As shown in Figure 19, the reasoner switched to another recommended behavior (ReduceRouteTraf-
fic 2: RecomputeRoads.TakeAlternativeRoad) after a few fails of the ReduceRouteTraffic 1 behavior.
This behavior switch was possible because of the reinforcement learning ability of the KnowLang
Reasoner (see Section 2.2). Next to demonstrate that the learning ability works in both directions,
we simulated increase of the confidence in the ReduceRouteTraffic 1 behavior by feeding the reasoner
with simulated *positive* feedback of that behavior’s execution as shown in Figure 20. In that case,
the reasoner switched back to its initial recommended behavior (ReduceRouteTraffic 1).

Figure 21: Awareness and Reinforcement Learning Process Steps
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Note that in the tests above, although, as shown in figures 19 and 20, the ReduceRouteTraffic 3 has
the highest probability rate, it was never recommended by the reasoner, because its starting conditions
were not met (see Section 3.3).

Figure 21 depicts a UML sequence diagram presenting the entire simulation process in steps as
described above.

6 Summary and Future Goals

In the course of the fourth year of WP3, we completed the implementation of the KnowLang Frame-
work and successfully built the knowledge models for all the three ASCENS case studies. Moreover,
we completed the first version of the KnowLang Reasoner. Although subject of further enhancement,
the current implementation of the KnowLang Reasoner is complete and comprehensive enough to
provide a powerful mechanism for self-adaptive reasoning. The reasoner runs in the context of self-
adaptive systems and operates over a KnowLang-specified, yet KnowLang-compiled KB. It provides
a predefined set of ASK and TELL operators allowing for communication with that KB. TELL opera-
tors feed the reasoner with important information so it can update the KB with recent changes in both
the system and execution environment. The system running the reasoner uses ASK operators to re-
ceive recommended behavior where knowledge is used against the perception of the world to generate
appropriate actions in compliance to some goals and beliefs. Finally, ASK operators may provide the
system with awareness-based conclusions about current situations, states, etc.

As a proof-of-concept test case, we used the KnowLang Reasoner to simulate awareness in the
ASCENS case studies. In this deliverable, we have presented how the KnowLang Reasoner, operating
over the eMobility KB, responded to queries about active states, current situations, and active policies.
Moreover, the test results demonstrated how the KnowLang Reasoner reasons about situations and
recommends behavior (a sequence of actions) that eventually may drive the system out of a particular
situation. Finally, we have demonstrated that the reasoner is capable of reinforcement learning based
on the past experience of recommended behavior.

Our plans for future work are mainly concerned with further development of both the KnowL-
ang Framework and KnowLang Reasoner, along with their further integration in the ARE Framework
Toolset. Concerning the KnowLang Framework, we plan to develop constructs for knowledge rep-
resentation of special atomic and sharable *state signs* that should help the reasoner reason on up-
coming activation of various states. This will help the reasoner predict in a more accurate fashion
the necessary self-adaptive behavior. Other upcoming development activities are concerned with the
implementation of the KnowLang GENERATE NEXT ACTIONS operator, which is based on the
computations performed by a special reward function that needs to be implemented by the KnowLang
Reasoner. The KnowLang Reward Function (KLRF) observes the outcome of the actions to compute
the possible successor states of every possible action execution and grants the actions with special
reward number considering the current system state (or states, if the current state is a composite state)
and goals. KLRF is based on past experience and uses Discrete Time Markov Chains for probability
assessment after action executions.

To conclude, we would like to say that we believe WP3 achieved great results, which solely and
uniquely demonstrate how successful this WP is.
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