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Executive Summary

This document summarizes the work performed in Year 4 concerning the design and the implementa-
tion of correct service components (SCs) and service component ensembles (SCEs). Among others,
two main contributions that both represent significant steps towards the objectives fixed for WP5 are
presented in this deliverable. The first one bridges the gap between WP1 and WP5 by providing trans-
lation means of SCEL specifications into BIP models, for which various analysis tools exist. The
second main contribution is an extension of the compositional verification method proposed during
the project to parameterized systems, that is, systems consisting of arbitrary number of isomorphic
components communicating through predefined topologies (e.g. star or ring). We identified a specific
class of target properties for which the verification of a parameterized system can be achieved through
the verification of a limited number of instances. This allows us to verify whole classes of systems
instead of single instances.
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1 Introduction

This year we completed previous work on correctness of Service Component Ensembles (SCEs) in
three main directions.

First, we completed the ASCENS Design Flow presented in Deliverable JD2.2 by bridging the
gap between the SCEL language which is used for specifying ensembles in the project, and the BIP
framework which includes tools for simulation, verification and statistical model-checking. This ma-
terializes as a prototype tool translating a subset of the SCEL language called SCELight [DLLL+14]
which is a static version of SCEL in which higher-order communication, dynamic creation of new
names and components, as well as policies are not considered, and such that knowledge repositories
are tuple spaces. In principle, using this translator allows to apply all the verification results related to
the BIP language to SCELight specifications. This includes compositional verification, which is an
original approach for verifying safety properties of component-based systems, that does not require to
build explicitly composed systems which are often non tractable. Section 2 defines formally the set of
translation rules that are implemented by our translator. It also illustrates the translation by considering
an academic example expressed in SCEL which was verified by BIP tools after translation.

Second, we improved the compositional verification method for timed systems proposed previ-
ously (see Deliverables D5.2 and D5.3) in two different ways (see Section 3). On the one hand we
developed specific techniques for computing invariants for “untimed” components, that is, compo-
nents that are free of timing constraints. Without these new techniques, our method was not always
scalable in presence of untimed components: they may have very large zone graphs, and correspond-
ing formulae cannot be handled by SMT solvers we are based on. The new method uses regular
expressions instead of zone graphs for the untimed components, which prove to considerably reduce
the size of the computed invariants for these components, as shown for the Fischer protocol example
considered in this deliverable.

Another amelioration of the compositional verification method is an attempt to extend it to pa-
rameterized systems. Here, a parameterized system refers to a system built as the composition of n
instances of the same component, where n is left as a parameter. Connections between the components
should follow regular patterns such as star topologies which are considered here. Given a parameter-
ized system, the goal is to come up with a proof of its correctness for any number of instances, that is,
for any value of n. We shown that for a specific class of target properties which is quite expressive,
it is sufficient to verify the correctness of the system for a finite number of values for n, to establish
the correctness for any value of n. In practice we had to verify the system only for few values of n,
which we did using compositional verification. We think that this result is a significant step towards
the verification of SCEs which often consist in a large and non fixed number of replicated components
(e.g. swarms of robots).

Finally, to improve general applicability and scalability of statistical model-checking (SMC) ap-
proaches (considered in the ASCENS project for quantitative and performance analysis), we devel-
oped automatic methods for the construction of faithful abstractions of system models. Our approach
is based on a combination of abstraction and learning techniques. Given a target property and a set
of execution traces of the system, we first use abstraction to restrict the amount of visible information
on traces to the minimum required to evaluate the property and then, use learning to construct a com-
pact, probabilistic model which conforms to the abstracted sample set. This allows to apply SMC to
black-box implementations, that is, even if no detailed model of the system is available.

The rest of the deliverable is structured as follows. In Section 2 we present the translation from
SCELight to BIP. Section 3 reports on the improvements achieved for the compositional verification
method. Finally, Section 4 explains how we compute stochastic abstractions from black-box imple-
mentations, and Section 5 concludes the deliverable.
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2 From SCEL to BIP: towards verification of SCEL programs

SCEL is the language proposed in the ASCENS project for specifying software architectures of auto-
nomic systems (see D1.1, D1.2, and D1.3). It has been extensively used in the project across various
examples (see JD2.1 and JD2.2) and case studies (see D7.2 and D7.3). SCEL specifications can be
executed by means of jResp which is a runtime environment for Java that provides API for using
SCEL syntactic constructs.

A lot of work in WP5 for correctness of components had focused on the BIP language instead of
SCEL. The main reason for that is that many of the techniques and associated tools developed under
WP5 are continuation of previous work around BIP. For a better integration of them within the project
we propose to establish the connection between SCEL and BIP in the form of an automatic method
for translating a subset of the SCEL language into BIP. This method has been fully implemented by a
prototype tool and validated on several examples.

The rest of the section is as follows. Section 2.1 gives a definition of SCELight—the subset of
SCEL that we target in this work. Section 2.2 formally specifies a set of transformation rules allowing
the translation of SCELight to BIP. Finally, in Section 2.3 we briefly describe the prototype tool
implementing these rules and give an example of use of our tool.

2.1 Presentation of SCELight

We restricted our transformation method to a subset of the SCEL language called SCELight. SCE-
Light has already been considered by De Nicola et al. when they used the model-checker SPIN to
verify SCEL specifications [DLLL+14]. To this end [DLLL+14] they provided transformation rules
allowing systematic generation of Promela1 specifications from SCELight ones. The main restrictions
considered in SCELight compared to SCEL are the following [DLLL+14]:

• policies are not part of SCELight (composition of component’s processes uses the standard
interleaving of actions)

• knowledge repositories are implemented as multiple distributed tuple-spaces

• higher-order communication, dynamic creation of new names and components are not consid-
ered in SCELight.

An abstract syntax for SCELight is provided by Figure 1. It corresponds to a simplified version of
the concrete syntax of the actual SCELight language. Notice also that it is not refining non terminal
terms Type, Expression and Predicate, since we do not provide any detail of their translation
in the present document. A SCELight specification consists in a set of definitions and a system.
To simplify the presentation we consider only definitions of attributes, but SCELight also allows
to define processes (with parameters), projections, constants, and functions. Attributes are special
variables used to represent interfaces of components in the system. A system is a set of (parallel)
components C1, . . . ,CN , each component Ci = {I}[K P1| . . .|Pm] being described by its interface
I, its knowledge repositoryK, and a set of processes P1, . . . ,Pm implementing the behavior of Ci and
executing in parallel.

The interface of a component Ci assigns values the attributes, which are either constant or com-
puted dynamically from the content of the knowledge repository of Ci. The knowledge repository
of a component is a tuple-space which is initialized with a predefined (possibly empty) set of tuples.
Processes define the behavior of components, that is, how tuple-spaces evolve over time. A process
executes a block of commands sequentially. A command is either a variable declaration, an action

1Promela is the input language for the tool SPIN.
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on knowledge repositories, or a control-flow instruction “if-then-else” or “while” loop. In addition to
those three types of commands, SCELight also allows instantiation of new processes but this is not
considered here. Actions performed by processes on tuple-spaces are of four types, whose semantics
is informally presented below. A formal definition of the operational semantics of SCEL programs is
given in ASCENS Deliverable D1.2.

Put actions are used to add tuples to tuple-spaces. They specify a tuple to be added, and the destina-
tion targeted by the action. The destination can be self for the tuple-space of the component
to which the process belong, an expression evaluating to an identifier of a component, or a
predicate on attributes. Notice that in the later case the tuple will be added (broadcast) to all
the components satisfying the predicate, i.e. to all knowledge repositories such that the current
values of the attributes of the corresponding component satisfy the predicate.

Get actions are used to retrieve tuples from tuple-spaces. They specify a template and a target desti-
nation. A get operation retrieve (non-deterministically) a single tuple from a single tuple-space,
even if several tuples match the template and/or several tuple-spaces match the target destination
(which happens only if a predicate is used for the destination). A get operation is blocking if no
matching tuple or tuple-space is found.

Query actions are the same as get actions except for the fact that they are not retrieving tuples, they
only check for their presence. They are also blocking when no tuple matching both the template
and the destination can be found.

Replace actions are used to modify existing tuples. They can only target destination self, thus for
replace actions the destination parameter is omitted.

2.2 Translation Rules

In the following we provide a formalization of the translation rules we used for implementing our
prototype translator of SCELight to BIP. To simplify the presentation, in this deliverable we are
not considering replace actions as well as predicates for target destinations of actions, even those
syntactic constructions are fully handled in our prototype. Moreover, the translation of expressions is
not detailed here.

The translation of SCELight specifications is formalized by function ⟪ ⋅ ⟫, which takes syntactic
elements of SCELight as input parameter and which returns BIP code. The function ⟪ ⋅ ⟫ is defined
recursively by a set of translation rules. Notice that for convenience we may consider additional
(contextual) parameters for ⟪ ⋅ ⟫ which are denoted by indices, e.g. ⟪ e ⟫p1,p2 represents the translation
of a SCELight element e into BIP code with respect to parameters p1 and p2.

The input of the translation is a SCELight specification < D,S > where D is a set of attribute
declarations A1, . . . ,An and S is a system. The translation rules presented below allow the transla-
tion of any system S, with respect to a set of attribute declarations A1, . . . ,An and a given bounded
capacity of K for knowledge repositories. That is, the translation of S for A1, . . . ,An,K is formally
defined as ⟪ S ⟫

A1,...,An,K
. To avoid overloading of notations, parameters A1, . . . ,An,K are omited

throughout the deliverable and are considered implicitly, e.g. we write ⟪ S ⟫ for ⟪ S ⟫
A1,...,An,K

. At-
tribute definitions Ai are of the form Ai = AN i:AT i, where AN i is the attribute name Ai and AT i
its type.

System

A SCELight system S = C1 . . .CN consisting in components Ci = {Ii}[Ki Pi,1| . . .|Pi,m(i)], i =
1..N , is translated into a BIP package which is a collection of declarations of port types, connector

ASCENS 7



D5.4: Fourth Report on WP5 (Final) March 12, 2015

Definitions ∶∶= Attribute∗

AttributeDecl ∶∶= AttributeName:AttributeType

System ∶∶= Component∗

Component ∶∶= Interface[Knowlege Process(|Process)∗]
Interface ∶∶= {AttributeInstantiation∗}

Knowledge ∶∶= Tuple∗

Process ∶∶= V ariableDeclaration∗ Block

AttributeInstantiation ∶∶= AttributeName = ( Expression ∣ Projection )
Projection ∶∶= [Template]->Expression:Expression

Command ∶∶= Block ∣ Action ∣ IfThenElse ∣ While

Block ∶∶= { Command∗ }

Action ∶∶= put(Tuple)@Target ∣ get(Template)@Target

∣ query(Template)@Target ∣ replace[Template->Tuple]

Tuple ∶∶= Expression ( ,Expression )∗

Template ∶∶= TemplateF ield ( ,TemplateF ield )∗

TemplateF ield ∶∶= Expression ∣ * ∣ ? Type ∣ ? V ariableName

Target ∶∶= self ∣ Expression ∣ Predicate

IfThenElse ∶∶= if(Expression) Command ( else Command )?
While ∶∶= while(Expression) Command

Figure 1: Abstract syntax of SCELight.
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⟪ C1 . . .CN ⟫ = package PackageSCEL2BIP
// declarations of external C++ code
use TupleTemplate

// generic types
port type ItfP(int id, ⟪ A1 ⟫, ..., ⟪ An ⟫)
port type WriteP(Tuple t, int at)
port type ReadP(Template tp, Tuple t, int at)
port type KnowP(Tuple t)
port type KnowAllP(Tuple t1, ..., Tuple tK)

connector type Write(WriteP p, ItfP i, KnowP k)
define p i k
on p i k provided (i.id == p.at)

down { k.t = p.t; }
end

connector type Read(ReadP p, ItfP i, KnowP k)
define p i k
on p i k provided (i.id == p.at && match(p.tp, k.p))

down { p.t = k.t; }
end

// specific types for C1, ...CN
⟪ C1 ⟫1

...
⟪ CN ⟫N

// component type representing S
compound type System()

// components for interfaces, tuple spaces and processes
∀i = 1..N component Interfacei itfi()
∀i = 1..N component Knowledgei knwi()
∀i = 1..N,∀j = 1..m(i) component Processi,j proci,j()

// connectors for updating attributes
∀i = 1..N connector Updatei upti(knwi.qryAll, itfi.update)

// connectors for actions (put, get, query)
∀i = 1..N,∀j = 1..m(i),∀k = 1..N

connector Write puti,j,k(proci,j.put, itfk.attr, knwk.put)
connector Read geti,j,k(proci,j.get, itfk.attr, knwk.get)
connector Read qryi,j,k(proci,j.qry, itfk.attr, knwk.qry)

end
end

Figure 2: BIP package corresponding to a SCELight specification.
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types and component types (see Figure 2). Amongst those types, some are independent from the
definition of the target system S (i.e. generic types), while others are generated specifically from the
components of S .

The system S is represented by the (composite) component type System containing instances of
component type and connector types. Each component Ci is represented in System by one component
itfi for its interface Ii, one component knwi for its knowledge Ki, and one component proci,j for
each of its processes Pi,j , j = 1..m(i). Interface components itfi expose a unique identifier id
and the attributes of the corresponding component, through a port of type ItfP. Each knowledge
component knwi implements a bounded tuple space with pre-allocated tuple variables. It has ports
put, get and qry exposing tuples of knwi for implementing the effect of corresponding actions in
the tuple space. Components proci,j implementing processes have also ports put, get and qry for
implementing actions from the processes side. As a result, these ports expose necessary variables of
processes such as the target destination (at), a tuple and a template.

Components of System are connected as follows. For each component Ci, we use the connector
upti to update the values of the attributes stored in interface component itfi with respect to the
content of the tuple space implemented by knwi, each time knwi is accessed. Moreover, connectors
puti,j,k, geti,j,k, and qryi,j,k are used to transmit data between processes and tuple spaces when
actions are performed. More precisely, connectors puti,j,k transmit tuples from processes proci,j,k
to tuple spaces knwk, and connectors geti,j,k and qryi,j,k transmit tuples in the reverse way. Notice
that these connectors also check for correct target destinations using interface components, and that
target tuples match templates provided for get and query actions.

The translation of each component Ci of the system S is simply obtained by the translation of its
constituents, namely its interface, its knowledge and its processes. That is, if Ci is the component
{Ii}[Ki Pi,1| . . .|Pi,m(i)] then the translation of Ci is given by:

⟪ Ci ⟫i = ⟪ {Ii}[Ki Pi,1| . . .|Pi,m(i)] ⟫
i
= ⟪ Ii ⟫i ⟪ Ki ⟫i ⟪ Pi,1 ⟫i,1 . . .⟪ Pi,m(i) ⟫

i,n

Parameters i and j involved in this rule are used to generate unique names.

Knowledge

Tuples and templates of SCELight are encoded and managed in BIP using externally defined data
types Tuple and Template (see 2.4). The translation rules related to tuples and templates are
provided in Section 2.4. The BIP component representing a knowledge repository K of a component
is given by Figure 5. It contains K tuples t1, . . . , tK which are initialized with initial tuples T1 . . . ,
Tm of K. It exports four ports: put, get and qry for implementing actions put, get and query, and
qryAll which is used for projecting all the tuples on attributes (see translation rules for interfaces).
Its behavior is given by a Petri net in which places EMPTYj and FULLj are used to indicate whether
tuples tj are already used or not, and to allow/disallow put, get and query actions for tuples tj through
interface ports (put, get and qry) accordingly. Notice that qryAll is always possible thanks to
the presence of place UP.

Interface

An interface I of a SCELight component C defines a set of attribute instantiations AIj of the form
AIN j=rj , where AIN j is the name of an attribute and rj is either an expression or a projection.
Interfaces are translated into BIP components storing the current values of the attributes. In addition,
they also store identifiers used for implementing destination of actions. Besides components, we also
generate connector types implementing projections of tuple spaces on attributes. They are used to
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⟪ K ⟫i = ⟪ T1 . . .Tm ⟫i = atom type Knowledgei()
data Tuple t1, ..., tK

export port KnowP put1(t1), ..., putK(tK) as put
export port KnowP get1(t1), ..., getK(tK) as get
export port KnowP qry1(t1), ..., qryK(tK) as qry
export port KnowAllP qryAll(t1, ..., tK) as qryAll

place UP, EMPTY1, ..., EMPTYK, FULL1, ..., FULLK

initial to UP, FULL1, ..., FULLm, EMPTYm+1, ..., EMPTYK

do { ∀j = 1..m ⟪ Tj ⟫→tj
}

on qryAll from UP to UP

∀j = 1..K
on putj from EMPTYj to FULLj

on getj from FULLj to EMPTYj do { tj.clear(); }
on qryj from FULLj to FULLj

end

Figure 3: BIP component corresponding to a knowledge repository.

update the values of the attributes after each modification of the corresponding tuple space. They
are directly derived from the set of attribute instantiations AIN j=rj where rj is a projection. For
instantiations AIN j=rj such that rj is an expression, we simply initialize the value of AIN j to rj
since in this case AIN j is independent from the content of the tuple space.

Process

A process P of a component is represented by a BIP component having ports for put, get, query
actions. A SCELight process P consists of a set of variable declarations V1, . . . , Vm and a block of
code B. Variable declarations are directly translated into corresponding declarations in the generated
component. The behavior of P is an automaton defined by the set of control locations L0, . . . , L#B−1

and a set of transitions corresponding to B. The number of control locations required for translating
B is denoted by #B and is computed using the set of rules provided in Section 2.4. In the following
we detail rules for the translation of SCELight commands into transitions. Rules are parameterized
by index i defining from which control location the generated transitions should start (by default they
start from location L0).

Control Flow. For translation of blocks of commands, “if-then-else”, and “while” commands, we
generate transitions and control locations corresponding directly to the control flow of the SCELight
code. We use internal transitions (internal) for implementing branching in the control flow. Such
transitions are executed locally by a component independently from the others, and thus do not need
to be synchronized further.
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⟪ I ⟫i = ⟪ AI1 . . .AIm ⟫i = component type Interfacei()
data int id
∀j = 1..m data ⟪ AT j ⟫ ⟪ AN j ⟫

export port ItfP attr(⟪ AN 1 ⟫, ..., ⟪ ANn ⟫)

place READY, UPDATE

initial to UPDATE do {
id = i;
∀j = 1..m such that rj is an expression

⟪ AN j ⟫ = ⟪ rj ⟫;
}
on update from UPDATE to READY
on itf from READY to UPDATE

end

connector type Updatei(KnowAllP qry, ItfP itf)
data Template template
define qry itf
on qry itf down {
∀j = 1..m such that rj is a projection [t]->e:e′

itf.⟪ AIN j ⟫ = ⟪ e′ ⟫;

⟪ t ⟫→template

∀k = 1..K
if (match(template, qry.tk)) then

⟪ t ⟫qry.tk→
itf.⟪ AIN j ⟫ = ⟪ e ⟫;

fi
}

end

Figure 4: BIP component and connector generated for an interface.

⟪ P ⟫i,j = V1 . . .VmB = atom type Processi,j()
int at, id
data Tuple tuple
data Template template
∀k = 1..m data ⟪ Vk ⟫

export port WriteP put(tuple, at)
export port ReadP get(tuple, template, at)
export port ReadP qry(tuple, template, at)

place L0,..., L#B−1
initial to L0 do { id = i; }
⟪ B ⟫

end

Figure 5: BIP component corresponding to a process.

ASCENS 12



D5.4: Fourth Report on WP5 (Final) March 12, 2015

⟪ {c1c2 . . . cn} ⟫ = ⟪ {c1c2 . . . cn} ⟫0

⟪ {c1c2 . . . cn} ⟫i = ⟪ c1c2 . . . cn ⟫i = ⟪ c1 ⟫i ⟪ c2 . . . cn ⟫i+#c1−1

⟪ if(e) c ⟫i = internal from Li to Li+1 provided (⟪ e ⟫)
internal from Li to Li+#c provided (!⟪ e ⟫)
⟪ c ⟫i+1

⟪ if(e) c1 else c2 ⟫i = internal from Li to Li+1 provided (⟪ e ⟫)
internal from Li to Li+1+#c1 provided (!⟪ e ⟫)
⟪ c1 ⟫i+1
⟪ c2 ⟫i+1+#c1
internal from Li+#c1 to Li+#c1+#c2+1
internal from Li+#c1+#c2 to Li+#c1+#c2+1

⟪ while(e) c ⟫i = internal from Li to Li+1 provided (⟪ e ⟫)
internal from Li to Li+1+#c provided (!⟪ e ⟫)
⟪ c ⟫i+1
internal from L#c to Li

Actions. Actions are encoded using a sequence of two transitions. The first transition is internal and
it evaluates the parameters of the action, which are:

• the target destination, that is, an expression evaluating to an integer corresponding to the identi-
fier of a component;

• the tuple (for put) or the template (for get and query).

When self is provided for the destination we use the identifier of the component to which process P
belongs, which is found in the local variable id.

The second transition is synchronized with port put, get, or qry which exposes the value of the
parameters. In addition, for get and query actions, the tuple received upon the execution is used for
updating the values of the free variables involved in the template.
⟪ put(t)@e ⟫i = internal from Li to Li+1 do { at = ⟪ e ⟫; ⟪ t ⟫→tuple }

on put from Li+1 to Li+2

⟪ get(t)@e ⟫i = internal from Li to Li+1 do { at = ⟪ e ⟫; ⟪ t ⟫→template }
on get from Li+1 to Li+2 do { ⟪ t ⟫tuple→ }

⟪ qry(t)@e ⟫i = internal from Li to Li+1 do { at = ⟪ e ⟫; ⟪ t ⟫→template }
on qry from Li+1 to Li+2 do { ⟪ t ⟫tuple→ }

⟪ self ⟫ = id

We give here a rough idea of how to translate action having predicates as target destinations, but
we do not provide formal definitions to not over-complicate this document. Given a predicate p in a
process P , the idea is to use specific connector types Writep and Readp for p, instead of the generic
Write and Read. Since Writep and Readp have access to attributes of the target component, they
are responsible for the evaluation of p. For instance, Readp defined below will be used for actions of
the form get(t)@p:

connector type Readp(ReadP p, ItfP i, KnowP k)

define p i k

on p i k provided (⟪ p ⟫i && match(p.tp, k.t)) do { p.t = k.t; }

end

where ⟪ p ⟫i is a boolean expression corresponding to the evaluation of p with attributes exported by
the interface port i. If in addition to attributes the predicate p involves local variables of the process
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P , we also need to export them through the port p, which requires the use of a dedicated port type
for p instead of ReadP. In this case the boolean condition corresponding to the predicate not only
involves attributes exported by the port i but also variables exported by p.

For put actions of process P of the form put(t)@p, where p is a predicate, the semantics of SCE-
Light requires to atomically broadcast the tuple t to any component satisfying p, which is implemented
by the connector type Writep provided below. Notice that the following definition enumerates all
interactions potentially enabled by Writep, corresponding to all possible subsets of components that
could be a destination of the broadcast. Thanks to the semantics of broadcast in BIP, interactions se-
lected at runtime are maximal, meaning that all the components satisfying the predicate p will receive
the tuple t. In our implementation we actually use a hierarchical connector instead of the implementa-
tion proposed here for Writep, having exactly the same behavior but being much more compact (i.e.
whose size in linear with respect to the number of components).

connector type Writep(WriteP p, ItfP i1, KnowP k1, ..., ItfP in, KnowP kn)

define p’ i1 k1 ...in kn

on p provided (true) // do nothing

∀m,∀1 ≤ j1 < j2 < . . . < jm ≤ n
on p ij1 kj1 ...ijm kjm

provided (⟪ p ⟫ij1 && ...&& ⟪ p ⟫ijm)
do {

kj1.t = p.t;

...

kjm.t = p.t;

}

end

2.3 Example

Our prototype translator tool has been implemented on top of the Eclipse platform using XText [XTe].
It is parsing SCELight specifications and builds intermediate representations in terms of Java in-
stances. The translation rules presented in Section 2.2 are directly expressed as XTend templates.

To illustrate our method for translating SCELight specifications into BIP models, we consider a
client-server example consisting of one client and two servers (see Figure 6). The SCELight code
implementing this example is provided in Figure 7. Notice that its syntax does not correspond exactly
to the one presented in Section 2.1, as we are providing here an actual program using the concrete
syntax of SCELight

Client

Server1 Server2

load<=80 load<=80requests

reply reply

Figure 6: The client-server example.
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Components have attributes load representing the current load of a server, and name to identify
components. The process implementing the client repeats the following sequence of actions. It first
sends a request for a service to both servers. To not overload servers, the request is sent (i.e. broad-
casted) to a server only if its load is not greater than a predefined threshold (80 here). To this end, the
client puts the tuple ("invoke", "service", self) in all repositories of components whose
attributes satisfy the predicate load <= 80 & name != "Client". Then, it waits for a reply
from both servers, that is, it retrieves two instances of the tuple ("completed", "service")
from its own repository.

attribute load:int;
attribute name:string;

projection loadP = ["load", ?[int l]] -> l:0;

process Client() {

while (true) {

put("invoke", "service", self)@(load <= 80 & name != "Client");

get("completed", "service")@self;
get("completed", "service")@self;

}

}

process Server() {

int clientId, l;

while(true) {

get("invoke", "service", ?clientId)@self;
replace["load", ?l -> "load", l+20];

// [...] computation on server is here

put("completed", "service")@clientId;

replace["load", ?l -> "load", l-20];

}

}

system Cloud = { name="Client" } [ Client() ]

|| { name="Server1", load=loadP } [ <"load", 50>, Server() ]

|| { name="Server2", load=loadP } [ <"load", 40>, Server() ]

Figure 7: Client/Server example in SCELight.

A process implementing a server repeats the following sequence of actions. First, it waits for a
request from the client by retrieving a tuple of the form ("invoke", "service", id) from its
own repository. After that, it increases temporarily its load by 20 which corresponds to the execution
of the requested service. Then, it responds to the client by sending the tuple ("completed",
"service") to the destination id. Finally, it puts back its load in its initial value.

Clearly, this system executes without blocking (deadlock) if each time the client broadcasts a
request, both servers are not overloaded (i.e. satisfy load <= 80). If (at least) one of the servers
is overloaded, the client waits for responses that never arrive. To check this property, we generated
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process FixedServer() {
int clientId, l;
while(true) {

get("invoke", "service", ?clientId)@self;
replace["load", ?l -> "load", l+20];

// [...] computation on server is here

replace["load", ?l -> "load", l-20];
put("completed", "service")@clientId;

}
}

Figure 8: Fixed version of the server.

.bip

BIP
Execution
Engine

.sl SCELight2BIP

SCELight
specification

BIPC .cpp

BIP
model

C++
code

reachable
states

repository
capacity

K

Figure 9: Example of use of the prototype SCELight2BIP.

the BIP model from the SCELight code using our prototype tool. We set a capacity of K = 4 for
the knowledge repositories, which was sufficient for this example. We used the BIP engine in the
exploration mode to compute exhaustively all the reachable states (see Figure 9), which is achieved
in a reasonable amount of time for this simple example. For more complex systems and in particular
infinite models, cleverer techniques such as compositional verification presented in Deliverables D5.2,
D5.3 and D5.4 should be considered.

When the initial values of the attributes load of the two servers is not greater than 60 (which
is the case in the code provided by Figure 7 with 50 and 40), the system executes without deadlock
since the load of both servers never exceeds 80. The computation of the reachable states using the
BIP engine confirms the absence of deadlocks:

[BIP ENGINE]: BIP Engine (version optimized )
[BIP ENGINE]:
[BIP ENGINE]: initialize components...
[BIP ENGINE]: computing reachable states:...............................
[...]... found 2365 reachable states, 0 deadlock, and 0 error in 0 state

If one of the initial values of attribute load of a server is greater than 80, the system blocks during
the first iteration of the client when it is waiting for the second reply. This deadlock situation is also
confirmed by the engine with the following output when initial loads are 40 and 85:

found 64 reachable states, 1 deadlock, and 0 error in 0 state

If one of the initial values of attribute load of a server is greater than 60, the system may block
if the client sends its request before servers put back their load in their initial values. Again, this is
confirmed by the BIP engine for initial loads 61 and 50:

found 2008 reachable states, 1 deadlock, and 0 error in 0 state
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Such deadlock situation can be fixed by updating the load after sending the reply in the server, that is
by using the implementation provided by Figure 8. This is also confirmed by the BIP engine, when
considering initial loads 61 and 50 with the fixed version we have the following output:

found 772 reachable states, 0 deadlock, and 0 error in 0 state

2.4 Annex: Additional Translation Rules

We provide here additional translation rules which are needed for translating SCELight to BIP.

Number of Control Locations

The number of control locations used for representing SCELight commands is given by the operator
# which is recursively defined as follows.
#{c1c2 . . . cn} = #c1 +#c2 + . . . +#cn − n + 1

#(if(e) c) = #c + 1

#(if(e) c1 else c2) =#c1 +#c2 + 2

#(while(e) c) =#c + 2

#(put(t)@e) = #(get(t)@e) = #(qry(t)@e) = 3

Tuples and Templates

Tuples and templates use common rules for their translation. Given a tuple or a template T =
f1, . . . , fn and a variable t used for recording T , the generated code clears t to start from an empty
tuple/template, and then add fields fj to t in the right order, which is expressed by the following rule.
⟪ f1, . . .,fn ⟫→t = t.clear();

⟪ f1 ⟫→t

...
⟪ fn ⟫→t

The addition of a field fj to t depends on the type of fj (whose computation is not presented here),
and is done differently whether fj is an expression ej , * or of the form ?v.
⟪ ej ⟫→t

= addTypeej(t, ⟪ ej ⟫); // Typeej: name of the type of expr. ej

⟪ * ⟫→t = addAny(t);

⟪ ?v ⟫→t = addAnyTypev(t); // Typev: name of the type of var. v

Retrieving values of free variables of templates. For templates T = f1, . . .,fn involving free
variables or wildcards (e.g. (10, "20", ?x) has the free variable x), the following set of rules
are used to generate the code responsible for assigning updated values from a matching tuple t.
⟪ f1, . . . , fn ⟫t→ = ⟪ f1 ⟫t,1→

...
⟪ fn ⟫t,n→

⟪ ej ⟫
t,j→ = ; // nothing to do for expressions

⟪ * ⟫t,j→ = ; // nothing to do for *

⟪ ?v ⟫t,j→ = ⟪ v ⟫ = getTypev(t, j); // Typev: name of the type of var. v
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External C++ Code. Functions needed for the manipulation of tuples and templates are imple-
mented by C++ code which is called from BIP models. The following declarations are used to specify
to the BIP compiler the presence such external C++ code.
@cpp(include=”Tuple.hpp”,src=”Tuple.cpp”)

package TupleTemplate

extern data type Tuple

extern data type Template

extern function clear(Tuple)

extern function addBool(Tuple, bool)

extern function addInt(Tuple, int)

extern function addDouble(Tuple, float)

extern function addString(Tuple, string)

extern function bool getBool(Tuple, int)

extern function int getInt(Tuple, int)

extern function float getFloat(Tuple, int)

extern function string getString(Tuple, int)

extern function clear(Template)

extern function addAny(Template)

extern function addAnyBool(Template)

extern function addAnyInt(Template)

extern function addAnyFloat(Template)

extern function addAnyString(Template)

extern function addBool(Template, bool)

extern function addInt(Template, int)

extern function addDouble(Template, float)

extern function addString(Template, string)

extern function bool match(Tuple, Template)

end

3 Compositional Verification of Timed Systems

During the project, we proposed a compositional verification method for component-based systems.
Our approach relies on invariants which are state predicates satisfied by the system. The computation
of these invariants is compositional, that is, they are deduced from a separate analysis of the compo-
nents and the architecture which is given as a set of potential interactions between the components.
The conjunction of such invariants can be understood as an over-approximation of the reachable states
of the system, allowing to prove safety properties (i.e. that the system will never reach an undesirable
configuration). Our method has been implemented in the tool RTD-Finder [RTD]. Due to the presence
of over-approximations, it is sound but not complete: if RTD-Finder succeeds, the (safety) property
is (proven to be) satisfied by the system, otherwise the tool cannot conclude, i.e. the property may or
may not be satisfied by the system. In D5.2 we improved our method by computing linear invariants
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for the interactions. They allow to better approximate the state space especially when trying to prove
mutual exclusion properties. We also extended our approach to timed systems, which was presented
in D5.3. During the last year, we improved this compositional verification approach for timed systems
in two main directions.

During our past experiments, we came across a particular case for which invariants were too large
to be practically handled by the SMT solver used by RTD-Finder. More specifically, the problem arises
for untimed components which may be present in a timed system. The lack of local clocks leads to
a too unrestricted order between the history clocks, and consequently to a considerably great number
of reachable states for such components. Nevertheless, untimed components have quite a compact
characterization by means of regular expressions. We will show how we can use this fact to tackle the
above mentioned problem.

We also present preliminary work concerning a quite hot topic, that of the verification of parame-
terized systems. One of the major limitations for the application of our verification approach to Service
Component Ensembles (SCEs) considered in ASCENS is that it targets only fixed architectures involv-
ing a predefined number of components. This is obviously a problem when verifying SCEs, as they
may be large collections of unknown number of nodes that are dynamically changing over time. Our
second contribution presents an attempt to extend our method to parameterized timed systems, which
is a significant step towards the verification of SCEs. A parameterized systems consist in a fixed part
interacting with an arbitrary number n of isomorphic components. We managed to show (under some
conditions) that proving the target property for a limited (small) number of instances of n is sufficient
for proving that any instance satisfies the property. That is, we are able to prove properties for whole
classes of systems.

3.1 The Compositional Verification Approach

The compositional method proposed in [ARB+14] is based on the verification rule (VR) from [BBSN08].
Assume that a system consists of n components Bi interacting by means of an interaction set γ, and
that the system property of interest is Ψ. If components Bi, respectively interactions γ, can be locally
characterized by means of invariants CI (Bi), respectively II (γ), and if Ψ can be proved to be a log-
ical consequence of the conjunction of the local invariants, then Ψ is a global invariant. This is what
the rule below summarizes.

⊢⋀
i

CI (Bi) ∧ II (γ)→ Ψ

∥γBi ⊧ � Ψ
(VR)

In the rule (VR), the symbol ⊢ is used to underline that the logical implication can be effectively
proved (for instance with an SMT solver) and the notation B ⊧ � Ψ is to be read as “Ψ holds in every
reachable state of B”.

Timed Systems. Timed systems are compositions of timed automata [AD94] with respect to n-
ary interactions. Timed automata represent the behavior of components. They have control locations
and transitions between these locations. Transitions may have timing constraints, which are defined on
clocks. Clocks can be reset and/or tested along with transition execution. Formally, a timed automaton
is tuple (L, l0,A, T,X, tpc) where L is a finite set of control locations, l0 is an initial control location,
A a finite set of actions, X is a finite set of clocks, T ⊆ L× (A× C × 2X)×L is finite set of transitions
labelled with actions, guards, and a subset of clocks to be reset, and tpc ∶ L → C assigns a time
progress condition to each location. C is the set of timing constraints which are predicates on the
clocks X defined by the following grammar:

C ∶∶= true ∣ false ∣ x#ct ∣ x − y#ct ∣ C ∧C
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lc0 lc1
ac

x ∶= 0

ac

Cl10 l11
a1

x1 ∶= 0

a1

P1

l20 l21
a2

x2 ∶= 0

a2

P2

Figure 10: An Example of a Timed System

with x, y ∈ X , # ∈ {<,≤,=,≥,>} and ct ∈ Z. Time progress conditions are restricted to conjunctions
of constraints as x ≤ ct. For simplicity, we assume that at each location l the guards of the outgoing
transitions imply the time progress condition tpc(l) of l. For more details about timed automata the
reader may refer to D5.3 and [AD94].

Examples of timed automata are provided by Figure 10. For instance, components Pi, i ∈ {1,2},
are implemented by similar timed automata, consisting of two control locations li0 and li1 and one
transition from li0 to li1 labelled by action ai and resetting clock xi. By convention non displayed
guards of transitions and time progress conditions of locations are true .

Components interact by means of strong synchronizations between their actions. The synchroniza-
tions are specified in the so called interactions as sets of actions. An interaction can involve at most one
action of each component. Given n components (i.e. timed automata) Bi = (Li, li0,Ai, T i,Xi, tpci),
1 ≤ i ≤ n, and a set of interactions γ, we denote by ∥γBi the composition of components Bi with
respect to interactions γ. States of the composition ∥γBi are combinations of the states of the compo-
nents Bi. In ∥γBi, a component Bi can execute an action ai only as part of an interaction α ∈ γ, ai ∈ α,
that is, along with the execution of all the actions participating to α, which corresponds to the usual
notion of multi-party interaction. Note that for a component Bi of a composition ∥γBi, the application
of interactions γ can only restrict its reachable states. That is, the reachable states of Bi when executed
in the composition ∥γBi are included in the reachable states of Bi executed alone (i.e. as a single timed
automaton). This property is essential for the correctness of the compositional verification method,
summarized below.

Components and Interactions Invariants. To give a logical characterization of a system S = ∥γBi
one uses invariants. An invariant Ψ is a state property which holds in every reachable state of S, in
symbols, S ⊧ �Ψ.

Component invariants CI (Bi) characterize the reachable states of components Bi when consid-
ered alone. Such invariants can easily be computed from the zone graph [HNSY94] of the correspond-
ing timed automaton. More precisely, given the reachable (symbolic) states (lj , ζj), 1 ≤ j ≤ m, of
component Bi, the invariant for Bi is defined by:

⋁
1≤j≤m

lj = 1 ∧ ζj ,

where by abuse of notation lj is a variable such that lj = 1 whenever Bi is at location lj , lj = 0 other-
wise. Note that zones ζj are timing constraints, that is, predicates on clocks. Note also that invariants
CI (Bi) still hold for the composed system S = γ(B1, . . . ,Bn), but are only over approximations of
the states reached by each component Bi in S. For example, the component invariants for P1 and C
of Figure 10 are as follows:

CI (P1) = (l10 = 1 ∨ l11) ∧ (l10 = 1 ∧ x1 ≥ 0 ∨ l11 = 1 ∧ x1 ≥ 0)
CI (C) = (lc0 = 1 ∨ lc1) ∧ (lc0 = 1 ∧ xc ≥ 0 ∨ lc1 = 1 ∧ xc ≥ 0)
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Interaction invariants II (γ) are induced by the synchronizations and have the form of global
conditions involving control locations of components. In previous work, we have considered boolean
conditions [BBSN08] as well as linear constraints [LBiBB13] for II (γ). For instance, such invariants
exclude configurations such that lc1 = 1 ∧ li2 = 1, that is, they establish ¬(lc1 = 1 ∧ (l12 = 1 ∨ l12 = 1)).

A safety property of interest for example of Figure 10 is that one of the clocks xi has the same value
as xc, that is, Ψ

△= x1 = xc∨x2 = xc. Even if Ψ holds in S, it cannot be proved by applying (VR) using
only component invariants CI (Bi) and interaction invariant II (γ). A counterexample is given by lc1 =
l11 = l21 = 1 and x1 = x2 = 1, and xc = 0, which satisfies the invariant CI (C)∧CI (P1)∧CI (P2)∧II (γ)
but violates property Ψ, that is, CI (C)∧CI (P1)∧CI (P2)∧ II (γ) /→ Ψ. The weakness comes from
that the proposed invariants cannot relate values of clocks of different components according to their
synchronizations (e.g. synchronous reset of clocks).

Adding History Clocks. As explained in D5.3 and [ARB+14], the key idea behind the composi-
tional verification method for timed systems is to use additional history clocks in order to track the
timing of interactions between different components without modifying their behavior. We equip each
component Bi (and later, interactions) with history clocks: one clock hai per action of ai of Bi. A
history clock hai is reset on all transitions executing ai. Each time an interaction α ∈ γ is executed,
all the history clocks corresponding to the actions participating in α are reset synchronously, and then
become identical at the next state (until another interaction is executed). Moreover, history clocks of
actions of the last executed interaction α are necessarily lower than the ones of actions not participating
in α, since they are the last being reset. This is captured by the following invariant:

E(γ) = ⋁
α∈γ

(( ⋀
ai,aj∈α
ak∉α

hai = haj ≤ hak) ∧ E(γ ⊖ α)),

where γ ⊖ α = {β ∖ α ∣ β ∈ γ ∧ β /⊆ α}. In [ARB+14] it is shown that E(γ) is an invariant of the
system. For example of Figure 10, invariant E(γ) is given by:

E(γ) = hac = ha1 ≤ ha2 ∨ hac = ha2 ≤ ha1 .

Component invariants for example of Figure 10 including the history clocks are as follows:

CI (P h1 ) = l10 + l11 = 1 ∧ (l10 = 1 ∧ ha1 > tε = x1 ∨ l11 = 1 ∧ tε ≥ x1 = ha1)
CI (Ch) = lc0 + lc1 = 1 ∧ (lc0 = 1 ∧ hac > tε = xc ∨ lc1 = 1 ∧ tε ≥ xc = hac).

Handling Conflicting Interactions. Previous invariants can be further strengthened for conflicting
interactions (i.e. sharing a common action ai) by considering the minimal time elapsed between
consecutive execution of ai. We add again history clocks hα for each the interaction α of γ, which is
reset each time α is executed by the means of an additional component and adequate synchronizations.
For an action ai of component Bi, the separation constraint S(γ, ai) is defined as:

S(γ, ai) = ⋀
α,β∈γ ∣ ai∈α,β

α≠β

∣ hα − hβ ∣≥ δai ,

where δai is a lower bound of the time elapsed between two consecutive executions of ai in Bi,
which can be statically computed from the timed automata of Bi [CY92]. It is shown that separation
constraints S(γ, ai) are invariants of the system, that is, the following is an invariant of the system:

S(γ) = ⋀
1≤i≤n

⋀
ai∈Ai

S(γ, ai).
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In [ARB+14], it is shown that a new invariant E∗(γ)

E∗(γ) = ⋀
1≤i≤n

⋀
ai∈Ai

hai = minα∋aihα.

links S to E . This corresponds to the intuition that the history clock of an action ai equals the history
clock of the last executed interaction α involving ai, which is the one having hα minimal.

3.2 Handling of “Untimed” Components

In one of our past case studies, the Fischer protocol, we were confronted with a huge graph zone
for even a small number of components. Before explaining in detail the problem and the solution,
we first give a brief description of the protocol itself and of the model we adopted. The Fischer
protocol is a well-studied protocol for mutual exclusion [Lam87]. It specifies how n processes can
share a resource one at a time by means of a shared variable to which each process assigns its own
identifier number. After θ time units, the process with the id stored in the variable enters the critical
state and uses the resource. We use an auxiliary component Id Variable to mimic the role of the
shared variable. To keep the size of the generated invariants manageable, we restrict to the acyclic
version. The system with two concurrent processes is represented in Figure 11. The property Ψ
of interest is mutual exclusion on critical sections csi, i = 1..n, i.e. Ψ corresponds to the formula
(csi = 1 ∧ csj = 1)→ i = j.

S1 S2

S0

Id Variable
eq1, set1 eq2, set2

eq0

set1 set2

set2

set1

eq0 eq2

se
t 2

eq1

se
t 1

i1r1

x1 ≤ θ

w1 cs1

Process1

try1, x1 ∶= 0

set1
x1 ∶= 0

enter1, x1 > θ

enter1try1

se
t 1

i2 r2

x2 ≤ θ

w2cs2

Process2

try2, x2 ∶= 0

set2
x2 ∶= 0

enter2, x2 > θ

enter2 try2

se
t 2

Figure 11: The Fischer Protocol

The problem we faced during this case study comes from the fact that component Id Variable
has combinatorial behavior. This is because this component has no timing constraint, thus the con-
straints in the graph zone of Id Variableh involve only history clocks. Without any timing constraint,
the zone graphs become quite large when the number of processes n is also large. It turns out that the
generated invariant for Id Variableh is huge except for very small values of n. To overcome this issue,
we extracted from the structure of the generated invariant a weaker inductive one which we verified
for validity locally with Uppaal. Basically, it encodes information like heqi < hseti → hseti < heq0 .
This invariant, together with the component invariants for the processes and E(γ) was sufficient to
show that mutual exclusion holds.

Not satisfied with our provisional solution, we searched for a heuristics allowing us to treat similar
cases automatically. The starting point was the elementary fact that untimed automata have elegant
and concise encodings as regular expressions and this is what we will exploit in this section. More
precisely, given an untimed component B = (L,A,T ) we show how to automatically compute an
invariant describing the relations between the history clocks of Bh from the language accepted by
B. The starting key observation is that only the last occurrence of each symbol should be retained
at a given location. This implies that it is safe to abstract with respect to a last occurrence retention
operation each regular expression characterising the language accepted at a given control location. To
perform this abstraction, we rely on the simplification rules in Figure 12.
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Rule 1 [Back-unfolding] ∶ E∗ Ð→E∗.E + ε
Rule 2 [Last Occurrence Retention] ∶ E.a Ð→(E ∖ a).a

Figure 12: Simplification Rules

In Rule 2, “∖” is what we call the elimination operator to eliminate a given symbol a from a
regular expression. Its definition is as follows. Let a and x be two symbols and s, s1 and s2 strings:

ε ∖ a = ε

(s1 + s2) ∖ a = (s1 ∖ a) + (s2 ∖ a)

x ∖ a =
⎧⎪⎪⎨⎪⎪⎩

ε if x = a
x if x ≠ a

s∗ ∖ a = (s ∖ a)∗

(s1.s2) ∖ a = (s1 ∖ a).(s2 ∖ a)

We consider the following strategy.

1. Choose symbols from right to left and apply Rule 2 until no longer possible (a “*” is found).

2. Apply Rule 1 and split the “+”, if any.

3. Go back to 1. For each newly introduced expression and repeat until a restricted form of regular
expressions is reached.

It can be shown that the above strategy terminates. Intuitively, what happens is that Rule 1 splits a
large string into smaller ones and for each of these Rule 2 deletes symbols, thus makes words shorter,
so, eventually it terminates.

As an example, we show the first steps of the derivations for the local invariant of the component
Id Variable. To get the order on actions at control location Si, i ≠ 0, known that initially the component
is at S0, we consider the regular expression giving all the possible paths through which the automaton
goes from S0 to Si: R = (a∗bd∗c)∗a∗bd∗, where i ≠ j and:

• a = s0 + e0 + sj(ej + sj)∗s0

• b = si + sj(ej + sj)∗si

• c = s0 + sj(ej + sj)∗s0

• d = ei + si + sj(ej + sj)∗si

After projection on labels 0 and i:

• a = s0 + e0

• b = si

• c = s0

• d = ei + si

where si stands for seti and ei for eqi. Using the simplification rules, we transform the regular
expression R into R′ =R′1 +R′2.

R′1 = (e0 + e∗i s0)∗(s0 + e0)∗si(ei + si)∗(ei + si)
≃ (e0 + s0)∗ei.si + (e0 + s0)∗si.ei (by Rule 2)

R′2 = (e0 + e∗i s0)∗(s0 + e0)∗si
≃ (e0 + e∗i s0)∗((s0 + e0)∗(s0 + e0) + ε)si (by Rule 1)
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In the end we obtain that R′ = (e0 + s0)∗ei.si + (e0 + s0)∗si.ei + (e0 + ei)∗s0si + (ei + s0)∗e0si + si.
In the following, we assume that, by applying the above described strategy, we reach a regular

expression described by the following restricted grammar:

ea ∶∶= a∣a + ea
e ∶∶= ea∗.s∣e + e

where s denotes a (possibly empty) string. As a side remark, we note that the expression R′ is well-
formed with respect to the above grammar. Next, we define a function φ translating such expressions
into constraints.

φ(e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(e1) ∨ φ(e2) if e = e1 + e2

min
a
ha > hinit ≥ ha1 ≥ ha2 ≥ ⋅ ⋅ ⋅ ≥ hak if e = a1.a2. . . . .ak

and a ∈ A ∖ {a1, . . . , ak}
min
k
hak ≥ hs.head ∧ φ(s) ∧ hinit ≥ hs.head if e = (a1 + a2 + ⋅ ⋅ ⋅ + ak)∗.s

It can be shown that given an untimed component B, e the regular expression characterizing the
language accepted by B, and e′ the resulting one after applying the strategy, φ(e′) is an invariant of
Bh.

As an illustration, by applying φ to the expression R′ we obtained for the Fischer example and
simplifying we obtain:

φ = (he0 ≥ hei ∧ hs0 ≥ hei ∧ hei ≥ hsi ∧ hei ≤ hinit) ∨
(he0 ≥ hsi ∧ hs0 ≥ hsi ∧ hei ≤ hsi ∧ hsi ≤ hinit) ∨
(he0 ≥ hs0 ∧ hei ≥ hs0 ∧ hs0 ≥ hsi ∧ hs0 ≤ hinit) ∨
(hs0 ≥ he0 ∧ hei ≥ he0 ∧ he0 ≥ hsi ∧ he0 ≤ hinit) ∨
(hsi ≤ hinit ∧ hs0 , he0 , hei > hinit)

By applying our verification method using φ as the component invariant of Id Variable we managed to
prove the correctness of the Fischer protocol for up to 14 processes, which was not possible previously.

To sum up, we described an heuristic which can be applied to untimed components to automat-
ically compute an invariant with a reasonable enough size to be handled by existing SMT solvers.
Given an untimed component B, our heuristic makes use of the regular expressions characterizing the
language accepted by B to avoid a direct construction of the zone graph of Bh which would result
in considerably large invariants. The application of this optimization to the example of the Fischer
protocol allowed us to verify instances which we could not verify with the standard compositional
verification method.

3.3 Compositional Verification of Parameterized Timed Systems

In our framework, parameterized timed systems (PTSs) consist in a set of n of isomorphic components
Pi and a controller component C, interacting together by means of a set of interaction γ. We note that
our framework is flexible enough to consider parameterized timed systems also without controllers,
however, we stick to this choice for clarity and for the ease of presentation. In what follows we adopt
the notation C∥nγPi for a PTSs with a controller C and n instances P1, . . . , Pn of a generic component
P . We prefer to use the terminology of “process” (along with the natural notation P ) to refer in
particular to a isomorphic component and to differentiate it from other components. Also, we use
Ac, A, Ai to denote the sets of actions of the controller, of a generic process P and respectively of a
process Pi.
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A note on topologies. Usually in the literature on parameterized systems, the communication between
components is given by the so-call network topology, which in turn is given as a graph where the ver-
tices represent the indices of the components and the edges give the communication links [ADR+11].
In our framework, the topology is induced by the set of interactions between the controller and the
processes. We restrict our setting to binary interactions centered in the controller and with ends in the
processes. Thus, typically, the interaction sets themselves describe topologies which are variations on
the star2 topology, depicted in Figure 13. In fact, any interaction set γ can be seen as ∪a∈A′cγa for
A′

c a subset of Ac and γa describing the interactions of a with a fixed set of process actions, that is,
γa ⊆ {a} × ∪iAi.

C
P1

C

P2

C

P3

C

P4

C
P5

C

P6

C

P7

C

P8

Figure 13: A Star Topology and a Possible Set of Interactions γ = {(ac ∣ ai) ∣ i ∈ [8]}.

We consider a PTS version C∥nγPi of the example of Figure 10 (see Section 3.1) in which the
controller C interacts with an arbitrary number of instances Pi according to the set of interactions
γ = {(ac ∣ ai) ∣ i ∈ [n]}. Is is informally represented by Figure 14.

The application of the verification rule (VR) presented in Section 3.1 to parameterized timed
systems boils down to checking the validity of the following formula:

∀i ∈ [n].(CI (P hi ) ∧CI (Ch) ∧ II (γ) ∧ E(γ) ∧ E∗(γ) ∧ S(γ))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

GI

→ Ψ. (1)

or equally the unsatisfiability of GI ∧ ¬Ψ.
For particular classes of target properties Ψ, such formulae can be shown to be in a decidable

theory of arrays as the ones in [BMS06, GNRZ08]. Even better, they may enjoy a “small model
theorem” as it is the case for the so-called LH-assertions from [JM12], that is, proving Ψ for any
possible value of n is reduced to checking (1) for finitely many values of n. The formulae we work
with, are, in fact, a particular3 case of LH-assertions. We denote our working subset of LH-assertions
as T-assertions. The signature of T-assertions consists of the constants 1 and n of type N, and of a
finite number of variables: (a) index variables: i1, . . . , ia ∈ N; (b) discrete variables: l1, . . . , lb ∈ L;

2In a similar manner we can treat also ring topologies. These suit better parameterized systems without controllers and
thus we leave them aside in this presentation.

3To be specific, by “particular” we mean that we do not need the so called “index-valued array variables” which in
[JM12] model pointer variables.

lc0 lc1
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x ∶= 0
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C

⋱

l10 l11
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x1 ∶= 0
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P1

l20 l21
a2

x2 ∶= 0

a2

P2

l30 l31
a3

x3 ∶= 0

a3

P3

Figure 14: An Example of a Parameterized Timed System
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(c) real variables: x1, . . . , xc ∈ R; (d) discrete array variables: l̄1, . . . , l̄d ∶ [n] → L; (e) real array
variables: x̄1, . . . , x̄e ∶ [n]→ R+. Terms are constructed following the BNF grammar:

ITerm ∶∶= 1 ∣ n ∣ ij
DTerm ∶∶= Lj ∣ lk ∣ l̄j[ITerm]
RTerm ∶∶= xj ∣ x̄k[ITerm]

and the formulae are structurally defined as:

Atom ∶∶= ITerm < ITerm ∣ DTerm = Lk ∣ a ⋅ RTerm + b ⋅ RTerm + c < 0

Formula ∶∶= Atom ∣ ¬Formula ∣ Formula ∧ Formula

where a, b, c are real values. A T-assertion is an expression

∀i1, . . . , ik ∈ [n] ∃j1, . . . , jm ∈ [n].φ

where φ is of type Formula. Dually, a Tc-assertion is ∃i1, . . . , ik ∈ [n] ∀j1, . . . , jm ∈ [n].φ.
To illustrate the syntax of T-assertions, we show how they encode usual safety properties.

Mutual Exclusion. The T-assertion ∀i, j.¬(l̄[i] = csi∧ l̄[j] = csj ∧ i ≠ j) expresses mutual exclusion
of processes on control locations csi.

Maximum Delay. The T-assertion ∀i, j.¬(l̄[i] = l̄[j] ∧ ∣x̄[i] − x̄[j]∣ > ka) expresses a “maximal
delay” of ka between the clocks of any two components being in the same control location.

Synchronism. The safety property considered in our running example can be expressed by the T-
assertion ∃i.x̄[i] = xc.

As already anticipated, T-assertions, as a particular case of LH-assertions, have a “small model
theorem”. This means that, if a formula is a T-assertion, then it is enough to check its validity for for
a finite (small) number of processes. Concretely, for deciding the unsatisfiability of T-assertion Φ, the
needed value is 2 + the number of universally quantified variables in Φ. Dually, for a Tc-assertion, then
it is enough to check its unsatisfiablity for 2 + the number of existentially quantified variables in Φ.
We will use either one of these equivalences depending on which one is handier. Next, our discussion
is with respect to Tc-assertions. To be able to apply this reduction in the case of our (VR), we only
need to show that GI ∧Ψ can be transformed into an equivalent Tc-assertion. For simplicity, we will
only briefly give the intuition of why this is the case and instead prefer to illustrate the transformation
by taking as input our running example.

The main difficulty in rewritting GI ∧Ψ as a Tc-assertion is to bring all quantifiers in front such that
the existential ones follow the universal ones. We take one by one all the subformulas in GI . A first
straightforward observation is that component invariants themselves are quantifier free thus they play
no role in the form of GI and consequently we can ignore them in our analysis. The more problematic
case is of E(γ) (those of E∗,S are similar, but easier, so we leave them aside). At a closer look at the
definition of E(γ) and recalling that the interaction sets we considered are ∪a∈A′c with γa ⊆ {a}×∪iAi,
it can be observed that E(γ) reduces to ∧aE(γa), because for any α ∈ γa, γ ⊖ α is precisely the set of
remaining γb with b ≠ a. In turn, each E(γa) is either quantifier free or have at most one existential
quantifier in the case the definition of γa involves an arbitrary number of processes as it is the case for
our running example with γac = {(ac ∣ ai) ∣ i ∈ [n]}. Thus the quantified fragment of E(γ) reduces to
∨a∃ia(ha = xia) where all ia are different and not related by any predicate, and can be moved in front.
We assume Ψ to be a T-assertion itself, say ∀x̄ ∃ȳ. ○ (Ψ) with x̄, ȳ disjoint of all quantified variables
in GI (we can always rename them if not the case), and ○(Ψ) denoting the quantifier free part of Ψ.
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This is quite a reasonable assumption and the illustrated examples of safety properties as T-assertions
confirm it. All in all, it is enough to use basic equivalences like the ones below, where op stands for
the usual logical operators:

QxQy.(P (x) op Q(y)) ≡ QyQx.(P (x) op Q(y))
P op Qy.Q(y) ≡ Qy.(P op Q(y))

in order to transform ∀iGI → Ψ into a T-assertion.
As an illustration, we work through the running example as shown below.

CI (P hi ) = li0 + li1 = 1 ∧ (li0 = 1 ∧ hai > tε = xi ∨ li1 = 1 ∧ tε ≥ xi = hai) (2)

CI (Ch) = lc0 + lc1 = 1 ∧ (lc0 = 1 ∧ hac > tε = xc ∨ lc1 = 1 ∧ tε ≥ xc = hac) (3)

As for the interaction invariant, for the star topology in the toy example, by the linear approach after
some calculations we obtain:

II (γ) =
n

∑
j=1

lj0 + l
c
0 = n + 1 ∨

n

∑
j=1

lj1 + l
c
1 = 2 (4)

(or, using quantifiers)

≡ (∀j.lj0 = 1 ∧ lc0 = 1) ∨ (lc1 = 1 ∧ ∃j∀k ≠ j.lj1 = 1 ∧ lk1 = 0)
≡ ∀j. (lj0 = 1 ∧ lc0 = 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
○(II 1)

∨∃j. (lc1 = 1 ∧ lj1 = 1 > max
k
lk1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
○(II 2)

(5)

The invariants E ,S,E∗ for the star topology are:

E(γ) = ∃p. (hap = hac ≤ min
q
haq)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
○(E)

(6)

E∗(γ) = (hac = min
r
hac∣ar) (7)

S(γ) = ∀s, t ≠ s. ∣ hac∣as − hac∣at ∣≥ ka
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

○(S)

(8)

All in all, recalling that our Ψ of interest is ∃v.xv = xc, GI ∧¬Ψ reduces to the following two formulae
(as corresponding to the disjunction in Equation (5)):

∃p ∀i, j, s, t ≠ s, v.(CI(P hi ) ∧CI(Ch) ∧ ○(II 1) ∧ ○(E) ∧ E∗ ∧ ○(S) ∧ xv ≠ xc) ∨
∃j, p ∀i, s, t ≠ s, v.(CI(P hi ) ∧CI(Ch) ∧ ○(II 2) ∧ ○(E) ∧ E∗ ∧ ○(S) ∧ xv ≠ xc)

which are both Tc-assertions, and thus it is enough to check the unsatisfiability of GI ∧ ¬Ψ for 3,
respectively 4 processes in order to decide the correctness of the system with respect to Ψ.

3.4 Case Study

Train gate controller (TGC): This is the parameterized version of the classical example from [AD94].
The system is composed of a controller, a gate and an arbitrary number of trains. For simplicity, Fig-
ure 15 depicts only one train interacting with the controller and the gate. The controller lowers and
raises the gate when a train enters, respectively exits. The safety property of interest is that when a
train is at location in, the gate has been lowered: ∧i(ini = 1→ g2 = 1).
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Figure 15: A Controller Interacting with a Train and a Gate

Note that as it is, the system isn’t strictly a PTS, but it can easily be massaged into a PTS by
considering the product of the train and the gate. Below follow the calculations needed to show
that Equation (1) for this example is a T-assertion, thus we can apply the small model theorem and
determine that the system is correct by checking that it is so for any number (of trains) smaller than
5, that is, 2 + the number of universally quantified variables in ¬GI ∨ Ψ. To simplify the notation,
we use hec, hac, hlc, hrc (resp. heti , hati , hlg, hrg) to stand for the history clocks corresponding to exit,
approach, lower, raise in the controller (resp. exit, approach in train i, and lower, raise in the gate).

CI (T (i)) =((neari = 1 ∧ xi − hati = 0 ∧ −xi ≥ −5 ∧ −xi + heti ≥ 0 ∧ xi ≥ 0)∨
(fari = 1 ∧ ((xi − heti = 0 ∧ xi − hati = 0)∨

(xi − hati = 0 ∧ −xi + heti ≥ −5 ∧ xi − heti ≥ 3)))∨
(ini = 1 ∧ xi − hati = 0 ∧ −xi ≥ −5 ∧ −xi + heti ≥ 0, xi ≥ 3))∧
fari + neari + ini = 1

II (γ) =∑
i

fari + c1 + c2 = n ∧ c2 + c3 + going_up + is_up = 1

≡∃k∀j ≠ k. ((c0 = 1 ∨ c3 = 1) ∧ fark = 1) ∨ ((c1 = 1 ∨ c2 = 1) ∧ fark = 0 ∧ farj = 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

○(II 1)

∧

c2 + c3 + going_up + is_up = 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

○(II 2)

E(γ) =∃p. (hec = hetp ∧ hrc = hrg ∧ hac = hatp ∧ hlc = hlg)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

○(E)

E∗(γ) =hec = min
s
hecets ∧ hac = min

s
hacats ∧ hrg = hrcrg ∧ . . .

S(γ) =∀q. (hecetq − hecetq−1 ≥ ke ∧ hacatq − hacatq−1 ≥ ka)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

○(S)

Ψ =∀r. inr = 1→ g2 = 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

○(Ψ)

.

That is, ¬GI ∨Ψ can be rewritten as:

∀k, p, r ∃i, j, q.(¬(j ≠ k ∧CI (T (i)) ∧CI (C) ∧CI (G) ∧ ○(II ) ∧ ○(E) ∧ E∗ ∧ ○(S)) ∨ ○(Ψ))

which is a T -assertion since CI (T (i)), CI (C), CI (G), ○(II ), ○(E), E∗, ○(S), ○(Ψ) are expressions
free of quantified variables. Using the “small model theorem”, checking the correctness of the system
for an arbitrary number of trains can be done by checking it for up to 3+2=5 trains. We used are
prototype tool to successfully verified the instances n = 1, . . . ,5, which prove the correctness of the
system for any value of n.
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4 Stochastic Abstraction

Our aim is to improve general applicability of Statistical Model Checking (SMC) [You05, SVA04,
HLMP04, LLM+07] techniques. To this end, we propose to combine the use of abstraction and learn-
ing techniques to automatically construct faithful abstractions of system models towards making SMC
more scalable. Nowadays, machine learning is an active field of research and learning algorithms are
constantly developed and improved in order to address new challenges and new classes of problems
(see [VEdlH12] for a recent survey on grammatical inference). In our context, learning is combined
with abstraction as follows. Given a property of interest and a (usually large) sample of partial traces
generated from a concrete system (model), we first use abstraction to restrict the amount of visible
information on traces to the minimum required to evaluate the property and then, use learning to
construct a compact, probabilistic model which conforms to the abstracted sample set. Under some
additional restrictions discussed later, the resulting model is a sound abstraction of the concrete model
with respect to the satisfaction of the property. Hence, it can be used to correctly predict/generate the
entire abstract behavior of the model, in particular, as an input model for SMC.

The above approach has multiple benefits. First, the sample set of traces can be generated directly
from an existing black-box implementation of the system, as opposed to a concrete detailed model. In
many practical situations, such detailed system models simply do not exist and the cost for building
them using reverse-engineering could be prohibitive. In such cases, learning provides an effective,
automated way to obtain a model and to get some valuable insight on the system behavior. The use
of projection is also mostly beneficial. In most of the cases, the complexity of the learning algorithms
as well as the complexity of the resulting models are directly correlated to the the number of distinct
observations (the alphabet) of traces. Moreover, under normal considerations, a large alphabet requires
a large size for the sample set. Intuitively, the more complex the final model is, the more traces
are needed to learn it correctly. Nevertheless, one should mention that a bit of care is needed to
meaningfully combine abstraction and learning. That is, abstraction may change a deterministic model
into a non-deterministic one, and henceforth has an impact on the learning algorithms needed for it.

4.1 Preliminaries

LetAP be a finite set of atomic propositions. We define the alphabet Σ = 2AP and denote the elements
of Σ (subsets of AP ) as symbols. The empty symbol is denoted by τ . As usual, we denote by Σω

(resp. Σ∗) the sets of infinite (resp. finite) words over Σ. For an infinite word σ = σ0σ1... and i ≥ 0,
we define the ith suffix (resp. prefix) of σ as σ[i..] = σiσi+1... (resp. as σ[..i] = σ0...σi).

A labeled Markov chain (LMC) M is a tuple ⟨S, ι, π,L⟩ where, S is a finite set of states, ι ∶ S →
[0,1] is the initial states distribution such that ∑s∈S ι(s) = 1, π ∶ S × S → [0,1] is the probability
transition function such that for each s ∈ S, ∑s′∈S π(s, s′) = 1, and L ∶ S → Σ is a labeling function.

A run is a possible behavior (infinite execution) of the LMC. A trace is the sequence of labels
associated to the states of the run. Let M = ⟨S, ι, π,L⟩ be a LMC. A run of M is an infinite sequence
of states s0s1...snsn+1... such that ι(s0) > 0 and π(si, si+1) > 0, for all i ≥ 0. A trace σ associated to
a run s0s1...snsn+1... is the infinite word L(s0)L(s1)...L(sn)L(sn+1).... A finite run (resp. trace) is
any finite prefix of a run (resp. trace). We denote by Runs(M) the set of runs and by Traces(M) the
set of traces of M . Moreover, we denote by PrM the underlying probability measure induced by M
on the set of its traces. This measure is well-defined in the context of Markov chains [BK08]. Two
LMCs M1 and M2 are said to be equivalent, and denoted M1 ≈M2 if they have identical probability
measures on traces, that is, PrM1 = PrM2 . A labeled Markov chain is deterministic (DLMC) iff
(i) ∃s0 ∈ S such that ι(s0) = 1, and (ii) ∀s ∈ S, ∀σ ∈ Σ there exists at most one s′ ∈ S such that
π(s, s′) > 0 and L(s′) = σ.
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Linear-time temporal logic (LTL) [Pnu77] formulas ϕ built over a set of atomic propositions AP
are defined by the following syntax:

ϕ ∶= true ∣ p ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ Nϕ ∣ ϕ1Uϕ2 ∣ ϕ1U
iϕ2 (p ∈ AP )

N,U andU i are respectively the next, until and bounded until operators. Additional Boolean operators
can be inferred from negation ¬ and conjunction ∧. Moreover, temporal operators such as G (always)
and F (eventually) are defined as Fϕ ≡ true Uϕ and Gϕ ≡ ¬F¬ϕ. The bounded fragment of LTL
(denoted BLTL) restricts the use of the until operator U to its bounded variant U i. LTL formula are
interpreted on infinite traces σ = σ0σ1 . . . ∈ Σω as usual [Pnu77].

Given an LMC M and an LTL property ϕ, the probability for M to satisfy ϕ denoted by Pr(M ⊧
ϕ) is given by the measure PrM{σ ∈ Traces(M) ∣ σ ⊧ ϕ}.

4.2 Learning-based Abstraction

The verification problem in the stochastic setting amounts to compute Pr(M ⊧ ϕ) for an LMC M
and an LTL property ϕ. As stated earlier, in order to enhance SMC performance, we would like
to avoid the verification of ϕ on the original model M . Instead, we would like to perform it on a
smaller model M ♯ which preserves the probability of ϕ, that is, Pr(M ⊧ ϕ) = Pr(M ♯ ⊧ ϕ). We
propose hereafter a method to compute such an abstraction M ♯ by combining learning and projection
on traces given the property ϕ. The idea is based on the simple observation that, when checking a
model against a property, only a subset of the atomic propositions is really relevant. In fact, only
the atomic propositions explicitly appearing in the property are useful while the others can be safely
ignored.

The proposed approach is depicted in Figure 16. It consists of initially sampling a finite set of ran-
dom finite traces T (with random lengths) from M . Second, a projection (detailed below) is applied
on traces T in order to restrict the atomic propositions to the ones needed for the evaluation of the
property ϕ. Third, the set of projected traces is used as an input to a learning algorithm. We experi-
mented the proposed approach with the AAlergia algorithm [MCJ+11], however, any other algorithm
can be used. The output of the learning step, denoted M ♯ on Figure 16, is finally used to evaluate ϕ.

traces
(Learning)(Execution)

(Learning)
traces

(Relabeling)

(Execution)

T M ′

Ta (M ♯
≈Ma)Ma = ⟨S, τ, π,La⟩

(M ′
≈M)M = ⟨S,τ,π,L⟩

M ♯

(Projectionϕ)

Figure 16: Learning abstract models: approach overview.

Main Steps

Projection. The projection is defined on traces so as to reduce the number of labels and henceforth,
later on, the number of states in the learned model. It basically consists of ignoring the atomic proposi-
tions that are not relevant to the property under verification as follow. Let Vϕ ⊆ AP called the support
of ϕ be the set of atomic propositions occurring explicitly in ϕ. The projection Pϕ ∶ Σ∗ → Σ∗ is
defined as Pϕ(σ0σ1...σn) = σ′0σ′1...σ′n where σ′i = σi ∩ Vϕ for all i ∈ [0, n].

Learning. In this work, we rely on state merging algorithms which intuitively proceed by first con-
structing some large automata-based representation of the set of input traces and then progressively
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compacting them, by merging states, into a smaller automaton, while preserving as much as possible
trace occurrence frequencies/probabilities. Different algorithms in this family can learn either de-
terministic probabilistic finite automata (DPFA) models [CO94, dlHOV96, dlHO03] or general PFA
models [Sto94, RST95, DEH06]. In this work, we use AAlergia [MCJ+11] which is a state merging al-
gorithm that exclusively learn deterministic models. Given a sample of traces, the algorithm proceeds
in three steps. It first builds an intermediate representation that represents all the traces in the input
sample and their corresponding frequencies. Seconds, based on a compatibility criterion it iteratively
merges states having the same labels and similar probability distributions until reaching a compact
model. Finally, it transforms the obtained model into a DLMC. AAlergia is proven to converge to the
correct model in the limit (with sufficiently big sample set of traces) [MCJ+11] if the input traces are
generated, with random lengths, from an LMC model. It ensures that, a given LTL property will hold
on the original and the learned model with the same probability (see [NRB+14] for a more detailed
discussion on the equivalence cases and assumptions).

Example

We consider the Craps Gambling Game [BK08] to illustrate the proposed abstraction approach. In
this game, A player starts by rolling two fair six-sided dice. The outcome of the two dice determines
whether he wins or not. If the outcome is 7 or 11, the player wins. If the outcome is 2,3, or 12,
the player looses. Otherwise, the dice are rolled again taking into account the previous outcome
(called point). If the new outcome is 7, the player looses. If it is equal to point, he wins. For all
other outcome, the dice are rolled again and the process continue until the player wins or looses.
Figure 17 illustrates the DLMC model that describes the game behavior. A possible run of the DLMC
below is r = S0S5S5S7S7 . . . The corresponding trace is t = start point6 point6 won won . . . and
Pr(t) = 1 × 5

36 ×
25
36 ×

5
36 × 1 × . . . = 0.0277.

won

1/12

1/12

3/4 3/4 13/18 13/18 25/36

1/9
5/36

5/36

1/92/9

25/36

1/9

1/12

1/12
1/6

1/9
1/6

5/36

1/6

1/9
1/6

5/36

1/6

1 1

1/6

start

point4 point10 point5 point9 point6 point8

lost

ι(S0) = 1

S = {S0, S1, , ..., S8}

L(S0) = start, . . . ,L(S8) = lost

S0

S1
S2 S3

S4 S5 S6

S8S7

π =

⎛

⎜
⎜
⎜
⎜

⎝

S0 S1 ⋯ S8

S0 0 1
12 ⋯

1
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S1 0 3
4 ⋯

1
12

⋮ ⋮ ⋮ ⋱ ⋮

S8 0 0 ⋯ 1

⎞

⎟
⎟
⎟
⎟

⎠

Figure 17: A DLMC model for the Craps Gambling Game.

Given the DLMC model in Figure 17, one could check for instance the following probabilistic
(B)LTL properties:

• The probability to eventually loose is Pr(F lost) = 0.51,

• The probability to eventually win is Pr(F won) = 0.493
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• The probability to win in two steps is Pr(true U2 won) = 0.3.

Given a set T of traces generated from the Craps Gambling Game model in Figure 17 and the
properties ϕ1 = F won and ϕ2 = F (won ∨ lost), we apply the projection definition to compute the
corresponding sets of projected traces Ta1 and Ta2 .

• T = {start won, start lost lost, start won won won won won won won won won, start point5,
start point10 point10 point10 point10 point10, start point9 point9, . . .};

• Ta1 = {τ won, τ τ τ , τ won won won won won won won won won, τ τ , τ τ τ τ τ τ , τ τ τ , . . .};

• Ta2 = {τ won, τ lost lost, τ won won won won won won won won won, τ τ , τ τ τ τ τ τ , τ τ τ ,
. . .}

We briefly illustrate the learning phase using AAlergia on the Craps example. Figure 18 shows
three learned models of the Craps Gambling Game obtained using the set T of 5000 traces generated
from the model in Figure 17. One can note, out of this figure, the important reduction of the obtained
models sizes with respect to the original one. Figure 18a shows the model learned by AAlergia taking
as input the set Ta2 , that is, with respect to property ϕ2 = F (won ∨ lost). Figure 18b is obtained
by applying AAlergia on the set Ta1 , that is, projected with respect to ϕ1 = F won. Remark that
this model is not equivalent but only an approximation of the original model in Figure 17. That is, in
the latter there exists some non null probability to never reach the won state. Whereas, in the learned
model the won state is reachable with probability 1. This approximation could however improve if
a larger set of traces is used for learning as stated in the previous section. Finally, the third learned
model shown in Figure 18c is equally obtained from Ta1 but when using an algorithm able to learn
non-deterministic models such as the one proposed by Stolcke [Sto94].

1 1

0.110.67

0.22

0.72

0.170.11

lostwon

S3

S0

S2
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S1

τ
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1

0.47 0.53

0.37
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won

S1

S2

τ

S0

τ

(b) Scenario 2
1 1

0.110.67

0.22

0.72
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S2

S1

τ

S3

τ

S0
τ

(c) Scenario 3

Figure 18: Learned Markov Chains for Craps Gambling Game using 5000 traces.

Once smaller models are learned, we can evaluate the considered properties on the these models.
Table 1 provides results of verifying the property ϕ1 = F won on the Craps Gambling Game mod-
els. It shows that the model in Figure 18a exhibits similar probability to the original Craps model,
whereas the one in Figure 18b shows different ones. The reason is that the projection introduced a
non-determinism in the input sample. In addition, it seems that in this case there is no equivalent
deterministic model that could be learned by AAlergia (see [NRB+14] for more details). A detailed
study of the Herman’s Self Stabilizing algorithm with more results is presented in [NRB+14].

More detailed results as well as a proof of correctness of the abstraction approach are presented
in [NRB+14]. A detailed study of the Herman’s Self Stabilizing algorithm is also presented in [NRB+14].
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Models Pr(ϕ1)
Scenario 1(Figure 18a) 0.485

Scenario 2 (Figure 18b) 1

Original Model (Figure 17) 0.493

Table 1: Verifying ϕ1 on the original and the learned Craps Gambling Game models using SMC.

The obtained results show that the proposed abstraction technique produces smaller models and en-
hances SMC analysis time (for different SMC algorithms), while preserving probability accuracy.
Additional experiments using numerical probabilistic model checking algorithms are also presented
for the same study. The results show that the proposed method is also applicable using this kind of
analysis.

5 Conclusion

This year, we mainly worked for improving the applicability of the results on correctness of Service
Component Ensembles (SCEs).

We developed a prototype of translator from a subset of SCEL called SCELight to BIP. This is an
important step since it permits to apply a significant part of the verification results of the project which
focused on the BIP language, to specifications written in the SCEL language which was developed
specifically for the project and extensively used in this context. The prototype was validated on simple
examples. As future work we need to consider larger examples, as well as to complete the prototype
which has currently several restrictions on the form the input SCELight programs.

We also improved the compositional verification method for timed systems which was proposed in
the project as a means for verifying SCEs, by including specific techniques for dealing with “untimed”
components, i.e. components that are free of timing constraints. We have also preliminary results on
the extension of the method to parameterized systems, allowing in principle to apply formal verifica-
tion to systems composed of unknown (i.e. unbounded) number of components. Such an approach is
very promising for the project but it needs to be evaluated on real case studies before drawing con-
clusions. Moreover it is currently too restrictive regarding topologies considered for the connections
between components, and thus has to be completed in this respect.

Finally we presented an automatic method for the construction of faithful abstractions of system
models, which is an original approach for learning stochastic models from back-box implementations
of a system. It is based on a notion of projection which is currently quite simple, and could be
improved to obtain coarser abstractions, e.g. by taking into account the LTL operators semantics. We
shall also apply it to real-life examples.
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