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Executive Summary

This deliverable reports on the activities of Work Package 8 in the fourth reporting period. In this
reporting period we consolidated and extended the results introduced during the previous reporting
periods, presented several new results and improved the applicability and integration of several tools.

The Ensemble Development Life Cycle (EDLC) that we introduced in the third reporting pe-
riod was evaluated and applied to various scenarios from the ASCENS case studies. For example,
both the ARE approach to adaptation requirements modeling and the IRM requirements-oriented de-
sign method were applied in this manner, and the EDLC was successfully instantiated for service-
component ensembles using reinforcement learning techniques, leading to an approach called “con-
tinuous collaboration.” Work on the case studies also led to an extension and revision of the catalogue
of patterns describing best practices for ensemble engineering.

Another integrative result achieved during the fourth reporting period was the reconciliation of the
black-box and white-box approaches to adaptation into a common framework based on SOTA/GEM,
resulting in a game-theoretic interpretation of adaptation.

The unification of results and tools spanning different phases of the EDLC was improved in several
ways; in particular, work on knowledge representation and reasoning was more tightly integrated
with the other project results: The implementation of the KnowLang reasoner was completed; the
KnowLang system can therefore now be used as reasoning engine for ensembles. The POEM language
for writing partial programs was simplified and based on a novel formalism called Extended Behavior
Trees (XBTs) whose operational semantics is defined by a translation into SCEL. This means that
SCEL now serves as a common semantic basis for phases in both the design-time and run-time circles
of the EDLC as well as the deployment/feedback circle. Using XBTs, the efficiency and scalability of
the learning and reasoning mechanisms in the ILIAD runtime for POEM was improved.
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1 Introduction

The Description of Work of the ASCENS project states as general objective for WP8 that “[. . . ] the
foundational work done of ASCENS, applied to the case studies in work package 7 must be put into
a larger perspective from an engineering point of view, thereby identifying best practices for service
component ensembles.” Task T8.1 was concerned with the project initialization and ended after month
6. The two ongoing tasks of WP8 are T8.2 “An SCs component repository for self-aware autonomic
ensembles” which was reported in deliverable D8.2 [HBGK12], and T8.3 “Best Practices for SCEs”
which was reported in D8.3[HK13b].

The Description of Work states for T8.2 “This task will produce a ready-to-use repository of key
service components to be used in all kinds of ensembles.” The main objective of T8.3 is “to codify
best practices discovered during the project in a form that is easily accessible for SCE practitioners.
This work will result in a catalogue of SCE patterns for the overall results of the ASCENS project.”
In addition, during the course of the project, we have discovered the need for a life-cycle model that
covers the ensemble development process. We call this model Ensemble Development Life Cycle
(EDLC). The EDLC was first reported in deliverable D8.3 [HK13a]. This deliverable reports on the
progress that was made for tasks T8.2, T8.3 and the EDLC in the fourth reporting period.

2 Results Obtained During the Work Period

The work on the EDLC and best practices, which form the core of this deliverable, are extensively
covered in Chapter III-1 of the ASCENS book [HKP+15]. To avoid duplication of content we will
present only a summary of the main achievements of WP8 in this section and refer to Chapter III-1 for
further details.

In the fourth reporting period we consolidated and extended the results introduced as part of WP8
during the previous reporting periods and reported in deliverables D8.2 [HBGK12] and D8.3 [HK13a].
We obtained several new results and improved the quality and usability of the tools; progress regarding
tools is mostly reported in deliverable [ACH+15] except where it directly impacts the tasks of WP8.

The Ensemble Development Life Cycle (EDLC) that we introduced in the third reporting period
was evaluated and applied to scenarios from the case studies. For example, Chapter III-1 in the AS-
CENS volume [BCG+15] shows how SOTA and GEM can be applied to the requirements analysis of
a robot swarm and used to clarify and analyze the adaptation requirements. Chapter II.1 in the same
volume [NLL+15] shows how policies and behaviors of these kinds of robot swarms, can be mod-
eled and implemented in SCEL; Chapter II-3 [CBK15] presents several validation and verification
results for the rescue robot scenario. [HG15] demonstrates how the EDLC, combined with tools and
techniques developed as part of the ASCENS project, supports the ongoing improvement of a swarm
of rescue robots using the interlocking feedback cycles of the EDLC. The development pattern and
system architecture presented in this paper (which we call “continuous collaboration”) is an instanti-
ation of the EDLC using reinforcement learning techniques for the awareness and adaptation phases.
The robot swarm developed according to this pattern maintains a sustained exchange of information
about the environment and the success of actions that were undertaken, both autonomously within the
robot swarm as well as between the robots and the system designers. This architecture allows the
swarm to quickly converge to the optimal behavior for a given environment even when the design-
ers have only limited information about the environment, and the performance of the swarm quickly
reverts to the optimal performance after changes in the environment render its data invalid. These
examples together cover all phases of the EDLC and show how the EDLC, together with the tools and
techniques developed in the ASCENS project, supports the design and implementation of autonomic
service-component ensembles.
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The catalogue of patterns describing best practices for ensemble engineering was extended and
existing patterns were revised according to experience gained with their application. For example,
refinement patterns that can be used in the Invariant Refinement Method were introduced (see Chapter
III-4 in the ASCENS book [BGH+15]), and patterns pertaining to “continuous collaboration” and
the “teacher-student learning” technique used to obtain the ongoing collaboration therein were newly
introduced or refined.

Other results of WP8 for Task T8.3 achieved during the fourth reporting period are an integra-
tion of the black-box and white-box approaches to adaptation into a common framework based on
SOTA/GEM; this result also points toward a game-theoretic interpretation of adaptation. The ARE
approach to adaptation requirements modeling and the Invariant Refinement Method (IRM) were ap-
plied to examples from case studies. Chapter III-3 contains an extensive account of the application
of ARE to the science cloud case study; Chapter III-4 [BGH+15] shows how IRM can be applied
to the e-mobility case study. Going beyond adaptation, Chapter III-2 in the ASCENS book presents
methodological guidelines for engineering self-organization and emergence.

The integration between results and tools for different phases was improved in several ways and
new components for the SC component repository were made available as part of Task T8.2: The
KnowLang reasoner is now available; the KnowLang system can therefore now be used as a reasoning
engine for ensembles. The POEM language for writing partial programs was simplified and based on
a novel formalism called Extended Behavior Trees (XBTs) whose operational semantics is defined by
a translation into SCEL. This means that SCEL now serves as a common semantic basis for phases
in both the design-time and run-time circles of the EDLC as well as the deployment/feedback circle.
We implemented a combined planning/learning engine based on XBTs and integrated it in the existing
Iliad runtime.

The question of scalability that the reviewers raised during the last review meeting was addressed
by applying the XBT-based planner/learner to the ASCENS rescue scenario. Whereas our previous
reinforcement learning solution—which was already based on state-of-the-art hierarchical reinforce-
ment learning techniques—was restricted to ensembles containing fewer than 10 robots and navigation
graphs with at most dozens of nodes, the new implementation scales to ensembles with hundreds of
robots operating on navigation graphs with thousands of nodes. [HG15] (attached to this Deliverable)
gives an overview of these results and provides pointers to the source code.

3 Connection to Other Work Packages

Since the EDLC ties together all research areas of the ASCENS project into a coherent whole, it was
developed in cooperation with all technical work packages of the project.

The patterns in the pattern catalogue are based on the work of most other work packages and
informed by the application of this work to the case studies of WP7. Many patterns try to present
aspects of the work performed in the technical work packages from a software engineering perspec-
tive; examples are patterns such as Tuple-space Based Coordination, Knowledge-equipped Compo-
nent (WP1), Soft-constraint-based Optimization (WP2), Build Small Ontology (WP3), the awareness
patterns (WP4), and Statistical Model Checking (WP5).
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Continuous Collaboration: A Case Study on the
Development of an Adaptive Cyber-Physical System
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Abstract—The need to interact with complex environments
that are often not well understood at design time makes the
development of smart cyber-physical systems (sCPS) a chal-
lenging endeavor. We propose a set of practices and tools that
support the design and implementation of sCPS using continuous
collaboration—a development lifecycle and architecture to con-
tinuously incorporate data gained from the operation of the sCPS
into the system. Continuous collaboration attempts to harmonize
three interlocking feedback cycles: refinement of the system
design by the developers, autonomous evolution of agents in the
sCPS, and feedback from the evolving system to the developers.
To support the process we introduce tools and techniques that
we have found helpful to realize continuous collaboration: The
HADES/Hexameter platform, extended behavior trees and the
teacher/student learning pattern.

I. INTRODUCTION

Smart cyber-physical systems (sCPS) are powerful tools
that are ever more widely deployed. However, the physical
world is well known for its non-deterministic and occasionally
baffling behavior. Developing sCPS that behave intelligently—
or at least safely and appropriately—during their interactions
with the outside world is therefore challenging, and traditional
software-engineering techniques are not particularly well-
suited to these systems.

Instead of fighting against the uncertainty and non-
determinism inherent in the physical world, it seems sensible
to embrace them. We therefore propose a novel development
approach, called continuous collaboration, which is based
on the teacher/student system architecture presented in [1]
and can incorporate these properties while still leaving the
developers in control of the system’s overall behavior.

To this end, we will first introduce a scenario investigated
by the ASCENS project [2]: a swarm of autonomic robots
performing a rescue operation. We then present the first novel
result of this paper, our continuous collaboration approach
to modeling and building software for sCPS, and show how
it can be used to develop software for the robot swarm. This
approach blends traditional software engineering methods with
techniques from machine learning and evolutionary computing
to obtain systems that respect constraints imposed by their
designers while exploring and finding novel solutions inside
this frame. In section IV we provide a short analysis of the
performance of a system built according to this approach
which represents the second novel result. Section V presents
related work. Finally, section VI sums up the experiences
gained from the case study and provides an outlook to future
developments on the continuous collaboration approach.

II. THE “ROBOT RESCUE FORCE” EXAMPLE

The increasing miniaturization of hardware has greatly
contributed to the feasibility of swarm computing: instead
of employing relatively few, high-powered devices a swarm
consists of many simple nodes. While each node has only
limited computational power and physical capabilities, the
nodes in the swarm cooperate to solve problems that are
beyond the faculties of individual nodes.

One interesting application area for swarms is disaster relief
and rescue operations. In these situations, the environment is
extremely hazardous and non-predictable. To allow humans to
stay outside the immediate danger zone it is desirable to have
robots that can operate autonomously. In addition, available
human rescue forces are typically stretched thin and operating
under severe time constraints; autonomously operating robots
could alleviate some of this pressure. Since robots operating
in these environments may be damaged, e.g., by crumbling
buildings, it is desirable to not rely on a few large and
expensive robots, but rather on many simple and cheap ones.

In this paper we will use the following example: An indus-
trial complex has been damaged; workers have been trapped
in several buildings and need to be rescued. It is expected that
parts of the complex will further collapse while the rescue
operation is in progress. In this paper we ignore the difficulties
inherent in working with real robots and look only at the
problem of navigation in an unknown environment for which
the robots can only be partially prepared by the developer of
the CPS. In particular we focus on adapting as quickly as
possible to changes in the environment, and on minimizing
the overhead for internal organization and planning.

III. CONTINUOUS COLLABORATION

In this section, we present a software architecture and
development approach that can be used to tackle the previ-
ously mentioned challenges. The collaborative aspects of sCPS
development permeate all phases of the software lifecycle;
we therefore start the discussion with the presentation of
a communication and network infrastructure (subsection A).
We then introduce the language we use for the specification
of agent behavior in subsection B and show how it lends
itself to the development of systems that integrate individual
and collective learning and adaptation (subsection C). Finally,
we discuss some aspects of the overall process of contin-
uous collaboration, a development pattern based on using
feedback gained from the running system to continuously
adapt and improve a system’s operation throughout its life



cycle (subsection D). Our implementation of the rescue robot
case study relies on the techniques presented in this section;
the performance of the respective implementation will be
examined in section IV. The software for this experiment
can be downloaded from the “Academia” project (https:
//github.com/hoelzl/Academia).

A. The HADES/Hexameter Platform

As the core piece of our software infrastructure, we wrote
HADES (“HADES’s A Discrete-time Environment Simula-
tor”), which provides a framework for the communication of
the robot controllers with their environment. It defines the
notifications passed to the agents and how they can access
their sensors and actuators, thus providing a common world
model to all agents. HADES can work both as a server
running a simulation of the environment or as meta-layer on
top of another simulator or actual robot hardware; therefore
we can use the same robot controllers to drive experiments
either in an abstract environment (see section IV) or in a
fully simulated physical world. To achieve the latter, we have
integrated HADES with the ARGoS swarm-robotics simulator
[3], which is capable of simulating large swarms of robots with
realistic models for physics, sensors and actuators.

As HADES is implemented in Lua, a lightweight scripting
language designed for easy embedding into applications writ-
ten in C or C++, it can easily be embedded in other projects
and is well-suited to running on limited hardware.

HADES uses a protocol named Hexameter for all of its
network communication, which is a general-purpose protocol
based on the primitives of the SCEL modeling and program-
ming language. SCEL was developed within the ASCENS
project and is “a new language specifically designed to rig-
orously model and program autonomic components and their
interaction” [4]. Basing Hexameter on SCEL has the distinct
advantage that the communication behavior of components
using Hexameter can easily be modeled in SCEL and that
these models are compatible with the techniques and results
developed in the ASCENS project.

As front-end libraries are available in various languages,
HADES provides a flexible way to connect external software
components as well as to port the whole system to different
simulated or physical platforms.

B. Extended Behavior Trees (XBTs)

Behavior trees (BTs) are a technique for describing agent
behaviors that was introduced to allow designers to script
the behavior of non-player characters in computer games. In
its simplest form a BT is a tree containing actions that are
executed by an agent as leaf nodes, and choice nodes and
sequence nodes as internal nodes. Choice nodes allow the
choice between different courses of action whereas sequence
nodes allow sequential execution of actions. Each BT is
periodically activated by the control loop of its containing
system (adopting a term commonly used in game engines,
we say it is ticked) and returns a result indicating that its
execution was either successful, that execution failed, or that

it is still running and needs more time to continue. A choice
node succeeds when any of its child nodes succeeds and fails
when all of its child nodes have failed. A sequence node fails
whenever one of its children fails and succeeds when all its
children succeed. Both choice and sequence nodes return a
running status whenever one of their children does.

Many implementations of BTs exist; most of them extend
the basic node types with nodes such as decorators, internal
nodes having a single child and modifying the execution
behavior of that child, e.g., by “negating” the result (from
succeeded to failed and vice versa). Despite their simplicity,
BTs allow surprisingly complex behaviors to be specified,
but they suffer from a number of well-known limitations, for
example: (1) Every action performed by the BT is immediately
executed so that possibilites for off-line planning are limited.
(2) It is difficult to implement state-based behaviors using BTs,
since the child nodes of each node have to be specified in the
tree which leads to clumsy specifications if different states
require different behaviors.

To address these issues we have introduced Extended Be-
havior Trees (XBTs) in [1]. XBTs extend behavior trees in
several ways, among them:

• The nodes return an indicator about the reward they
obtained to their parent in addition to the execution status.

• A state object is threaded through the activations of the
nodes. All operations on the environment have to be
mediated by the state, e.g., by being implemented as
methods of the state object. States can be virtualized so
that operations on the state simulate the expected behavior
but do not change the real environment.

• There is a node type external choice node that is similar
to choice nodes but calls a function to generate its child
nodes whenever it is ticked and not already running.

These extensions of behavior trees make it easy to specify
state-based behaviors and they permit reinforcement-learning
and offline-planning nodes. In addition, the operational se-
mantics of XBTs is defined by a translation into SCEL and
therefore node types that execute their children concurrently
are easy to define.

Fig. 1 shows an XBT for a simple rescue robot. The
topmost node is a choice between four alternatives: The
leftmost subtree checks whether the robot is in one of its home
locations. In that case, it executes its child node, a sequence
node that first updates the robot’s data and then drops off the
victim. If this alternative fails, either because the robot is not
in a home location or because it is not carrying a victim, the
choice node proceeds to the second subtree, checks whether
there is a victim in the current location and picks up the victim
if possible. If this branch of the tree also fails and the robot is
carrying a victim, it picks a home location and moves towards
this location, otherwise it picks a new location where it expects
to find a victim to rescue and moves towards that location.

Returning a result status of “running” is similar to yielding
in a coroutine: execution of the currently running branch
of the XBT is suspended and control returns to the control
loop; when the XBT is ticked again, it will resume execution



Fig. 1. XBT for a rescue robot

Fig. 2. State-dependent XBT node

starting with the suspended node. The possibility to fail and
continue with the next choice leads to a convenient handling
of situations where the outcomes of actions are not certain.

Moving towards a target location is one example of state-
based behavior: the direction to a target depends on the
current position of the robot. Fig. 2 shows how external choice
nodes can address this situation: The state of the navigation
graph provides a sequence of waypoints that are possible
targets for the next move of the robot. The external choice
node tries to perform a go action to each of these nodes
in turn, until one action succeeds. By providing a sequence
of waypoints, the system achieves a limited amount of error
tolerance: when some paths are blocked, the robot tries to
find alternative routes. But this solution is rather limited: the
different waypoints may lead to greatly different rewards or
costs, and the experience of the robot from previous rescue
missions is not used to improve future behavior since there is
no feedback from the XBT back to the navigation graph.

In the next sections we will show how robots using the
XBTs in Figs. 1 and 2 can cooperate to adapt to changes
in the environment. However, it is also easy to incorpo-
rate individual learning into XBT-based controllers to add
additional flexibility: Fig. 3 shows the movement XBT for
a robot that autonomously learns the navigation decisions
for unknown terrain. This navigation system uses a RL(Q)-
node, an external choice node that performs reinforcement

Fig. 3. Reinforcement-learning XBT node

learning using a Q-function. This node receives the set of all
possible next waypoints from the navigation graph and uses
an estimate of their quality (provided by the Q-function) to
choose the order in which they are tried. Since the available
Q-function is generally only an approximation of the real
values obtained from the environment, the RL(Q) node uses
the reward obtained by executing the go(waypoint) child node
to update its estimate of the Q-function. In addition, the RL(Q)
node occasionally performs exploration moves to waypoints
that are not optimal according to the current estimate in order
to obtain a better estimate. As can be seen by this example, it
is straightforward to add individual learning behaviors to any
choice node in an XBT.

C. Teacher/Student Learning

Even if the environment or requirements of an sCPS are
not completely known at design time, the system designers
can usually provide at least a rough idea about algorithms
that are well-suited for accomplishing the goals of the system,
and about the structure of the system’s activities. In addition,
domain-specific quality criteria have to be elucidated in the
requirements phase, e.g., in the form of a utility measure.
Thus, it seems logical to include these rough guidelines into
the sCPS not only as a default mechanism or a constraint on
the system’s behavior, but as the basis of a learning process.
More concretely, we can express the behavioral requirements



in the form of an XBT that defines the structure of the system’s
behavior. Each choice in the XBT can be hardwired, if the
designers are confident about the correct choices or they can
be specified as, e.g., RL(Q) nodes which each component in
the system can optimize based on its experience. In addition,
the simple structure of XBTs allows multiple agents in the
system to exchange information about beneficial choices for
certain nodes even if they share only certain subtrees of the
XBT and not the whole behavior. Therefore the sCPS can
adapt its behavior by incorporating the shared experience of
its components and thus hopefully improve its performance
in situations where its programming is not well suited for the
task at hand. In order to do so, we have designed an internal
communication pattern that is able to allow this adaptation
process with little overhead.

We identify certain components of the sCPS as teachers,
whose job it is to provide domain knowledge to other agents,
called students; their main job is to interact with the environ-
ment according to the plan provided by the teachers. However,
the distinction is not always strict: it is possible to think of
scenarios where agents fulfill both roles at once as well as of
scenarios featuring a strict separation, e.g., because students
are autonomous robots whereas teachers are large stationary
computers. Teacher/student learning as a design pattern is
more thoroughly covered in [1]; the rest of the section will
focus on its use as framework for adaptive behavior.

In the simplest implementation of the “robot rescue force”,
there is a teacher present at the home base, which interacts
with any robotic agent passing through. The teacher contains
the knowledge of the original plan of the industrial complex
(before the site was possibly damaged) in the form a graph
with weighted edges representing the estimated traveling cost
and can thus compute the seemingly optimal routes for the
robots to travel through the navigation graph in order to reach
the nearest victims. The table of shortest paths between on-site
locations (i.e. nodes in the navigation graph) is then passed on
to the students residing in the home base. After they have used
this table to navigate the site as well as possible, hopefully
locating a victim and returning it to the home base in the
process, the teacher retrieves a record of their actions and
their actual consequences regarding damages and rewards from
the students, which it can use to improve its own model and
subsequently teach an advanced version of the navigation table
to its students.

However, this process of information distribution is rather
simplistic: On the one hand, the transmission of possibly very
large amounts of data from teachers to students and vice
versa may not be feasible under the specific circumstances,
due to limitations in used hardware, especially bandwidth.
On the other hand, interference with the environment might
distort message content or break the communication protocol.
In general, it can be assumed that communications between
agents may end up rather noisy. In this context, bandwidth
limitations can be viewed as a special form of noise as well,
i.e. coherent parts of a transmission are lost entirely. But
instead of trying to take corrective action against problems

in message transmission, a learning algorithm can actually
take advantage of it: Agents using reinforcement learning
techniques rely on a certain amount of “exploratory” behavior
in which they perform actions they consider non-optimal to
improve their estimate of the utility of various states. Unless
the communication channel is too noisy, we can set up the data
transmission so that natural noise adds a variation to the plans
enacted by the agents that is similar to the one required for
exploratory actions, and thus leads to an increased exploration
of the solution space that can, if desired, be compensated by
reducing the deliberately introduced exploratory behavior. This
gives rise to a natural form of mutation in individual solutions
between the single students. In addition, the structure of XBTs
makes it straightforward to not exchange complete plans or
strategies but only decisions for individual nodes in the XBT,
leading to a kind of cross-over recombination. In summary,
due to the structure of the learning process mimicking the
actual CPS architecture, environmental interference, which is
prone to occur at the point of agent communication, can be
mitigated or even exploited by teacher/student learning.

Selection can also be implemented in the teacher/student
model and occurs whenever a vicinity features multiple teach-
ers trying to share their recommendations with the nearby
students. Since the students can only do one action at a time,
they have to decide between different solutions they are offered
at some point in time. While it is entirely possible for students
to remember multiple recommendations and decide on one just
in time for each respective action, or to combine them if the
type of action permits such an operation, in our implementa-
tion, the choice between multiple recommendations offered
by different teachers happens at the moment of teaching:
Due to previous experiences with the recommendations of a
specific teacher, the student develops a relationship of trust
with that teacher. Since the teacher passes on an expected
reward alongside with its recommendations, the student can
compare that expectation with the reward it actually gained by
enacting the recommendations and thus increase or decrease
its trust towards that teacher accordingly. The higher the
trust a student has for a teacher, the more likely it is to
accept that teacher’s recommendations and replace its current
navigation table with them. Thus, if a teacher can provide good
recommendations more often, it is more likely to distribute
further recommendations among the students of the sCPS.
Likewise, teachers usually providing wrong information will
be almost ignored by the students over time.

These two simple elements (i.e. mutation and selection)
make up a simple evolutionary algorithm improving on the
individual action plans. Note however, that the plans that make
up the population of the evolutionary process are constantly
used for robot control, even while they are still evolving. When
combined with robots executing said plans in parallel and
without a single point of control (as in our case), this approach
is called “embodied evolution”. Employing this technique,
we can provide additional adaptive abilities to the sCPS
without bringing in the overhead of a full-fledged engine for
learning or evolutionary algorithms in particular, but just by



choosing the right communication pattern and exploiting its
natural properties. However, since the overall behavior of the
controller is still constrained by the structure of the XBT,
designers can control which parts of the system take part in
the evolutionary process, which bounds are imposed on the
evolution, and which behaviors remain fixed.

D. The Continuous Collaboration Pattern

The teacher/student paradigm brings further advantages
when considering the design process of an sCPS: as it provides
a natural way of using multiple different knowledge sources
in conjunction, it aids the developer in crafting the sCPS’s
emergent behavior from smaller strategies. This also allows
the developer to include knowledge gained from single-agent
versions of the problem, which are usually much easier to
analyze computationally. The presence of a respective teacher
promoting at least roughly feasible solutions to its student can
thereby influence the behavior of the whole group of agents.

This also provides an easy interface for later adjustments
to the sCPS: By adding a teacher, the system will adopt that
teacher’s recommendations if they prove to be promising, but
will quickly learn to ignore that teacher otherwise, thus not
causing a too big disturbance in the productive run.

From a software engineering point of view, the
teacher/student dynamic provides a continuous interface
for handling the sCPS’s emergent behavior throughout the
system’s life cycle: New behavior can be implemented by
adding a new teacher or multiple teachers accordingly. The
sCPS, however, will only actually opt for this behavior, if
the first probabilistic tests (i.e. the few students randomly
picking new teachers not yet assigned any trust value over
presumably quite trustworthy, well-known teachers) show
at least no detrimental decrease in fitness. Furthermore, the
analysis of the trust teachers gained from their students
provides a way of gathering feedback about the apparent
efficiency of employed strategies (at least from a robot’s
point of view) and can direct developers to promising points
of improvement. Similarly, feedback from the outside (from
domain experts, e.g.) can also be incorporated by adjusting
the available teachers and their respective recommendations.
Therefore, the teachers provide a middle layer mediating
between the software developer and the emergent system
behavior enacted by all agents, aiding in abstraction and
separation of concerns.

The inherent locality of most communication inside an sCPS
operating according to the teacher/student pattern also allows
for a high level of scalability: Since teachers only operate
with students in their vicinity, the size of the group of agents
can easily be increased while keeping the teacher:student ratio
constant without running into any complexity pitfalls. From a
development point of view, this means that once the basic
infrastructure is set up, teams can easily be split between
different parts of the behavioral logic.

The development process that controls ongoing agent behav-
ior through the mediation of the teachers, expressed through
both adjustment from the outside and gathering feedback from

Fig. 4. The Ensemble Development Life Cycle (EDLC)

Fig. 5. Performance of the rescue robots over time, static case

the inside of the agent group, is what we call continuous
collaboration.

A life-cycle model for this kind of highly iterative
and feedback-intensive development has been proposed by
the ASCENS project as Ensemble Development Life Cycle
(EDLC) [5]. The EDLC features two feedback loops, pro-
cessed at design time and run time, respectively. They are
connected by deployment (passing results from design time
to the run time system) and execution feedback (passing run
time information back to the development cycle), resulting in a
third feedback loop, see Fig. 4. Continuous collaboration can
be seen as an instance of the EDLC where the teachers have
a dual role, as both part of the awareness and self-adaptation
phases of the runtime cycle, and as mechanism for deploying
new or updated behaviors and providing feedback about the
system’s operation to the developers. Therefore teacher/student
learning provides a common interface for both online and
offline adaptation.

IV. EXPERIMENTS

To evaluate the teacher/student learning pattern we have
implemented the robot rescue scenario using the tools and
techniques described in this paper. While lack of space pre-
vents us from discussing the case study in detail we want to
give at least a short qualitative overview of the main results.

The robots use the XBT in Fig. 1 with state-dependent
navigation but no individual learning to operate in a navigation
graph with 200 nodes connected (initially) by 3960 randomly
generated (directed) edges.

Robots can traverse edges as well as pick up and drop off
victims. Each edge has a weight that determines the cost for



traversing that edge; when a robot drops off a victim at a
designated home node it receives a reward. The experiment is
organized into 100 episodes. At the start of the first episode
all robots are located at the home node. They start executing
their XBTs, therefore they obtain a plan from a teacher and
then start exploring the graph and rescuing victims. When a
robot returns to the home node it provides a log of its actions
and the obtained rewards to the teacher from which it obtained
its plan; it can then request a new plan from this or another
teacher. In each episode each robot performs 250 ticks of its
XBT. After each episode, each teacher can update its internal
model of the world; the end of the episode has no effect on
the robots (i.e., they stay where they are and start the next
episode in the state in which they finished the previous one).

Fig. 5 shows the performance of three teachers for a robot
swarm consisting of 50 robots. The blue curve (starting at
the top left corner of the diagram) is a teacher with perfect
information about the environment following an optimal pol-
icy, i.e., in the average case this represents the best possible
performance in this environment. This teacher does not take
into account information provided by the students and does not
suggest exploratory moves to its students. The (red and black)
curves starting in the lower left corner show the performance
of teachers with imperfect information that learn from the
information provided by their students and whose students
perform exploratory moves. Initially the graph known by the
red and black teachers differs significantly from the actual
environment both structurally and from the expected rewards:
10% of the edges of the real graph are missing, 5% of the
edges that are not present in the real graph are present in the
teachers’ graphs, and the cost of each edge in these graphs
differs significantly from the real cost.

Each learning teacher uses a dynamic programming algo-
rithm to compute the best paths between any two nodes in
its current model of the world and teaches that model to
robots when they request new data. We therefore call these
red and black teachers DP-teachers. They differ only in how
eager they are to exploit the information in their model in the
face of errors in the model (i.e., discrepancies between their
predictions and the rewards observed by their students).

The imprecise initial model of both DP-teachers is reflected
by their very poor performance during the first episodes. Since
the results reported by the students are significantly different
from their estimates, both DP-teachers suggest the maximum
exploration rates to their students, which causes the students
to essentially perform random walks. (We set the maximum
exploration rate to 80% so that the students always try to
exploit the plans to some extent. In our experience this leads
to quicker convergence than pure random walks.) However,
as can be seen from Fig. 5, after only 10 episodes, the DP-
teachers rapidly approach the performance of the optimal
teacher. Since the DP-teachers incorporate data from multiple
robots, their plans converge much more quickly than the plan
any student could develop on its own.

This first experiment shows that teacher/student learning can
converge to the optimal solution in a static environment. The

Fig. 6. Performance of the rescue robots over time, “catastrophic” change

Fig. 7. Performance of the rescue robots over time, gradual change

more realistic and interesting case is the behavior of the system
in dynamic environments. We simulate two different scenarios:

Fig. 6 shows the same experiment as Fig. 5, but after 25
episodes a “catastrophic event” happens in the environment
and the structure of the graph is changed significantly: 50% of
the existing edges are destroyed, 10% of the previously uncon-
nected nodes are connected, and the weights of the remaining
edges are modified. The black teacher immediately reacts to
this change and updates the behavior of its students so that
only a slight decrease in their performance can be observed.
The previously optimal teacher fares very badly since its map
no longer reflects the reality of the new environment and it
does not take any new information about the environment into
account. The performance of the red teacher drops for a short
period, but after 5 episodes its performance has recovered and
it retains this performance thereafter.

The third experiment simulates an environment that de-
grades not in one catastrophic event but periodically; the
results for this experiment are shown in Fig. 7: 15% of the
existing edges are destroyed, 2.5% of the unconnected nodes
are connected and the weight of the existing edges is modified
every 10 episodes. As expected, the performance of the blue
(non-learning) teacher decreases significantly as the graph
starts to deviate from its map. The performance of the DP-
teachers decreases, sometimes significantly, at the beginning
of each episode, but they recover quickly and remain near
the optimal result level for a large percentage of the time.
If both DP-teachers are teaching simultaneously, the system
performance can further be improved by having students learn
from the teachers in proportion to the expected reward but



providing information about the rewards to both teachers.
Using this strategy the average performance of the robots is
only slightly below the maximum value of both DP-teachers
and the “valleys” in the performance are smoothed out.

To summarize, a teacher/student swarm with DP-teachers
achieves nearly optimal performance across all three scenarios
after a short learning period. If its students choose their
teachers in proportion to the expected rewards the swarm can
eliminate some of the variance introduced by the learning and
exploration process while still responding quickly to changes
in the environment. Since the teachers integrate the results of
all their students, the learning process converges quickly.

V. RELATED WORK

Many languages for modeling and implementing behaviors
exist, but none of them seems to be a perfect fit for the
requirements of sCPS: UML activity and state diagrams [6]
are commonly used to describe the behavior of embedded
systems, but they are not particularly well-suited for specifying
goal-directed behaviors or integrating learning or planning
mechanisms into a system. Programming languages extended
with constructs for incorporating learning or planning, such
as ALisp [7], are very flexible and expressive but it is often
difficult to understand how planning, learning and adaptation
integrate with the preprogrammed behavior, and the resulting
programs are difficult to understand for non-programmers.

BTs have been implemented in a number of game en-
gines [8] and are increasingly used for applications in robotics
and avionics [9], [10].

Embodied evolution is defined in [11]. A more in-depth
discussion as to why this approach is reasonable for scenarios
like the “robot rescue force” is given in [12], including special
characteristics of “embodied evolution” and possible pitfalls.

Many mechanisms for learning and adaptation have been
proposed; [1] contains an overview and further references
of reinforcement learning approaches; [13] introduces many
techniques for multi-agent learning and communication.

VI. CONCLUSION AND FUTURE WORK

We have introduced a case study on the development of an
adaptive CPS using continuous collaboration in the form of the
teacher/student approach to learning. This conceptual approach
is supported by XBTs for behavioral specification and the
HADES/Hexameter platform as runtime. The experimental
results show that the system achieves competitive performance
even in static scenarios and excels in situation where frequent
adaptation is necessary.

There are many interesting directions for future work. On
the theoretical level, there are obvious connections to evolu-
tionary game theory, distributed reinforcement learning and
artificial evolution. In particular, the application of replicator
dynamics and the investigation of evolutionary stable strategies
to guide the introduction of teachers seems promising.

We have restricted the discussion in this paper to one
sub-problem suggested by the scenario while ignoring many
of the difficulties present in the interaction with a physical

environment. As next step we plan to extend the experiment
to operate on robots simulated in ARGoS. In this context it is
also interesting to investigate how existing algorithms for robot
localization, in particular for Simultaneous Localization and
Mapping (SLAM) [14], can be integrated into the continuous
collaboration approach.

From a software engineering point of view, an approach
like continuous collaboration raises many questions, for ex-
ample, which requirements, analysis and design processes are
compatible with the ongoing integration of run time data and
knowledge into the system. Another important aspect is how
verification and validation can be combined with continuous
collaboration, and which constraints on the system’s behavior
can be guaranteed.
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